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Recap

𝐶, 𝑉 :  a commitment scheme
 Properties:  hiding, binding, succinct

(𝐶, 𝑂, 𝑉): a vector commitment scheme
 Commit to a vector 𝑣 ∊ 𝑊!, 
 later verifiably open some 𝑣[𝑖] for 𝑖 ∊ {0, … , 𝑛 − 1}.
 Properties:  hiding, binding, succinct



Notation for the rest of the course

• ℕ ≔ 0,1,2, …
• 0,1 ∗ ≔ ⋃"#$

% 0,1 "     (the set of all finite length binary strings)

• For 𝑥 ∊ 0,1 ∗  let   |𝑥| ≔ 𝑙𝑒𝑛(𝑥)
Def:  𝑓: ℕ ⇾ [0,1]  is a negligible function if
 for every polynomial  𝑝:ℕ⇾ ℕ,   
	 ∃𝑁&  s.t.   ∀𝑛 > 𝑁&: 	 𝑓(𝑛) ≤ 1/𝑝(𝑛)

Examples:  𝑓'(𝑛) = 10(/2",     𝑓) 𝑛 = 1/𝑛*+, "



Algorithms

𝐴(𝑥, 𝑦) is poly-time if there is a polynomial  𝑝:ℕ⇾ ℕ  s.t.
 for all 𝑥, 𝑦 ∊ 0,1 ∗ :   𝑡𝑖𝑚𝑒 𝐴 𝑥, 𝑦 ≤ 𝑝( 𝑥 + 𝑦 )

𝐴(𝑥, 𝑦) is prob. poly-time  (PPT) if there is a poly.  𝑝:ℕ⇾ ℕ  s.t.
 for all 𝑥, 𝑦 ∊ 0,1 ∗	, and	all	 𝑟 ∊ 0,1 #( % & ' ) :   
      𝑡𝑖𝑚𝑒 𝐴 𝑥, 𝑦; 𝑟 ≤ 𝑝( 𝑥 + 𝑦 )

We write   𝑤 ⇽ 𝐴 𝑥, 𝑦    to denote the random variable 
 w ≔	{	𝑟 ⇽ 0,1 #( % & ' ) ,  output   𝐴 𝑥, 𝑦; 𝑟  }

(modeled at TM)



Algorithms

Let  𝑂): 𝑋) ⇾ 𝑌)  ,    𝑂*: 𝑋* ⇾ 𝑌*    be functions

 we write   𝐴+!,+"(𝑥, 𝑦)   to denote an oracle algorithm
 that makes queries to 𝑂) and 𝑂* during its execution.

 A call to 𝑂)(𝑤) writes the evaluation of 𝑂) at 𝑤 to memory
 in one time unit.



Relations
A language 𝐿 is a subset of 𝐿 ⊆ 0,1 ∗

examples:  ∅, 	 PRIMES ≔ { 𝑝  | 𝑝 ∊ ℕ	is a prime }
 3COL ≔ { 𝐺 	 |  𝐺 = 𝑉, 𝐸  is 3-colorable } 

A relation 𝑅 is a subset  𝑅 ⊆ 𝑋×𝑊

example:   𝑅-./0 ≔ { ( 𝐺 , 𝑓) | 𝐺 = 𝑉, 𝐸  ,   𝑓: 𝑉 ⇾ {1,2,3}  }
is a valid 3-coloring

𝑅1231 ≔ { (ℎ,𝑚)  |  SHA256(𝑚) = ℎ }



Relations

Def:  for a relation 𝑅:

 (1)   𝐿(𝑅) ≔ { 𝑥 ∊ 𝑋  | ∃𝑤 ∊ 𝑊: 𝑥,𝑤 ∊ 𝑅  }  ⊆ 0,1 ∗

 (2)   𝑅  is an NP-relation if there is a poly-time alg. A
    s.t.     𝐴 𝑥,𝑤 = 1	 ⟺ 𝑥,𝑤 ∊ 𝑅

example:   𝐿(𝑅!"#$) = 3COL    and   𝑅!%&' is an NP-relation



Distributions

Let  Ω be a finite set.

Def:  a distribution  𝑃  on Ω  is a function  𝑃: Ω ⇾ [0,1]   s.t.
   ∑%∊5𝑃 𝑥 = 1

Def:  for distributions 𝑃, 𝑃′  on Ω  define the stat. distance as

  ∆(𝑃, 𝑃6) ≔ )
*
∑%∊5 𝑃 𝑥 − 𝑃′(𝑥) 	 ∊ 	 [0,1]

 We say that 𝑃, 𝑃′  are  𝜺-close  if   ∆(𝑃, 𝑃′) ≤ 	𝜀



Distributions

Example:   𝑚 > 𝑛.       Define:

 𝑃 uniform on {1,2, … , 𝑛}  ,     𝑃’ uniform on {1,2, … ,𝑚}  

Then:      ∆(𝑃, 𝑃6) ≔ )
*
𝑛 n )

!
− )
7

+ 𝑚 − 𝑛 n )
7

= 78!
7

⇒  if 𝑚 and 𝑛 are “close” then 𝑃 and 𝑃’ are “close” in stat. distance



Statistically indistinguishable distributions

Def:  distribution ensembles  {𝑃9 on Ω9}9∊ℕ	 and   {𝑃′9 on Ω9}9∊ℕ	
are statistically indistinguishable if
 𝜀(𝜆) ≔ ∆(𝑃9, 𝑃96)    is a negligible function

Example:    𝑃9  is uniform on  {1,2, … , 29}
   𝑃′9  is uniform on  {1,2, … , 29 − 1}

   Then   ∆ 𝑃9, 𝑃9
6 = 1/29   is a negligible function

We write:        {𝑃9}9∊ℕ	 ≈   {𝑃′9}9∊ℕ	
s

Ω! = {1,… , 2!}



Computationally indistinguishable distributions

Def: for two distribution ensembles  {𝑃9}9∊ℕ	 and   {𝑃′9}9∊ℕ	
 and a PPT algorithm A define

  AdvC(𝜆) ≔ Pr 𝐴 19, 𝑥 = 1 − Pr 𝐴 19, 𝑥′ = 1
 where  𝑥 ⇽ 𝑃9  and  𝑥’ ⇽ 𝑃’9	

⇒   No PPT algorithm can distinguish 𝑃 from 𝑃’ .    We write    {𝑃(}(∊ℕ	 ≈ {𝑃′(}(∊ℕ	 .
c

Def: ensembles {𝑃9}9∊ℕ	and {𝑃′9}9∊ℕ	 are comp. indistinguishable

 if  for all PPT  𝐴:     AdvC(𝜆)	 is a negligible function



Stat. indist.  ⇒  Comp. indist.

Lemma:   let {𝑃9}9∊ℕ	 and   {𝑃′9}9∊ℕ	 be two distrib. ensembles.
 Then for every algorithm 𝐴:
     AdvC 𝜆 ≤ ∆(𝑃9, 𝑃96)     for all   𝜆 ∊ ℕ	

Proof:   by an application of the triangular inequality

Corollary:   if   {𝑃9}9∊ℕ	 and   {𝑃′9}9∊ℕ	 are stat. indistinguishable
 then they are also computationally indistinguishable.



A traditional proof:  a long text that can be verified in linear time

New idea:  an interactive proof between prover and verifier

Interactive Proofs (IP)      [Babai, GMR 1985]

Goal:  for a relation 𝑅 ⊆ 𝑋×𝑊    and    𝑥 ∊ 𝑋
  Prover wants to convince Verifier that    𝑥 ∊ 𝐿(𝑅)



Interactive Proofs (IP)      [Babai, GMR 1985]

Def: a (public coin) interactive proof (IP) for a relation 𝑅 ⊆ 𝑋×𝑊
is a pair of PPT algorithms (𝑃, 𝑉) that operate as 

𝑷(𝟏𝝀, 𝒙, 𝒘) V(𝟏𝝀, 𝒙)
𝑚,

𝑟- ⇽ 𝑅-
𝑚-

𝑟. ⇽ 𝑅.
𝑚.

…

0/1

V keeps 
no secrets

(also called an Arthur-Merlin game)



Interactive Proofs (IP)
Notation:
• outE 𝑃, 𝑉 𝑥 ≔ output of 𝑉 at end of interaction with 𝑃

• tr9 𝑃, 𝑉 𝑥 ≔ (𝑥,𝑚F, 𝑟), … , 𝑟!, 𝑚!)     

        called the transcript (Verifier’s view)

Def:  (𝑃, 𝑉) is (perfectly) complete if for all  (𝑥, 𝑤) ∊ 𝑅

  Pr outE 𝑃, 𝑉 𝑥 = 1 = 1      for all  𝜆 ∊ ℕ



Interactive Proofs (IP)
Notation:
• outE 𝑃, 𝑉 𝑥 ≔ output of 𝑉 at end of interaction with 𝑃

Def:  (𝑃, 𝑉) is sound  if for all  𝑥 ∉ 𝐿(𝑅)   and all   𝑃∗  :

     ε 𝜆 ≔ Pr outE 𝑃∗, 𝑉 𝑥 = 1       is a negligible function

 ε 𝜆  is called the soundness error of (𝑃, 𝑉).

Def: (𝑃, 𝑉) is computationally sound  if soundness only holds 

against PPT provers 𝑃∗ .     (an unbounded prover may fool 𝑉)



Interactive Proofs (IP)

If  𝑅  is an NP-relation, then the trivial I.P. for 𝑅:    send 𝑤 to 𝑉

To disqualify the trivial I.P. we add two requirements:

(1)      (𝑃, 𝑉) is short if |transcript| is must less than |𝑤|  

(2)      (𝑃, 𝑉) should be honest verifier zero knowledge (HVZK)

Each of these requirements, on its own, disqualifies the trivial I.P. 



Honest Verifier Zero-Knowledge (HVZK)

Let (𝑃, 𝑉) be a (public coin) interactive proof (IP) for a relation 𝑅 ⊆ 𝑋×𝑊

Goal:   For  𝑥 ∊ 𝑋  Prover wants to convince Verifier that  𝑥 ∊ 𝐿(𝑅)
  without revealing “any other information”

How to define this?

• Verifier sees the transcript:  tr = (𝑥,𝑚F, 𝑟), … , 𝑟!, 𝑚!)

• Key idea:  𝑉 leans nothing from tr if it can generate tr by itself,
  just given 𝑥.    We say that 𝑉 can simulate the transcript.



Honest Verifier Zero-Knowledge (HVZK)
Def: (𝑃, 𝑉) is honest verifier zero knowledge (HVZK) if
 there exists a PPT simulator 𝑆 s.t.   for all  𝑥,𝑤 ∊ 𝑅
 (1) Perfect HVZK: 𝑆 19, 𝑥 9∊ℕ 	 ≡ 	 tr9 𝑃, 𝑉 𝑥 9∊ℕ

 (2) Stat. HVZK:  𝑆 19, 𝑥 9∊ℕ 	 ≈ 	 tr9 𝑃, 𝑉 𝑥 9∊ℕ

 (3) Comp. HVZK: 𝑆 19, 𝑥 9∊ℕ 	 ≈ 	 tr9 𝑃, 𝑉 𝑥 9∊ℕ

s

c

For 𝑥, 𝑤 ∊ 𝑅, simulator shows that transcript can be generated from 𝑥 alone   

⇒  anything V got from transcript, it could have generated on its own



Is interaction necessary?

We will later see a transformation:
 (public-coin) interactive protocol   ⇒   a non-interactive protocol

𝑷𝑯(𝟏𝝀, 𝒙, 𝒘) 𝑽𝑯(𝟏𝝀, 𝒙)
𝜋

0/1



An HVZK for 𝑅!"#$ 

1

2

3

3

𝐺 = (𝑉, 𝐸)

𝑓: 𝑉 ⇾ {1,2,3}



An HVZK I.P. for 𝑅!"#$
𝑃(𝟏𝝀, 𝑮 = 𝑽, 𝑬 , 𝒇: 𝑽 ⇾ {𝟏, 𝟐, 𝟑}) 𝑉(𝟏𝝀, 𝑮 = (𝑽, 𝑬))

1

2

3

3

permute colors
with a random 𝑆! perm.

(1,2,3)⇾(2,3,1)

2

3

1

1

vector commit 
to permuted colors

random edge 𝑒 = 𝑖, 𝑗 ⇽ 𝐸

open colors of nodes 𝑖 and 𝑗

2

1

accept if color(𝑖)≠color(𝑗)

[GMW’86]



An HVZK I.P. for 𝑅!"#$
Protocol sketch:

[GMW’86]

𝑷(𝟏𝝀, 𝑮, 𝒇) V(𝟏𝝀, 𝑮)
𝑐𝑜𝑚

𝑒 = (𝑖, 𝑗) ⇽ 𝐸

𝑐𝑜𝑙H  ,   𝑐𝑜𝑙I
  𝜋H	 ,    𝜋I

0/1
opening proofs

for vector commitment



An HVZK I.P. for 𝑅!"#$ 

This is perfectly complete

• Is it computationally sound?

• Is it HVZK? 



Proof of HVZK
Claim:  (P,V) is a statistical HVZK for 𝑅-./0

Proof:  Let  𝐺, 𝑓 ∊ 𝑅-./0 .    We build a simulator  𝑆(19, 𝐺):
• sample   𝑒 = 𝑖, 𝑗 ⇽ 𝐸    and    𝑎, 𝑎′ ⇽ {1,2,3}  s.t.  𝑎 ≠ 𝑎’ 
• set   𝑢′ ≔ (1,1, … , 𝑎, … , 𝑎6, … 1,1) ∊ 1,2,3 |K|	

pos. 𝑖 pos. j

• 𝑐𝑜𝑚 ⇽ VectorCommit(19, 𝑢′, 𝑟)
• Build opening proofs 𝜋, 𝜋′  for positions  𝑖 and 𝑗
• output   tr	 ≔ (𝑐𝑜𝑚, 𝑒, 𝑎, 𝑎6, 𝜋, 𝜋′)



Proof of HVZK
Claim:  (P,V) is a statistical HVZK for 𝑅!"#$

• set   𝑢′ ≔ (1,1, … , 𝑎, … , 𝑎%, … 1,1) ∊ 1,2,3 |'|	
• output   tr	≔ (𝑐𝑜𝑚, 𝑒, 𝑎, 𝑎%, 𝜋, 𝜋′)

(1)  The vector commitment is unconditionally hiding  ⇒  

VectorCommit 1(, 𝑢’, 𝑟 (∊ℕ 	 ≈ VectorCommit 1(, real	𝑢, 𝑟 (∊ℕ	

(2)  𝑒, 𝑎, 𝑎%, 𝜋, 𝜋′ :  are distributed exactly as in a real transcript

Puzzle:  would the protocol be HVZK if  𝑉  chose  (𝑖, 𝑗) ⇽ 𝑉 *  ??

s



Computational Soundness
Suppose the vector commitment is unconditionally binding.

Claim:   if   𝐺 ∉ 𝐿(𝑅-./0)   then   for all PPT    𝑃∗

   Pr 	 outE 𝑃, 𝑉 𝐺 = 1	 ≤ 1 − )
|L|

Proof idea:   suppose 𝑐𝑜𝑚 is a commitment to some 𝑓 ∊ 1,2,3 |K|	
Then:    𝐺, 𝑓 ∉ 𝑅-./0   ⇒   ∃	𝑒∗ = 𝑖, 𝑗 ∊ 𝐸  s.t.  𝑓 𝑖 = 𝑓[𝑗]

Pr[	𝑉 chooses 𝑒∗] = )
|L|     ⇒ Pr 	 outE 𝑃, 𝑉 𝐺 = 0	 ≥ )

|L|

not negligible!



Amplification by parallel composition
To reduce soundness error to  ⁄1 𝑒9  repeat protocol in parallel

𝑡 = 𝜆 n |𝐸|  times.   Verifier accepts if all iterations accept.

𝑷(𝟏𝝀, 𝑮, 𝒇) V(𝟏𝝀, 𝑮)𝑐𝑜𝑚), … , 𝑐𝑜𝑚M

𝑒), … , 𝑒M ⇽ 𝐸

𝑐𝑜𝑙),𝑐𝑜𝑙′)  ,  …  , 𝑐𝑜𝑙M,𝑐𝑜𝑙′M   
   𝜋),𝜋′)     ,  …  , 𝜋M,𝜋′M

0/1

accept if all 𝑡 
transacripts accept

Now:   𝐺, 𝑓 ∉ 𝑅-./0   ⇒   Pr[ 𝑉 accepts] ≤ 1 − )
L

M
≈ ⁄1 𝑒9



Amplification by parallel composition

𝑷(𝟏𝝀, 𝑮, 𝒇) V(𝟏𝝀, 𝑮)𝑐𝑜𝑚), … , 𝑐𝑜𝑚M

𝑒), … , 𝑒M ⇽ 𝐸

𝑐𝑜𝑙),𝑐𝑜𝑙′)  ,  …  , 𝑐𝑜𝑙M,𝑐𝑜𝑙′M   
  𝜋),𝜋′)      ,  …  , 𝜋M,𝜋′M

0/1

accept if all 𝑡 
transacripts accept

Note:  length of transcript is 𝑂(|𝐸|)   ⇒   not short

Lemma:  𝑃, 𝑉 	is	HVZK	 ⇒ 	 𝑃M, 𝑉M   is also HVZK

(not true for regular ZK)



Next lecture:   a succinct I.P. for every NP-relation

END  OF  LECTURE

Important point:    3𝐶𝑂𝐿 is NP-complete  ⇒  all of NP has HVZK I.P.


