

Interactive Proofs and Zero Knowledge: Definitions and a First Example

CS355 Spring 2025

<https://cs355.stanford.edu>

Recap

(C, V) : a **commitment scheme**

Properties: hiding, binding, succinct

(C, O, V) : a **vector commitment scheme**

Commit to a vector $v \in W^n$,

later verifiably open some $v[i]$ for $i \in \{0, \dots, n - 1\}$.

Properties: hiding, binding, succinct

Notation for the rest of the course

- $\mathbb{N} := \{0,1,2, \dots\}$
- $\{0,1\}^* := \bigcup_{n=0}^{\infty} \{0,1\}^n$ (the set of all finite length binary strings)
- For $x \in \{0,1\}^*$ let $|x| := \text{len}(x)$

Def: $f: \mathbb{N} \rightarrow [0,1]$ is a **negligible function** if

for every polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$,

$\exists N_p$ s.t. $\forall n > N_p: f(n) \leq 1/p(n)$

Examples: $f_1(n) = 10^6/2^n, \quad f_2(n) = 1/n^{\log n}$

Algorithms

(modeled at TM)

$A(x, y)$ is **poly-time** if there is a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ s.t.
for all $x, y \in \{0,1\}^*$: $time(A(x, y)) \leq p(|x| + |y|)$

$A(x, y)$ is **prob. poly-time** (PPT) if there is a poly. $p: \mathbb{N} \rightarrow \mathbb{N}$ s.t.
for all $x, y \in \{0,1\}^*$, and all $r \in \{0,1\}^{p(|x|+|y|)}$:
 $time(A(x, y; r)) \leq p(|x| + |y|)$

We write $w \leftarrow A(x, y)$ to denote the random variable
 $w := \{ r \leftarrow \{0,1\}^{p(|x|+|y|)}, \text{ output } A(x, y; r) \}$

Algorithms

Let $O_1: X_1 \rightarrow Y_1$, $O_2: X_2 \rightarrow Y_2$ be functions

we write $A^{O_1, O_2}(x, y)$ to denote an **oracle algorithm** that makes queries to O_1 and O_2 during its execution.

A call to $O_1(w)$ writes the evaluation of O_1 at w to memory in one time unit.

Relations

A language L is a subset of $L \subseteq \{0,1\}^*$

examples: \emptyset , $\text{PRIMES} := \{ \langle p \rangle \mid p \in \mathbb{N} \text{ is a prime} \}$

$\text{3COL} := \{ \langle G \rangle \mid G = (V, E) \text{ is 3-colorable} \}$

A relation R is a subset $R \subseteq X \times W$

example: $R_{\text{3COL}} := \{ (\langle G \rangle, f) \mid G = (V, E), f: V \rightarrow \{1, 2, 3\} \}$
is a valid 3-coloring

$R_{\text{hash}} := \{ (h, m) \mid \text{SHA256}(m) = h \}$

Relations

Def: for a relation R :

$$(1) \ L(R) := \{ x \in X \mid \exists w \in W: (x, w) \in R \} \subseteq \{0,1\}^*$$

(2) R is an **NP-relation** if there is a poly-time alg. A

$$\text{s.t. } A(x, w) = 1 \iff (x, w) \in R$$

example: $L(R_{3\text{COL}}) = 3\text{COL}$ and $R_{3\text{COL}}$ is an **NP-relation**

Distributions

Let Ω be a finite set.

Def: a **distribution** P on Ω is a function $P: \Omega \rightarrow [0,1]$ s.t.

$$\sum_{x \in \Omega} P(x) = 1$$

Def: for distributions P, P' on Ω define the **stat. distance** as

$$\Delta(P, P') := \frac{1}{2} \sum_{x \in \Omega} |P(x) - P'(x)| \in [0,1]$$

We say that P, P' are **ε -close** if $\Delta(P, P') \leq \varepsilon$

Distributions

Example: $m > n$. Define:

P uniform on $\{1, 2, \dots, n\}$, P' uniform on $\{1, 2, \dots, m\}$

Then: $\Delta(P, P') := \frac{1}{2} \left[n \cdot \left(\frac{1}{n} - \frac{1}{m} \right) + (m - n) \cdot \frac{1}{m} \right] = \frac{m-n}{m}$

\Rightarrow if m and n are “close” then P and P' are “close” in stat. distance

Statistically indistinguishable distributions

Def: distribution ensembles $\{P_\lambda \text{ on } \Omega_\lambda\}_{\lambda \in \mathbb{N}}$ and $\{P'_\lambda \text{ on } \Omega_\lambda\}_{\lambda \in \mathbb{N}}$ are **statistically indistinguishable** if

$$\varepsilon(\lambda) := \Delta(P_\lambda, P'_\lambda) \text{ is a negligible function}$$

Example: P_λ is uniform on $\{1, 2, \dots, 2^\lambda\}$ $\Omega_\lambda = \{1, \dots, 2^\lambda\}$
 P'_λ is uniform on $\{1, 2, \dots, 2^\lambda - 1\}$

$$\text{Then } \Delta(P_\lambda, P'_\lambda) = 1/2^\lambda \text{ is a negligible function}$$

We write: $\{P_\lambda\}_{\lambda \in \mathbb{N}} \stackrel{s}{\approx} \{P'_\lambda\}_{\lambda \in \mathbb{N}}$

Computationally indistinguishable distributions

Def: for two distribution ensembles $\{P_\lambda\}_{\lambda \in \mathbb{N}}$ and $\{P'_\lambda\}_{\lambda \in \mathbb{N}}$ and a PPT algorithm A define

$$\text{Adv}_A(\lambda) := |\Pr[A(1^\lambda, x) = 1] - \Pr[A(1^\lambda, x') = 1]|$$

where $x \leftarrow P_\lambda$ and $x' \leftarrow P'_\lambda$

Def: ensembles $\{P_\lambda\}_{\lambda \in \mathbb{N}}$ and $\{P'_\lambda\}_{\lambda \in \mathbb{N}}$ are comp. indistinguishable

if for all PPT A : $\text{Adv}_A(\lambda)$ is a negligible function

\Rightarrow No PPT algorithm can distinguish P from P' . We write $\{P_\lambda\}_{\lambda \in \mathbb{N}} \stackrel{c}{\approx} \{P'_\lambda\}_{\lambda \in \mathbb{N}}$.

Stat. indist. \Rightarrow Comp. indist.

Lemma: let $\{P_\lambda\}_{\lambda \in \mathbb{N}}$ and $\{P'_\lambda\}_{\lambda \in \mathbb{N}}$ be two distrib. ensembles.
Then for every algorithm A :

$$\text{Adv}_A(\lambda) \leq \Delta(P_\lambda, P'_\lambda) \quad \text{for all } \lambda \in \mathbb{N}$$

Proof: by an application of the triangular inequality

Corollary: if $\{P_\lambda\}_{\lambda \in \mathbb{N}}$ and $\{P'_\lambda\}_{\lambda \in \mathbb{N}}$ are stat. indistinguishable
then they are also computationally indistinguishable.

Interactive Proofs (IP)

[Babai, GMR 1985]

A traditional proof: a long text that can be verified in linear time

New idea: an **interactive proof** between prover and verifier

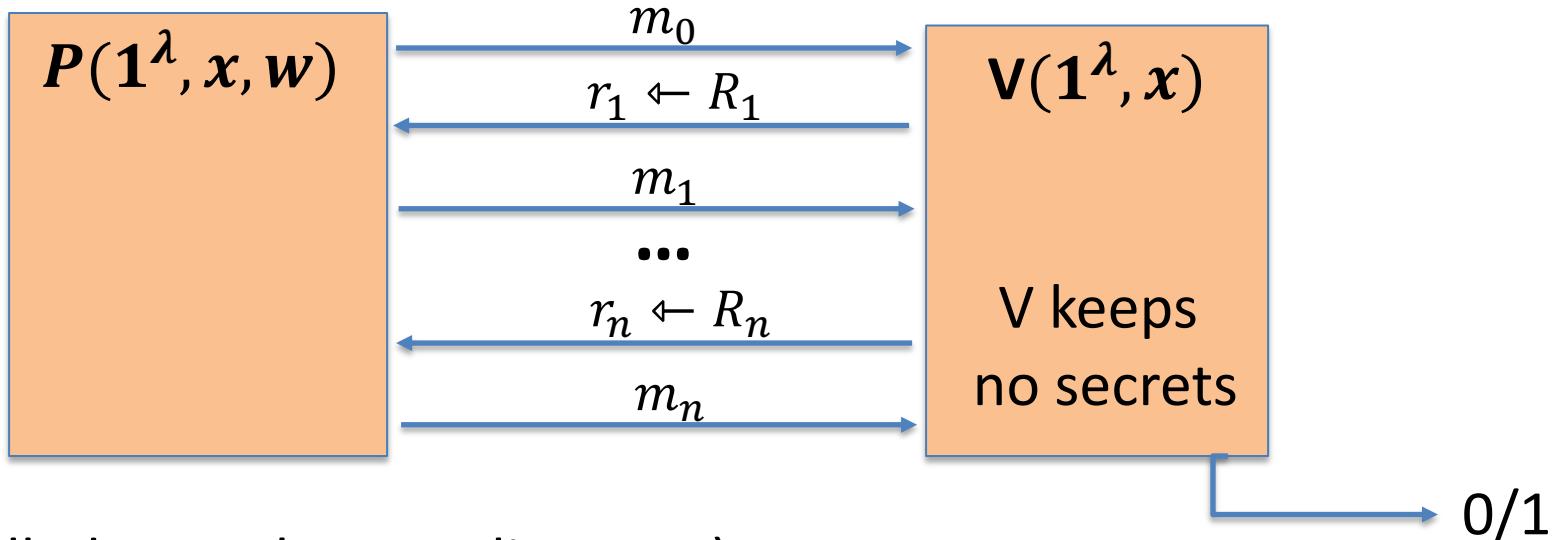
Goal: for a relation $R \subseteq X \times W$ and $x \in X$

Prover wants to convince Verifier that $x \in L(R)$

Interactive Proofs (IP)

[Babai, GMR 1985]

Def: a **(public coin) interactive proof (IP)** for a relation $R \subseteq X \times W$ is a pair of PPT algorithms (P, V) that operate as



(also called an Arthur-Merlin game)

Interactive Proofs (IP)

Notation:

- $\text{out}_\lambda[P, V](x) :=$ output of V at end of interaction with P
- $\text{tr}_\lambda[P, V](x) := (x, m_0, r_1, \dots, r_n, m_n)$

called the **transcript** (Verifier's view)

Def: (P, V) is **(perfectly) complete** if for all $(x, w) \in R$

$$\Pr[\text{out}_\lambda[P, V](x) = 1] = 1 \quad \text{for all } \lambda \in \mathbb{N}$$

Interactive Proofs (IP)

Notation:

- $\text{out}_\lambda[P, V](x) :=$ output of V at end of interaction with P

Def: (P, V) is **sound** if for all $x \notin L(R)$ and all P^* :

$$\varepsilon(\lambda) := \Pr[\text{out}_\lambda[P^*, V](x) = 1] \quad \text{is a negligible function}$$

$\varepsilon(\lambda)$ is called the **soundness error** of (P, V) .

Def: (P, V) is **computationally sound** if soundness only holds against PPT provers P^* . (an unbounded prover may fool V)

Interactive Proofs (IP)

If R is an NP -relation, then the trivial I.P. for R : send w to V

To disqualify the trivial I.P. we add two requirements:

- (1) (P, V) is short if $|\text{transcript}|$ is must less than $|w|$
- (2) (P, V) should be honest verifier zero knowledge (HVZK)

Each of these requirements, on its own, disqualifies the trivial I.P.

Honest Verifier Zero-Knowledge (HVZK)

Let (P, V) be a **(public coin) interactive proof (IP)** for a relation $R \subseteq X \times W$

Goal: For $x \in X$ Prover wants to convince Verifier that $x \in L(R)$ without revealing “any other information”

How to define this?

- Verifier sees the transcript: $\text{tr} = (x, m_0, r_1, \dots, r_n, m_n)$
- **Key idea:** V learns nothing from tr if it can generate tr by itself, just given x . We say that V can simulate the transcript.

Honest Verifier Zero-Knowledge (HVZK)

Def: (P, V) is **honest verifier zero knowledge** (HVZK) if

there exists a PPT simulator S s.t. for all $(x, w) \in R$

$$(1) \text{ Perfect HVZK: } \{S(1^\lambda, x)\}_{\lambda \in \mathbb{N}} \equiv \{\text{tr}_\lambda[P, V](x)\}_{\lambda \in \mathbb{N}}$$

$$(2) \text{ Stat. HVZK: } \{S(1^\lambda, x)\}_{\lambda \in \mathbb{N}} \stackrel{S}{\approx} \{\text{tr}_\lambda[P, V](x)\}_{\lambda \in \mathbb{N}}$$

$$(3) \text{ Comp. HVZK: } \{S(1^\lambda, x)\}_{\lambda \in \mathbb{N}} \stackrel{C}{\approx} \{\text{tr}_\lambda[P, V](x)\}_{\lambda \in \mathbb{N}}$$

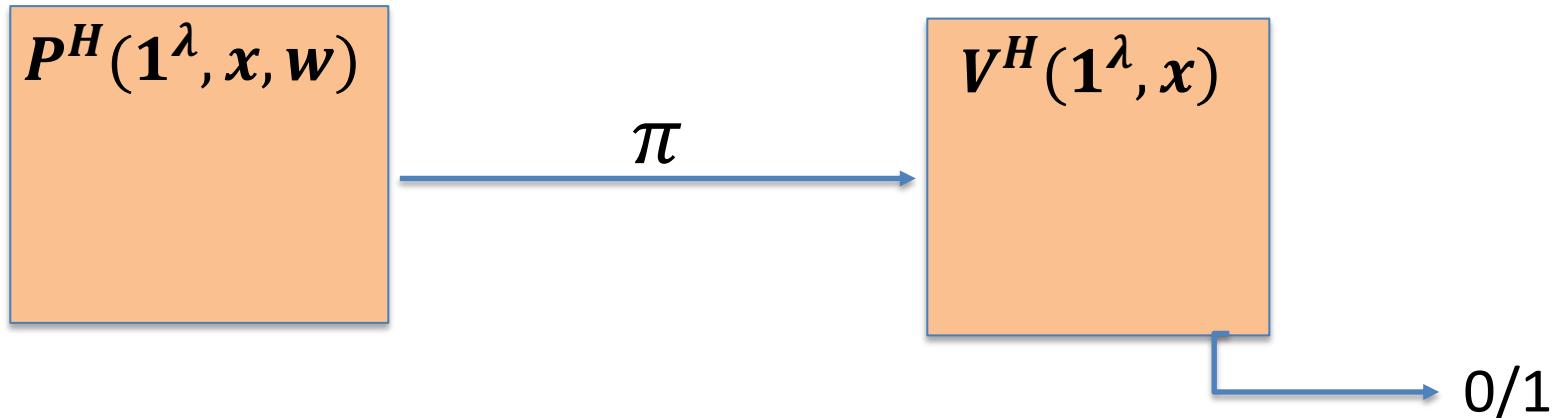
For $(x, w) \in R$, simulator shows that transcript can be generated from x alone

\Rightarrow anything V got from transcript, it could have generated on its own

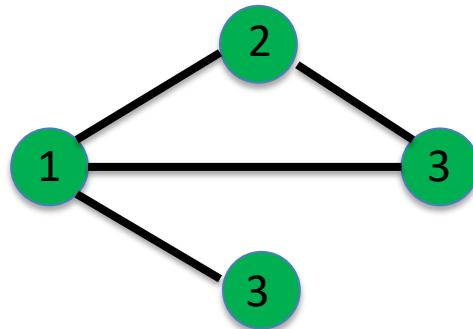
Is interaction necessary?

We will later see a transformation:

(public-coin) interactive protocol \Rightarrow a non-interactive protocol



An HVZK for $R_{3\text{COL}}$



$$G = (V, E)$$

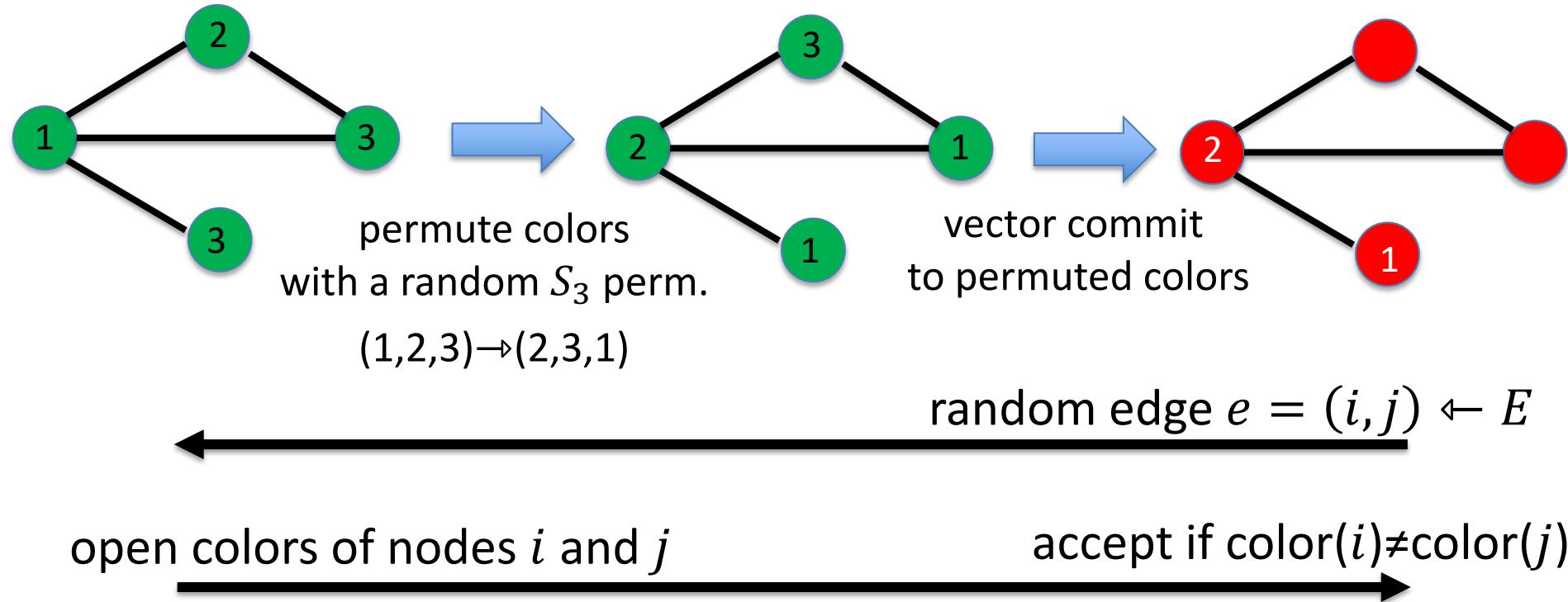
$$f: V \rightarrow \{1, 2, 3\}$$

An HVZK I.P. for $R_{3\text{COL}}$

[GMW'86]

$$P(1^\lambda, G = (V, E), f: V \rightarrow \{1, 2, 3\})$$

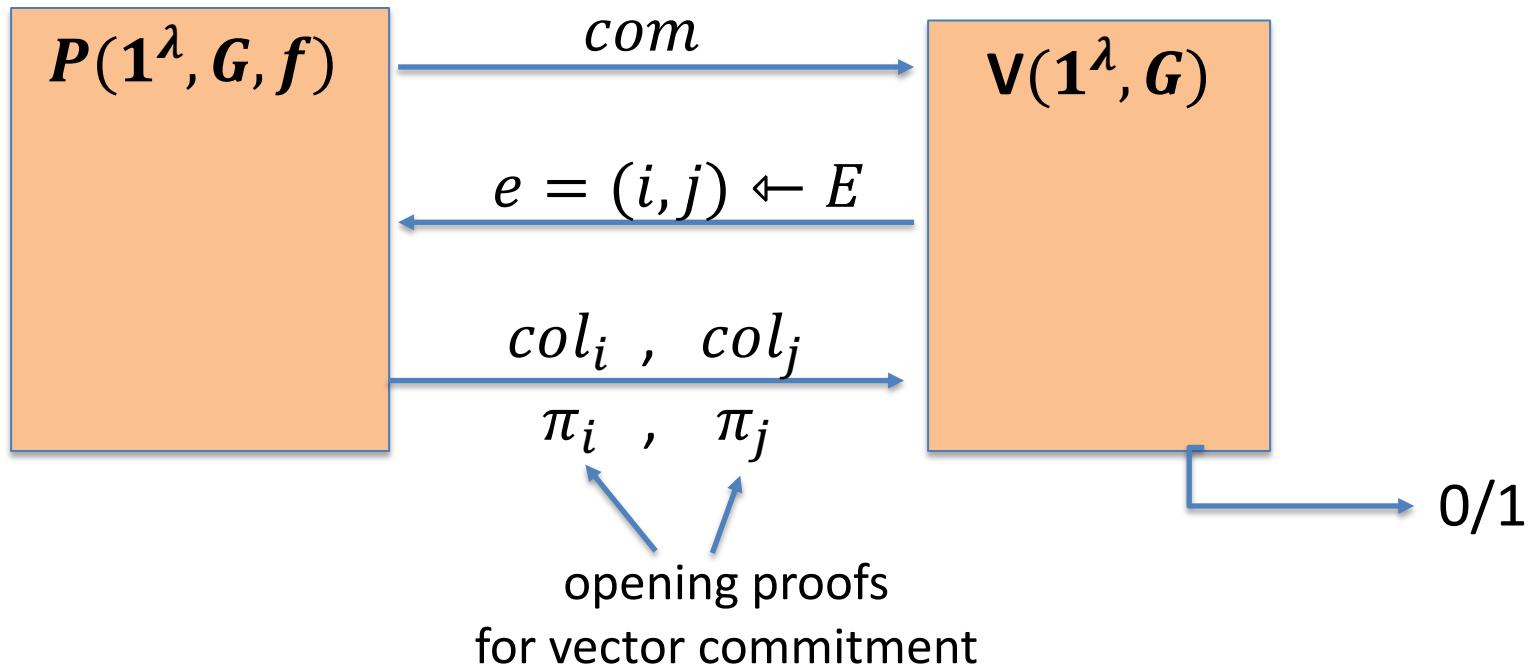
$$V(1^\lambda, G = (V, E))$$



An HVZK I.P. for $R_{3\text{COL}}$

[GMW'86]

Protocol sketch:



An HVZK I.P. for $R_{3\text{COL}}$

This is perfectly complete

- Is it computationally sound?
- Is it HVZK?

Proof of HVZK

Claim: (P, V) is a statistical HVZK for $R_{3\text{COL}}$

Proof: Let $(G, f) \in R_{3\text{COL}}$. We build a simulator $S(1^\lambda, G)$:

- sample $e = (i, j) \leftarrow E$ and $a, a' \leftarrow \{1, 2, 3\}$ s.t. $a \neq a'$
- set $u' := (1, 1, \dots, a, \dots, a', \dots, 1, 1) \in \{1, 2, 3\}^{|V|}$
pos. i pos. j
- $com \leftarrow \text{VectorCommit}(1^\lambda, u', r)$
- Build opening proofs π, π' for positions i and j
- output $\text{tr} := (com, e, a, a', \pi, \pi')$

Proof of HVZK

Claim: (P,V) is a statistical HVZK for $R_{3\text{COL}}$

- set $u' := (1,1, \dots, a, \dots, a', \dots 1,1) \in \{1,2,3\}^{|V|}$
- output $\text{tr} := (\text{com}, e, a, a', \pi, \pi')$

(1) The vector commitment is unconditionally hiding \Rightarrow

$$\{\text{VectorCommit}(1^\lambda, \underline{u'}, r)\}_{\lambda \in \mathbb{N}} \stackrel{\mathcal{S}}{\approx} \{\text{VectorCommit}(1^\lambda, \underline{\text{real } u}, r)\}_{\lambda \in \mathbb{N}}$$

(2) e, a, a', π, π' : are distributed exactly as in a real transcript

Puzzle: would the protocol be HVZK if V chose $(i, j) \leftarrow |V|^2$??

Computational Soundness

Suppose the vector commitment is unconditionally binding.

Claim: if $G \notin L(R_{3\text{COL}})$ then for all PPT P^*

$$\Pr[\text{out}_\lambda[P, V](G) = 1] \leq 1 - \frac{1}{|E|}$$

not negligible!

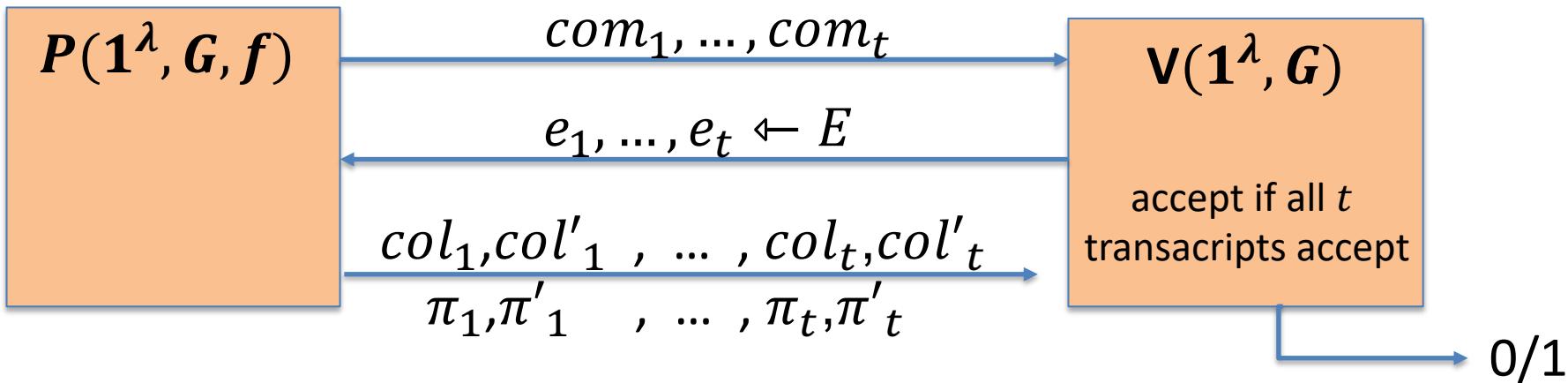
Proof idea: suppose com is a commitment to some $f \in \{1,2,3\}^{|V|}$

Then: $(G, f) \notin R_{3\text{COL}} \Rightarrow \exists e^* = (i, j) \in E \text{ s.t. } f[i] = f[j]$

$$\Pr[V \text{ chooses } e^*] = \frac{1}{|E|} \Rightarrow \Pr[\text{out}_\lambda[P, V](G) = 0] \geq \frac{1}{|E|}$$

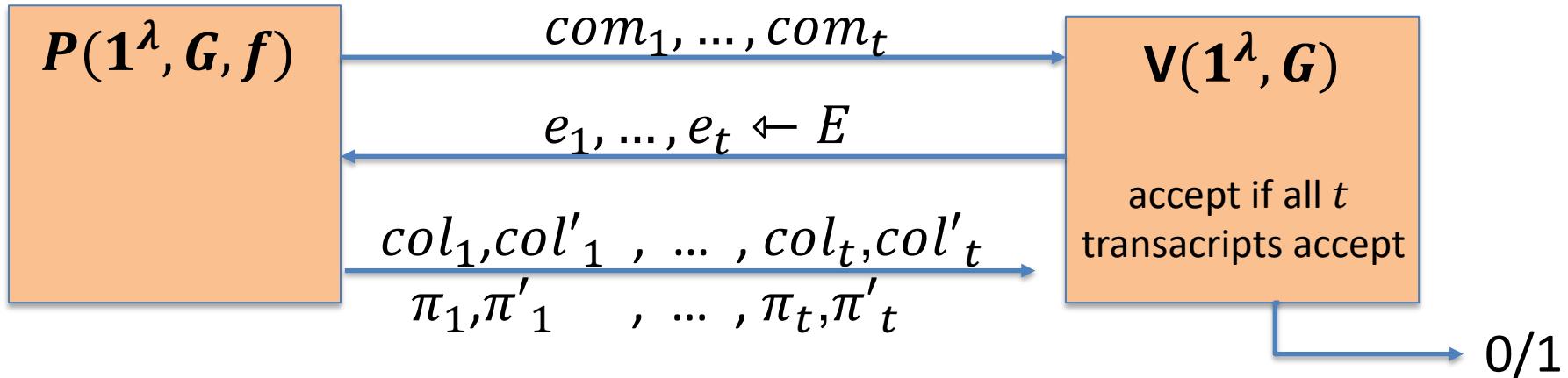
Amplification by parallel composition

To reduce soundness error to $1/e^\lambda$ repeat protocol in parallel $t = \lambda \cdot |E|$ times. Verifier accepts if all iterations accept.



Now: $(G, f) \notin R_{3\text{COL}}$ $\Rightarrow \Pr[V \text{ accepts}] \leq \left(1 - \frac{1}{|E|}\right)^t \approx 1/e^\lambda$

Amplification by parallel composition



Note: length of transcript is $O(|E|)$ \Rightarrow not short

Lemma: (P, V) is HVZK \Rightarrow (P^t, V^t) is also HVZK

(not true for regular ZK)

Important point: $3COL$ is NP-complete \Rightarrow all of NP has HVZK I.P.

END OF LECTURE

Next lecture: a succinct I.P. for every NP-relation