Zero-Knowledge Virtual
Machines

John Guibas (Succinct Labs), 5/1/2025

Hello!

My name is John. | was an undergrad at Stanford from 2019 - 2023.

e | took CS251, CS255, and CS355 and they were my foundation before leaving
Stanford my senior year to start Succinct, a startup focused on building
infrastructure for zero-knowledge proofs .

 QOur team is ~30 people and we work with many leading companies in
blockchains and beyond who have complex use cases for SNARKS.

 Our main product is SP1, a zero-knowledge virtual machine. That’s why I’'m
here :)

What you’ve learned in CS355 (from what |
can tell...)

 What zero-knowledge proofs are

 What they are useful for

* Basic ways you can “program” SNARKSs, like arithmetic circuits or R1CS
* Proof systems used in production like Groth16

 The goal of this talk is to get you out of the classroom and show you why
zero-knowledge virtual machines are becoming the preferred platform
for SNARK development.

Outline

 Why should you care about zero-knowledge virtual machines?

* (General definition of a zero-knowledge virtual machine

 SP1: a zero-knowledge virtual machine that runs RISC-V byte code
* Live demo

 What’s next in zero-knowledge virtual machiines

* Concluding thoughts

Why do people care about zero-
knowledge virtual machines (zkVMs)?

Some historical context: how people use
SNARKs

 Choose your favorite off-the-shelf proving protocol (i.e., Groth16)
* Write your application-specific logic as an arithmetic circuit (i.e., R1CS).

| want to prove that Bob

ordered DoorDash 10 times GrOth1 6

this month

Creating SNARKSs with frameworks like
Circom

==>CIrcom

CIRCUIT COMPILER

Creating SNARKSs with frameworks like

R1CS

a W

Arithmetic E Groth16
Circuit : (SnarkdJS)

==>CIircom Witness / \ Verifier

CIRCUIT COMPILER

Prover

Computation —»

Creating SNARKSs with frameworks like
Circom

- template Example() {

signal 1nput a;
signal input b;
signal output ol;
signal output 02;

Witness Generator F

Constraint C

| 0l === @ 7/ bj;
02 <— a + b;

01l <——
0l x b === a;
02 <==

01 x b === a:
it 02 === a + b;

Developing SNARKSs with frameworks like
Circom is long, manual, and frustrating process

. template Example() {

signal 1nput a;
signal input b;
signal output o1l;
signal output o02;

| want to prove that

10 times this month 0l <— a / b:

ol % b === a;
02 <== a + b;

Human Developer

Takes months
Prone to error

Decomposing a number to bits in Circom

fn numZbits(in: u32, n: u32) { template NumZBits(n) {
let mut bits = Vec::new(); signal input 1in;
sighal output out[n];
for 1 1n 0..n { var sum = 0;
let bit = (in >> 1) & 1;
bits.push(bit) var digit = 1;
1 for (var 1 = 0; 1 < n; 1++) {

out[1] <-- (1n >> 1) & 1;
out[1] * (out[1] -1) === 0;

sum += out[1] * digit;

return bits;

¥

digit = digit + digit;

sum === 1n;

Basic integer addition in Circom

fn modSum(a: u32, b: u32, n: u32) {| |template ModSum(n) {
return (a + b) % n; assert(n <= 252);

} signal 1input a;
signal input b;
signal output sum;

signal output carry;

component nZb = NumZBits(n + 1);
nZb.1n <== a + b;
carry <== nZb.out[n];

sum <==a + b - carry * (1 << n);

Simple branching in Circom

fn branch(cond: bool) { template Branch() {
1f COI’\.CI 1 | signal input sel;
let 1n@ = expensiveFn();
return true: 1h@ <== expensiveFn()
} else { inl <== cheapFn()

let 1nl = cheapFn();
return false;

I3 out <== sel * 1nl + (1 - sel) * 1n@;

sel * (sel - 1) === 0;

¥

General themes as to why encoding
computation into circuits iIs hard

Aspect

Computation

Circuits / R1CS

Data Types

int, float, string, etc.

Field Elements

Control Flow

for, if, while, recursion

No control flow; must unroll
loops, mux branches

Memory

Dynamic Arrays, Pointers,
Stack

Everything is fixed-size and
statically allocated

A painful anecdote: BLS12-381 pairing
verification SNARKSs for Ethereum

« BLS12-381 pairings are
commonly used primitive to verify G A il ~3 Months
aggregated signatures on
common blockchains, such as
Ethereum.

* Required team of 2 Audits ~1 Month
cryptography engineers for
development across ~3 months
(~20K LOCQC).

o Spent 6 figures on security

audit from S-tier auditing firm. Deployment ~1 Month

These challenges are extremely familiar to

Hand-crafting every low-
level operation

Minimal abstraction layers

Small mistakes can lead to
costly, fatal failures

Long feedback loops: slow
iteration and testing cycles

Months to years to ship

early hardware design: Verilog, ASICs, and
microcontrollers

out_vec(0)

out_vec(1)

out_vec(2)

1950s-1980s: Higher-level programming and
general-purpose CPUs liberated hardware
development

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

Intel 4004: The First _
Programmable Microprocessor C: Programming Language

1950s-1980s: Higher-level programming and
general-purpose CPUs liberated hardware
development

 General-purpose reusability: one
chip could run many programs

 Higher-level thinking: engineers
focus on algorithms and software, not
wiring up logic gates

* Rapid iteration: Changes meant
edited code, not reworking entire
circuits

General-purpose computing made
software faster to build, more powerful,
and vastly more scalable.

Zero-knowledge systems today face the
same challenges early computing faced.

Zero-knowledge virtual machines
(zkVMs) aim to bring general-purpose
computation into the world of SNARKS.

What is a zero-knowledge virtual machine?

* A zero-knowledge virtual machine (zkVM) is an arithmetic circuit that can
run programs and generate zero-knowledge proofs of their execution.

ppppppp

eeeeeee
eeeeeeeeeeeeeeee
00000000000000000 r [ebp-4],0Ah
66666666666666666 r [ebp-8],14h
00000000000000000 r [ebp-@Ch],®
888888 d ptr [ebp-4]
0000000 d ptr [ebp-8]
8945f4 | |mov dword ptr [ebp-0©Ch],eax

eeeeeee

eeeeeee

Zero-Knowledge
Virtual Machine

How programs are compiled for zero-
knowledge virtual machines

 Programs can be compiled from a higher-level language or written in raw
assembly. Crucially, they allow you to have stateful execution and control flow.

pushqg ¥rbp

transition add(a: field, b: e e mels
f'LE].CD -> 'F-Le-l.d '{ pushq $rl2
pushq 3rbx
: - subqg $32, %rsp
rleturln a + b’ Complle movl $edi, -20(%rbp)
movq $rsi, -32(%rbp)
} ﬁ movq 3rdx, -40(%rbp)
movq -40(%rbp), %rdx
movq -32(%rbp), %rcx
movl -20(%rbp), %eax
movq $rcx, %$rsi
i Aleo movl $eax, %edili Aleo IR

call _M2 init

Zero-Knowledge Virtual Machine

Fetch / Decode

Execution Context

How do programs get executed Inside the
zero-knowledge virtual machine?

Determine what instruction to
run next

Execution unit: performs the
operation described any an
Instruction

Registers/Memory: maintain
program state and store
variables used as inputs/outputs
to operations

The remaining question: how to implement
a zero-knowledge virtual machine

* Once you’ve decided on your instruction
set and state transition function, the key Virtual Machine Logic

thing is to encode the virtual machine as
inside some SNARK protocol
@ Human Developer
« Efficiency. Should be efficient to prove °
with reasonable verification cost. AR AR
;

C C2 C3

e What we want:

* Universality. Should be able to support
any program not just a limited set.

Encoding the virtual machine inside
SNARKSs: Arithmetic Circuits

State 6

{

 Nalive solution: encode a virtual
machine as an arithmetic circuit
and run inside your favorite
proving protocol (i.e., Groth16).

* Problem 1: Because arithmetic
circuits don’t have branching,
you pay the cost of all
Instructions, not just one.

 Problem 2: Memory access is
extremely expensive. Selecting
from an array of N costs
O(log(N)) with a Merkle Tree.

Encoding the virtual machine inside

SNARKS: Cairo

* Cairo (Goldberg et. al, 2021): one of the
first iImplementations of an efficient Turing-
complete CPU / VM inside a SNARK

o Key Insights:

* Prover-friendly instructions (field elements
as the native type) to avoid overhead of
supporting many expensive u32/bitwise
iInstructions

» Custom cryptographic arguments allow
for cheap memory reads/writes

Cairo - a Turing-complete STARK-friendly
CPU architecture

Lior Goldberg Shahar Papini Michael Riabzev
February 2025*

Abstract

Proof systems allow one party to prove to another party that a certain
statement is true. Most existing practical proof systems require that the
statement will be represented in terms of polynomial equations over a
finite field. This makes the process of representing a statement that one
wishes to prove or verify rather complicated, as this process requires a
new set of equations for each statement.

Various approaches to deal with this problem have been proposed,
see for example [1).

We present Cairo, a practically-efficient Turing-complete STARK-friendly
CPU architecture. We describe a single set of polynomial equations for
the statement that the execution of a program on this architecture is
valid. Given a statement one wishes to prove, Cairo allows writing a
program that describes that statement, instead of writing a set of poly-
nomial equations.

Contents
1 Introduction 3
1.1 Background e e e e e e 3
1.2 Ourcontribution 0., 5
1.3 Overview e e e e e e e e e e e e e 7
1.4 Notaltion e e e e e e e e e e e e e e 7
1.5 Acknowledgements o 00 e e 8
2 Design principles 8
2.1 Algebraic Intermediate Representation (AIR) and Randomized
AIR with Preprocessing (RAP) 8
2.2 von Neumann architecture 9
2.2.1 Bootloading: Loading programs from their hash 11

“First version: August 2021.

Fast forward to 2025: modern-day zero-
knowledge virtual machine architectures

OpenVM
Ceno
Jolt
Miden zkVM Nexus
Zero zkEVM Valida
Scroll zkEVM RISCO

TinyRAM Cairo Hermez zkEVM
e ———————————

2020 2021 2022-2024 2024-Present

Fast forward to 2025: modern-day zero-
knowledge virtual machine architectures

' Aleo ¢J° polygon zkEVM

zkVM focused on privacy (i.e., zkVM focused on scaling
private transfers) blockchains like Ethereum
ISA: Aleo IR ISA: EVM

A deep dive Into a state-of-the-art
zero-knowledge virtual machine: SP1

(that our team at Succinct built!)

Using zero-knowledge virtual machines still relied
on obscure ZK-specific programming languages

» Until last year, mainstream tooling for func main{output_ptr : felt*;() -> ():
SNARKS still relied on obscure DSLs like let g = 5
Circom or new programming languages
specific to ZK let b =7
let result = a + b
* Using a new programming language is
awful
Write result to the output
* Immature IDE support assert [output_ptr] = result

* Immature compiler / debugging

 Need to build all libraries from scratch return O

end

SP1: developing SNARKSs should be as
simple as writing C++/Rust

In ~2024 with SP1, we released a zkVM that

was up to 27x faster than existing
approaches that could run C++/Rust

zkVM performance still had a lot of room to
grow with new algorithms and performance

optimization

For the first time, could use traditional
ISAs without worrying about overhead

While systems like RISCO explored this
approach before, they had some

performance limitations that limited adoption

int main(Cint arc, char **argv)

1

int x =1
for (int 1 =0; 1 < 10; 1++) {
X = X + X;

¥

return 0;

How SP1 compiles C++/Rust programs for
a zero-knowledge virtual machine

Why RISC-V is increasingly being adopted
for zero-knowledge virtual machines

 Open and free. Most ISAs are
proprietary and require licenses.

e LLVM Compatible: Most
programming languages compile
to LLVM IR, which can compille to
RV32IM.

o Simple: Less than 60 instructions.

 Performant: Despite being so
simple is quite performant
compared to x86 and ARM. el

Building SNARKS is now as easy as normal
software development with RISC-V zkVMs

* Reuse libraries: cryptography New Crates Most Downloaded
libraries, integer libraries, strings, secure-squads o
types, etc.

i _]] arcium-core-utils N

* Reuse compiler optimizations:
use the decades of performance omtinout |
passes that have been built bitflags

 Use your favorite IDE: VSCode, oy puterive proc-macro2

extensions, debuggers, lints, .
GDB, etC jor.::.laum-prlmltlves

wattpad-rs
v0.1.1

An anecdote about SP1: a prover for
Ethereum In a week Instead of years

* One of the biggest usecase for SHA256
SNARKS is scaling blockchains. To do Library
SO, many venture-backed teams have
spent years building efficient
application-specific provers for
Ethereum.

Keccak256 § Secp256k

Rust Ethereum Library

o With SP1, you can just take an existing
EVM implementation written in Rust,
compile it to RISC-V and get a
performant prover out of the box.

e 100% code reuse!!

Development Time: Before and After SP1

|
—-- Ethereum Light Client
1 year | - Avail (Vector) B
- Celestia (Blobstream)
S 9 months | .
8
~ 6 months | - -
3 months [-
b

Before SP1 After SP1

SP1 has seen tremendous adoption for
production SNARK applications in < 1 year

 Released in February 2024, up to
27 x faster than SOTA.

* Now has 1.3K+ Github Stars, 86
contributors, 200K+ all time
downloads

* Used by 30+ VC-backed startups
and teams building In
blockchains and beyond.

How SP1 Proves RISC-V

Proving RISC-V is like proving anything
using a zero-knowledge proof

» Let R be a polynomial-time relation such that (x, w) € R means that w is a
valid witness of a RISC-V execution with output x.

A prover P who knows a witness w such that (x, w) € R
* A verifier V who only knows the the output x

« Completeness: If the prover knows a valid trace (x, w) € R, then the verifier
accepts with probability 1.

 Soundness: If no such trace exists, then no (even malicious) prover can
convince the verifier to except, except with negligible probability.

We call the withess w the execution trace. It’s a

comprehensive trail of every step the virtual
machine took

~

The goal is to keep

track of everything that N

needs to be proven
|ater by the prover!

-
-

[|

System Call

) 4 v

Syscall Events

\
-
\-
.

Jump Events

Jump Operation

Program Execution

Instruction Fetch

- 3

Instruction Decode

———p &——

Instruction Execute

/-_,
”

-
-)
N
™~
4 .
f [
l 4

Branch Operation Control Flow

v Event Recording '
Branch Events CPU Events

\‘ ‘"-_.--

ExecutionTrace

Y

ALU Operation

v

ALU Events

) 4

Memory Access

rd
i
4
'

h 4

Memory Events

Creating the Execution Trace: CPU Events

 Think of a “CPU Event” as a
checkpoint of the state of the
virtual machine at every cycle.

#[derive(Debug, Copy, Clone, Serialize, Deserialize)
pub struct CpuEvent {

/// The clock cycle.

pub clk: u32,

/// The program counter.

 Contains the current clock,
program counter, next
program counter, the
iInstruction being executed,

pub pc: u32,
etc.

/// The next program counter.

pub next pc: u32,

 Prover needs to prove we’re
updating the program
counter correctly!

Creating the Execution Trace: ALU Events

» Think of a “ALU Event” as a pub struct AluEvent {
record of a basic u32 or byte /// The program counter
operation that occurred inside the pub pc: u32,
virtual machine. /// The opcode.

pub opcode: Opcode,

* |ncludes opcodes like ADD, SUB, /// The first operand v
MUL, DIV, REM, AND, XOR, OR, pub a: u32,
etc. /// The second operand

pub b: u32,

 Prover needs to prove that the /// The third operand v

operation was correct! pub c: u32,
/// Whether the first o

pub op_a @: bool,

High-level overview of the entire SP1
proving pipeline

RISC-V Execution
> —l > > f
RE C‘ . Executor Trace Frover

Assembly

How does SP1 turn an execution trace into
a proof?

RISC-V Execution
=l — =l > f
RE C‘ . Executor Trace Prover

Assembly

STARK Primer: Arithmetic Intermediate
Representation

An AIR P over a field F has length n and

Fibonacci Table

width w. 1 1
P is defined by a set of constraint polynomials , .
{f.} over 2w variables.

5 8

A withess W for P consists of n vectors of
length w over elements of . We think of
these as rows of width w.

13

W is valid if submitting the 2w values from
any two consecutive rows to any constraint

polynomial f; evaluates to zero.

fl(Xl’XZ’ Yl? Y2) — Yl _X2 _Xl

fz(Xl,Xz, Y, Yz) =1, -1 —X

STARK Primer: Arithmetic Intermediate
Representation

 Why do most zkVMs universally build on
STARKs?

Fibonacci Table

* AIRs map far more naturally on the notion
of step-by-step execution than arithmetic 2 3
circuits.

 Columns of AlIRs can be thought as
registers, while the constraint polynomials 13
constraint a state-transition-function.

* Yields much leaner, more efficient proofs £X, X, Y, Y,) =Y, — X, — X,
for long sequential computations.

fz(Xl,Xz, Y, Yz) =1 —-Y —-X

STARK Primer: Arithmetic Intermediate
Representation

Fibonaccl Table

1 1 Start l
2 3 State 1 l
5 8 State 2

-

fl(Xsza Y, Yz) =1 — X, — X

fz(Xsz» Y, Yz) =1 -1 —-X

STARK Primer: Arithmetic Intermediate
Representation

Fibonacci AlR
1 1
° >) STARK
. q Protocol
.

Verifier

fl(Xl’X29 Yl? YZ) — Yl _XZ _Xl

fz(Xsz» Y, Yz) =1, -1 —X

knowledge virtual machine as a STARK

State

Compute

Add Mul

XOR

Proving Cost: O(H X W)

Naive way to implement a RISC-V zero-

Time

Naive way to implement a RISC-V zero-

knowledge virtual machine as a STARK

State Compute

Time

ivelll
Proving Cost: O(H X W) Extremely expensivel!l

SP1 proves RISC-V using a multi-table
architecture

Add XOR

Mul

Proving Cost: Z OH; X W))

SP1 proves RISC-V
using a multi-table
architecture

ExecutionTrace

contai ns%ns/ contains contains ontains contains
CPUEvents ALUEvents MemoryEvents BranchEvents JumpEvents SyscallEvents
v v v TraceGeneration v v v
CPUTable ALUTable MemoryTable BranchTable JumpTable SyscallTable
prove prove prove prove prove prove
l l l Proofs l l l
CPUProof ALUProof MemoryProof BranchProof JumpProof SyscallProof

SP1 proves RISC-V using a multi-table

architecture

Add

Proving Cost: Z OH; X W)

Mul

XOR

Problem: while more

efficient, tables can’t

communicate to each
other In this setting

SP1 proves RISC-V using a multi-table

architecture

Add

Communication / Lookup Bus

Mul

XOR

Solution: use
permutation /
lookup arguments

Communicating between tables using
lookup arguments

What’s 5 + 87

4

* Purpose: A lookup argument enables a prover
to convince a veritier that a value exists in
some set efficiently.

* In the context of zero-knowledge virtual
machines, think of it as a way to “send” and
“receive” messages.

e [ypically these arguments are implemented
through grand product arguments or
logarithmic derivatives.

* They typically add some amount of fixed
overhead per table, but it’s negligible compared
to the savings of a multi-table architecture.

Lookup arguments also give us “memory”

Instead of tracking the full
memory state at every step, SP1
models memory using read-
write logs

SEND ‘

RECEIVE

Every memory access is

recording as a triple (¢, a, v): the

timestamp, address, and value Memory

Operation

On every memory access,
receive a message of the last
entry, check that the timestamp
was earlier, and then send a
new entry into the lookup bus

SEND

(t=5, a=0, v=5) GEEE d

CHECK
TIMESTAMP

Putting 1t all together: we can now prove a
small RISC-V program ~2M instructions

: ‘) RISC-V) Execution) Prover) Proof
Y Executor Trace

Assembly

Putting 1t all together: we can now prove a
small RISC-V program ~2M instructions

: ‘) RISC-V) Execution) Prover) Proof
IS\ Executor Trace

Assembly

Problem: prover has linear memory
requirements In # of instructions being proven

A prover for “small RISC-V programs” can be composed
into a prover for arbitrarily long RISC-V programs

Execution
Prover Proof 1 R —
Execution

Prover Proof 3 :
. / Prover

Execution Prover Proof 4

Trace 1

Recursion
Prover

Final Proof

A prover for “small RISC-V programs” can be composed
into a prover for arbitrarily long RISC-V programs

Execution
Prover Proof 1 R —
Execution

Prover Proof 3 :

Trace 1 Recursion Proof 6

- o / Prover
xecu Prover Proof 4

Trace 1

Very friendly to parallelism. Proving times can
go down by 50-100x by using many machines.

Recursion
Prover

Final Proof

Live Demo: SP1

What’s next for zkVMs?

The frontier for R&D in zero-knowledge
virtual machines in terms of cost

* Algorithms. New proof system |
techniques and tricks are constantly
cutling costs.

* Precompiles. Enshrining certain circuits 121050
for commonly used operations such as
hashing, elliptic curve operations, etc.
can make certain workloads 10x faster.
No “RISC-V overhead”.

« Hardware Acceleration. Most SOTA

provers are now written to support .
NVIDIA GPUs, which can provide a 10x SHA256-Table
Improvement in cost.

The frontier for R&D In zero-knowledge
virtual machines in terms of cost

ﬁ Justin Drake
L w)

The first ever SNARK proving ASIC @@

Real-time proving, real-time settlement, universal synchronous
composability—coming sooner than most think:)

We can fix Ethereum fragmentation!

Fabric VPU

The frontier for R&D in zero-knowledge
virtual machines in terms of latency

 Lots of open interest In
“real-time proving”. Or
generating proofs as fast as a
normal computer can run
code.

 Provers that run in the
cloud. Coordinate thousands
of GPUs to generate proofs
as fast as possible.

One lesson: Amdahl’s law is very real.

AHDAHL'S LA/ STATES THAT THEORETICAL
SPEEDUP 1S DETERMINED BY THE FRACTION OF CODE P
THAT CAN BE PARALLELISED

__

PARALLEL PART 15
DIVIDED & N WORKERS

SERIAL PART OF
JOB = [(100%) - PARALLEL PART

Performance engineering for real-world ZKP systems is somewhat detached
from what’s studied in academia. Constants on Big O analysis matter!

Another lesson: general-purpose systems
allow you to invest heavily In performance

4.8 MHz QA1
Turbo

3000

VVVVVVV

() .)
PN o o
e an o
N O (@]

Ensuring that zero-knowledge virtual

machines are secure

o Zero-knowledge virtual machines are
some of the most complex
cryptographic systems deployed in
production

* \ery prone to bugs that affect security
and soundness

* Currently many systems are deployed
with extra layers of security such as
“approved provers” or “TEE 2FA”

e | ots of interest in “formal verification”
as way to secure zkVMs

T

\/

—OR

PIROV

Emerging interest around prover markets

* Proof generation is becoming a critical dependency of
many production systems securing billions of value

* |n decentralized financial systems, censorship
resistance is as important as safety (i.e., prevent users
from repaying loans)

* New idea: decentralized infrastructure networks for
proving with zkVMs

 Competitive marketplace to drive proving costs down
 Decentralized to ensure censorship resistance

* Lots of companies are building this, including us and
many other players in the zkVM space

That’s it! Concluding thoughts

1. Traditional SNARK development is hard, error-prone, and similar to
hardware design due to low-level circuit programming.

2. zkVMs abstract away that complexity, allowing developers to write
SNARKS like normal programs in C++ or Rust.

3. Lots of interesting engineering and research problems to solve in this
space, maybe some of you can help work on them!

Questions or comments?

