
John Guibas (Succinct Labs), 5/1/2025

Zero-Knowledge Virtual 
Machines



Hello!
• My name is John. I was an undergrad at Stanford from 2019 - 2023.


• I took CS251, CS255, and CS355 and they were my foundation before leaving 
Stanford my senior year to start Succinct, a startup focused on building 
infrastructure for zero-knowledge proofs .


• Our team is ~30 people and we work with many leading companies in 
blockchains and beyond who have complex use cases for SNARKs.


• Our main product is SP1, a zero-knowledge virtual machine. That’s why I’m 
here :)




What you’ve learned in CS355 (from what I 
can tell…)
• What zero-knowledge proofs are


• What they are useful for


• Basic ways you can “program” SNARKs, like arithmetic circuits or R1CS


• Proof systems used in production like Groth16


• The goal of this talk is to get you out of the classroom and show you why 
zero-knowledge virtual machines are becoming the preferred platform 
for SNARK development.



Outline

• Why should you care about zero-knowledge virtual machines?


• General definition of a zero-knowledge virtual machine


• SP1: a zero-knowledge virtual machine that runs RISC-V byte code


• Live demo


• What’s next in zero-knowledge virtual machines


• Concluding thoughts
C1 C2 C3

W2



Why do people care about zero-
knowledge virtual machines (zkVMs)?



Some historical context: how people use 
SNARKs
• Choose your favorite off-the-shelf proving protocol (i.e., Groth16)

• Write your application-specific logic as an arithmetic circuit (i.e., R1CS).

I want to prove that Bob 
ordered DoorDash 10 times 

this month
Groth16

X

X +

C1 C2 C3

W1 W2



Creating SNARKs with frameworks like 
Circom



Creating SNARKs with frameworks like 
Circom

Computation Arithmetic  
Circuit

R1CS

Witness

Groth16 
(SnarkJS)

Prover

Verifier



Creating SNARKs with frameworks like 
Circom



Developing SNARKs with frameworks like 
Circom is long, manual, and frustrating process

Human Developer

I want to prove that 
Bob ordered DoorDash 

10 times this month

Takes months 
Prone to error



Decomposing a number to bits in Circom
fn num2bits(in: u32, n: u32) {
let mut bits = Vec::new();

for i in 0..n {
let bit = (in >> i) & 1;
bits.push(bit)

}

return bits;
}

template Num2Bits(n) {

    signal input in;

    signal output out[n];

    var sum = 0;

    var digit = 1;

    for (var i = 0; i < n; i++) {

        out[i] <-- (in >> i) & 1;

        out[i] * (out[i] -1 ) === 0;

        sum += out[i] * digit;

        digit = digit + digit;

    }

    sum === in;

}



Basic integer addition in Circom
fn modSum(a: u32, b: u32, n: u32) {
return (a + b) % n;

}

template ModSum(n) {

    assert(n <= 252);

    signal input a;

    signal input b;

    signal output sum;

    signal output carry;

    component n2b = Num2Bits(n + 1);

    n2b.in <== a + b;

    carry <== n2b.out[n];

    sum <== a + b - carry * (1 << n);

}



Simple branching in Circom
fn branch(cond: bool) {
if cond {
let in0 = expensiveFn();
return true;

} else {
let in1 = cheapFn();
return false;

}
}

template Branch() {

  signal input sel;

in0 <== expensiveFn()

in1 <== cheapFn() 

  sel * (sel - 1) === 0;

  out <== sel * in1 + (1 - sel) * in0;

}



General themes as to why encoding 
computation into circuits is hard

Aspect Computation Circuits / R1CS

Data Types int, float, string, etc. Field Elements

Control Flow for, if, while, recursion No control flow; must unroll 
loops, mux branches

Memory Dynamic Arrays, Pointers, 
Stack

Everything is fixed-size and 
statically allocated



A painful anecdote: BLS12-381 pairing 
verification SNARKs for Ethereum
• BLS12-381 pairings are 

commonly used primitive to verify 
aggregated signatures on 
common blockchains, such as 
Ethereum.


• Required team of 2 
cryptography engineers for 
development across ~3 months 
(~20K LOC). 

• Spent 6 figures on security 
audit from S-tier auditing firm.

Circuit Development

Deployment

Audits

~3 Months

~1 Month

~1 Month



These challenges are extremely familiar to 
early hardware design: Verilog, ASICs, and 
microcontrollers
• Hand-crafting every low-

level operation


• Minimal abstraction layers


• Small mistakes can lead to 
costly, fatal failures


• Long feedback loops: slow 
iteration and testing cycles


• Months to years to ship



1950s–1980s: Higher-level programming and 
general-purpose CPUs liberated hardware 
development

Intel 4004:  The First 
Programmable Microprocessor C: Programming Language



1950s–1980s: Higher-level programming and 
general-purpose CPUs liberated hardware 
development
• General-purpose reusability: one 

chip could run many programs


• Higher-level thinking: engineers 
focus on algorithms and software, not 
wiring up logic gates


• Rapid iteration: Changes meant 
edited code, not reworking entire 
circuits



General-purpose computing made 
software faster to build, more powerful, 

and vastly more scalable.



Zero-knowledge systems today face the 
same challenges early computing faced.



Zero-knowledge virtual machines 
(zkVMs) aim to bring general-purpose 

computation into the world of SNARKs.



What is a zero-knowledge virtual machine?
• A zero-knowledge virtual machine (zkVM) is an arithmetic circuit that can 

run programs and generate zero-knowledge proofs of their execution.

Zero-Knowledge 
Virtual Machine

Program

Input

0 1 0 1

Output

0 1 0 1

Proof



How programs are compiled for zero-
knowledge virtual machines
• Programs can be compiled from a higher-level language or written in raw 

assembly. Crucially, they allow you to have stateful execution and control flow.

transition add(a: field, b: 
field) -> field {

    return a + b;

}
Compile

Aleo IR



How do programs get executed inside the 
zero-knowledge virtual machine?

Fetch / Decode

ALU

Execution Context

Determine what instruction to 
run next

Execution unit: performs the 
operation described any an 
instruction

Registers/Memory: maintain 
program state and store 
variables used as inputs/outputs 
to operations

Zero-Knowledge Virtual Machine
(exactly the same as 
traditional computing!)



The remaining question: how to implement 
a zero-knowledge virtual machine
• Once you’ve decided on your instruction 

set and state transition function, the key 
thing is to encode the virtual machine as 
inside some SNARK protocol


• What we want: 

• Universality. Should be able to support 
any program not just a limited set. 

• Efficiency. Should be efficient to prove 
with reasonable verification cost.

Virtual Machine Logic

Human Developer

X +

C1 C2 C3



Encoding the virtual machine inside 
SNARKs: Arithmetic Circuits
• Naive solution: encode a virtual 

machine as an arithmetic circuit 
and run inside your favorite 
proving protocol (i.e., Groth16).


• Problem 1: Because arithmetic 
circuits don’t have branching, 
you pay the cost of all 
instructions, not just one.


• Problem 2: Memory access is 
extremely expensive. Selecting 
from an array of N costs 
O(log(N)) with a Merkle Tree.

ADD MUL DIV

State 5

State 6

Have to pay for all 
branches no matter 
what!



Encoding the virtual machine inside 
SNARKs: Cairo
• Cairo (Goldberg et. al, 2021): one of the 

first implementations of an efficient Turing-
complete CPU / VM inside a SNARK


• Key Insights:


• Prover-friendly instructions (field elements 
as the native type) to avoid overhead of 
supporting many expensive u32/bitwise 
instructions


• Custom cryptographic arguments allow 
for cheap memory reads/writes



Fast forward to 2025: modern-day zero-
knowledge virtual machine architectures

TinyRAM Cairo

Scroll zkEVM

Hermez zkEVM

RISC0

SP1

Valida
Nexus

Jolt
Ceno

OpenVM

Miden zkVM
Zero zkEVM

2020 2021 2022-2024 2024-Present

Lots of strong commercial interest in 
fast zero-knowledge virtual machines 

$100Ms of venture capital invested 



Fast forward to 2025: modern-day zero-
knowledge virtual machine architectures

zkVM focused on privacy (i.e., 
private transfers) 

ISA: Aleo IR

zkVM focused on scaling 
blockchains like Ethereum 

ISA: EVM



A deep dive into a state-of-the-art 
zero-knowledge virtual machine: SP1

(that our team at Succinct built!)



Using zero-knowledge virtual machines still relied 
on obscure ZK-specific programming languages
• Until last year, mainstream tooling for 

SNARKs still relied on obscure DSLs like 
Circom or new programming languages 
specific to ZK


• Using a new programming language is 
awful


• Immature IDE support


• Immature compiler / debugging


• Need to build all libraries from scratch

func main{output_ptr : felt*}() -> ():

    let a = 5

    let b = 7

    let result = a + b

    # Write result to the output

    assert [output_ptr] = result

    return ()

end

Cairo DSL



SP1: developing SNARKs should be as 
simple as writing C++/Rust
• In ~2024 with SP1, we released a zkVM that 

was up to 27x faster than existing 
approaches that could run C++/Rust


• zkVM performance still had a lot of room to 
grow with new algorithms and performance 
optimization


• For the first time, could use traditional 
ISAs without worrying about overhead 

• While systems like RISC0 explored this 
approach before, they had some 
performance limitations that limited adoption

int main(int arc, char **argv) 
{

int x = 1

for (int i = 0; i < 10; i++) {

x = x + x;

}

return 0;

}

C++



How SP1 compiles C++/Rust programs for 
a zero-knowledge virtual machine

Rust

C++

LLVM RISC-V SP1



Why RISC-V is increasingly being adopted 
for zero-knowledge virtual machines
• Open and free. Most ISAs are 

proprietary and require licenses.


• LLVM Compatible: Most 
programming languages compile 
to LLVM IR, which can compile to 
RV32IM. 

• Simple: Less than 60 instructions.


• Performant: Despite being so 
simple is quite performant 
compared to x86 and ARM.



Building SNARKs is now as easy as normal 
software development with RISC-V zkVMs
• Reuse libraries: cryptography 

libraries, integer libraries, strings, 
types, etc.


• Reuse compiler optimizations: 
use the decades of performance 
passes that have been built 

• Use your favorite IDE: VSCode, 
extensions, debuggers, lints, 
GDB, etc.



An anecdote about SP1: a prover for 
Ethereum in a week instead of years
• One of the biggest usecase for 

SNARKs is scaling blockchains. To do 
so, many venture-backed teams have 
spent years building efficient 
application-specific provers for 
Ethereum.


• With SP1, you can just take an existing 
EVM implementation written in Rust, 
compile it to RISC-V and get a 
performant prover out of the box.


• 100% code reuse!!

SHA256 
Library

Keccak256 
Library

Secp256k1 
Library

Rust Ethereum Library

SP1





SP1 has seen tremendous adoption for 
production SNARK applications in < 1 year
• Released in February 2024, up to 

27x faster than SOTA.


• Now has 1.3K+ Github Stars, 86 
contributors, 200K+ all time 
downloads


• Used by 30+ VC-backed startups 
and teams building in 
blockchains and beyond.



How SP1 Proves RISC-V



Proving RISC-V is like proving anything 
using a zero-knowledge proof
• Let  be a polynomial-time relation such that  means that  is a 

valid witness of a RISC-V execution with output .


• A prover  who knows a witness  such that 


• A verifier  who only knows the the output  


• Completeness: If the prover knows a valid trace , then the verifier 
accepts with probability 1.


• Soundness: If no such trace exists, then no (even malicious) prover can 
convince the verifier to except, except with negligible probability.

R (x, w) ∈ R w
x

P w (x, w) ∈ R

V x

(x, w) ∈ R



We call the witness  the execution trace. It’s a 
comprehensive trail of every step the virtual 
machine took

w

Start

Cycle 0

Cycle 1

Cycle 2



The goal is to keep 
track of everything that 
needs to be proven 
later by the prover!



Creating the Execution Trace: CPU Events
• Think of a “CPU Event” as a 

checkpoint of the state of the 
virtual machine at every cycle.


• Contains the current clock, 
program counter, next 
program counter, the 
instruction being executed, 
etc.


• Prover needs to prove we’re 
updating the program 
counter correctly!



Creating the Execution Trace: ALU Events
• Think of a “ALU Event” as a 

record of a basic u32 or byte 
operation that occurred inside the 
virtual machine.


• Includes opcodes like ADD, SUB, 
MUL, DIV, REM, AND, XOR, OR, 
etc.


• Prover needs to prove that the 
operation was correct!



High-level overview of the entire SP1 
proving pipeline

 Assembly

Execution 
Trace ProofRISC-V 

Executor Prover



How does SP1 turn an execution trace into 
a proof?

 Assembly

Execution 
Trace ProofRISC-V 

Executor Prover



STARK Primer: Arithmetic Intermediate 
Representation
• An AIR  over a field  has length  and 

width .


•  is defined by a set of constraint polynomials 
 over  variables. 

• A witness  for  consists of  vectors of 
length  over elements of . We think of 
these as rows of width .


•  is valid if submitting the  values from 
any two consecutive rows to any constraint 
polynomial  evaluates to zero.

P F n
w

P
{fi} 2w

W P n
w F

w

W 2w

fi

Fibonacci Table

1 1

2 3

5 8

13 21

f1(X1, X2, Y1, Y2) = Y1 − X2 − X1

f2(X1, X2, Y1, Y2) = Y2 − Y1 − X2



STARK Primer: Arithmetic Intermediate 
Representation

Fibonacci Table

1 1

2 3

5 8

13 21

f1(X1, X2, Y1, Y2) = Y1 − X2 − X1

f2(X1, X2, Y1, Y2) = Y2 − Y1 − X2

• Why do most zkVMs universally build on 
STARKs?


• AIRs map far more naturally on the notion 
of step-by-step execution than arithmetic 
circuits.


• Columns of AIRs can be thought as 
registers, while the constraint polynomials 
constraint a state-transition-function.


• Yields much leaner, more efficient proofs 
for long sequential computations.



STARK Primer: Arithmetic Intermediate 
Representation

Fibonacci Table

1 1

2 3

5 8

13 21

f1(X1, X2, Y1, Y2) = Y1 − X2 − X1

f2(X1, X2, Y1, Y2) = Y2 − Y1 − X2

Start

State 1

State 2

End



STARK Primer: Arithmetic Intermediate 
Representation

Fibonacci AIR

1 1

2 3

5 8

13 21

f1(X1, X2, Y1, Y2) = Y1 − X2 − X1

f2(X1, X2, Y1, Y2) = Y2 − Y1 − X2

STARK 
Protocol

Prover

Verifier



Naive way to implement a RISC-V zero-
knowledge virtual machine as a STARK

Memory Add Mul XORCPU …

Proving Cost: O(H × W)

State Compute

Time



Naive way to implement a RISC-V zero-
knowledge virtual machine as a STARK

Memory

Add
Mul

XOR

CPU

…

Proving Cost: O(H × W)

State Compute

Time

Extremely expensive!!!

Waste!



SP1 proves RISC-V using a multi-table 
architecture

Proving Cost: ∑
i

O(Hi × Wi)

Memory CPU

Add
Mul

XOR …



SP1 proves RISC-V 
using a multi-table 
architecture



SP1 proves RISC-V using a multi-table 
architecture

Proving Cost: ∑
i

O(Hi × Wi)

Memory CPU

Add
Mul

XOR …

Problem: while more 
efficient, tables can’t 
communicate to each 

other in this setting



SP1 proves RISC-V using a multi-table 
architecture

Memory CPU

Add
Mul

XOR …

Communication / Lookup Bus

Solution: use 
permutation / 

lookup arguments



Communicating between tables using 
lookup arguments
• Purpose: A lookup argument enables a prover 

to convince a verifier that a value exists in 
some set efficiently.


• In the context of zero-knowledge virtual 
machines, think of it as a way to “send” and 
“receive” messages. 

• Typically these arguments are implemented 
through grand product arguments or 
logarithmic derivatives.


• They typically add some amount of fixed 
overhead per table, but it’s negligible compared 
to the savings of a multi-table architecture.

CPU 
Table

Add 
Table

What’s 5 + 8?

It’s 13!



Lookup arguments also give us “memory”
• Instead of tracking the full 

memory state at every step, SP1 
models memory using read-
write logs


• Every memory access is 
recording as a triple : the 
timestamp, address, and value


• On every memory access, 
receive a message of the last 
entry, check that the timestamp 
was earlier, and then send a 
new entry into the lookup bus

(t, a, v)
Memory 

Operation

(t=0, a=0, v=1)

(t=5, a=0, v=5)

SEND

RECEIVE

SEND

RECEIVE

CHECK 
TIMESTAMP



Putting it all together: we can now prove a 
small RISC-V program ~2M instructions

 Assembly

Execution 
Trace ProofRISC-V 

Executor Prover



Putting it all together: we can now prove a 
small RISC-V program ~2M instructions

 Assembly

Execution 
Trace ProofRISC-V 

Executor Prover

Problem: prover has linear memory 
requirements in # of instructions being proven



A prover for “small RISC-V programs” can be composed 
into a prover for arbitrarily long RISC-V programs

Executor

Execution 
Trace 1

Execution 
Trace 1

Execution 
Trace 1

Execution 
Trace 1

Prover

Prover

Prover

Prover

Proof 1

Proof 2

Proof 3

Proof 4

Recursion 
Prover

Recursion 
Prover Proof 5

Proof 6

Recursion 
Prover

Final Proof



A prover for “small RISC-V programs” can be composed 
into a prover for arbitrarily long RISC-V programs

Executor

Execution 
Trace 1

Execution 
Trace 1

Execution 
Trace 1

Execution 
Trace 1

Prover

Prover

Prover

Prover

Proof 1

Proof 2

Proof 3

Proof 4

Recursion 
Prover

Recursion 
Prover Proof 5

Proof 6

Recursion 
Prover

Final ProofVery friendly to parallelism. Proving times can 
go down by 50-100x by using many machines.



Live Demo: SP1



What’s next for zkVMs?



The frontier for R&D in zero-knowledge 
virtual machines in terms of cost
• Algorithms. New proof system 

techniques and tricks are constantly 
cutting costs. 

• Precompiles. Enshrining certain circuits 
for commonly used operations such as 
hashing, elliptic curve operations, etc. 
can make certain workloads 10x faster. 
No “RISC-V overhead”.


• Hardware Acceleration. Most SOTA 
provers are now written to support 
NVIDIA GPUs, which can provide a 10x 
improvement in cost.

SHA256-Table



The frontier for R&D in zero-knowledge 
virtual machines in terms of cost

Fabric VPU



The frontier for R&D in zero-knowledge 
virtual machines in terms of latency
• Lots of open interest in 

“real-time proving”. Or 
generating proofs as fast as a 
normal computer can run 
code.


• Provers that run in the 
cloud. Coordinate thousands 
of GPUs to generate proofs 
as fast as possible.



One lesson: Amdahl’s law is very real.

Performance engineering for real-world ZKP systems is somewhat detached 
from what’s studied in academia. Constants on Big O analysis matter!



Another lesson: general-purpose systems 
allow you to invest heavily in performance



Ensuring that zero-knowledge virtual 
machines are secure
• Zero-knowledge virtual machines are 

some of the most complex 
cryptographic systems deployed in 
production


• Very prone to bugs that affect security 
and soundness


• Currently many systems are deployed 
with extra layers of security such as 
“approved provers” or “TEE 2FA”


• Lots of interest in “formal verification” 
as way to secure zkVMs



Emerging interest around prover markets
• Proof generation is becoming a critical dependency of 

many production systems securing billions of value


• In decentralized financial systems, censorship 
resistance is as important as safety (i.e., prevent users 
from repaying loans)


• New idea: decentralized infrastructure networks for 
proving with zkVMs


• Competitive marketplace to drive proving costs down


• Decentralized to ensure censorship resistance


• Lots of companies are building this, including us and 
many other players in the zkVM space



That’s it! Concluding thoughts

1. Traditional SNARK development is hard, error-prone, and similar to 
hardware design due to low-level circuit programming.


2. zkVMs abstract away that complexity, allowing developers to write 
SNARKs like normal programs in C++ or Rust.


3. Lots of interesting engineering and research problems to solve in this 
space, maybe some of you can help work on them!



Questions or comments?


