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Review:  Poly-IOP  ⇒  IOP  ⇒  SNARK
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A direct SNARK construction:

An RS-IOPP is the key ingredient in compilation



FRI:  a Reed-Solomon IOP of Proximity

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Goal:

• 𝑢! ∊ RS 𝔽, ℒ, 𝑑    ⇒   Verifier outputs accept (with prob. 1)

• 𝑢! is 𝛿-far from RS 𝔽, ℒ, 𝑑    ⇒   Verifier outputs reject w.h.p

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]

We don’t care what happens when 𝑢! is between the two cases

Why needed?   A key tool for compiling a Poly-IOP into an IOP.



FRI:  a Reed-Solomon IOP of Proximity

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]

ℒ = 1,ω,ω#, … , ω$%& ⊆ 𝔽   and   𝑛, 𝑑 are powers of two,

  where  ω$ = 1  is an 𝑛-th primitive root of unity

We will set:

Then:   ℒ# ≔ 𝑎#: 𝑎 ∊ ℒ = ℒ /2 = 𝑛/2            ( −𝑎, 𝑎 → 𝑎! )

ℒ' ≔ 𝑎': 𝑎 ∊ ℒ = ℒ /4 = 𝑛/4



Towards an efficient RS-IOPP

Distance Preserving 
Transformations



Distance Preserving Transformations
Let  ℒ, ℒ′ ⊆ 𝔽,  𝑑, 𝑑( some degree bounds,  and  𝛿 ∊ [0,1].

Def: A distance preserving transformation is a randomized map
𝑇 𝑢&, … , 𝑢); 𝑟 ⇾ 𝑢

 that maps    𝑢&, … , 𝑢): ℒ ⇾ 𝔽    to    𝑢: ℒ′ ⇾ 𝔽    such that:

 case 1:  (the honest case)
  if  𝑢&, … , 𝑢)∊ RS[𝔽, ℒ, 𝑑]   then   𝑢∊ RS[𝔽, ℒ′, 𝑑′]    for all 𝑟.

 case 2:  (the dishonest case)
 if  some 𝑢* is 𝛿-far from RS[𝔽, ℒ, 𝑑]  then 
  𝑢 is 𝛿-far from RS[𝔽, ℒ′, 𝑑′],  w.h.p over 𝑟.



Example 1:  batch RS-IOPP
Setting: Prover has 𝑢", … , 𝑢#: ℒ ⇾ 𝔽,    Verifier has oracles for 𝑢", … , 𝑢#.

Goal: convince Verifier that all 𝑢!, … , 𝑢) are 𝛿-close to RS[𝔽, ℒ, 𝑑].

• Naively:  run 𝑘 RS-IOPP protocols    ⇒   expensive

• Better:  batch all 𝑘 into a single function  𝑢: ℒ ⇾ 𝔽

 step 1:  Verifier samples random 𝑟 in 𝔽;  sends to prover

 step 2:  Prover sets   𝑢 ≔ 𝑢! + 𝑟 % 𝑢& + 𝑟#𝑢# +⋯+ 𝑟)𝑢): ℒ ⇾ 𝔽
 step 3:  Both run RS-IOPP on  𝑢: ℒ ⇾ 𝔽
    when Verifier wants 𝑢(𝑎) for some 𝑎 ∊ ℒ, prover opens all  𝑢"(𝑎), … , 𝑢#(𝑎)



Why is this distance preserving?

Case 1:  (an honest prover)
 if  𝑢!, … , 𝑢)∊ RS[𝔽, ℒ, 𝑑]  then  𝑢∊ RS 𝔽, ℒ, 𝑑   for all 𝑟 ∊ 𝔽

Case 2:  (a dishonest prover)
 if  some 𝑢* is 𝛿-far from RS 𝔽, ℒ, 𝑑 ,  we need to argue that
 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑], with high probability over 𝑟 ∊ 𝔽

When 𝛿 ∊ 0,1 − 𝜌 , Case 2 follows from the 
       celebrated BCIKS proximity gap theorem.

https://eprint.iacr.org/2020/654.pdf


The proximity gap theorem
Thm (BCIKS’20, Thm. 6.2): RS[𝔽, ℒ, 𝑑] an RS-code with const. rate 𝜌 ≔ 𝑑/𝑛 (say, 𝜌 = 0.5)

 Let 𝑢!, … , 𝑢): ℒ ⇾ 𝔽   and   0 < 𝛿 < 1 − 1.01 𝜌  .
 For 𝑟 ∊ 𝔽  define   𝑢(,) ≔ 𝑢! + 𝑟 % 𝑢& + 𝑟#𝑢# +⋯+ 𝑟)𝑢) .

 Suppose that     Pr𝑟[ 𝑢(,)is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟
 then all  𝑢*  are 𝛿-close to RS 𝔽, ℒ, 𝑑 ,

 where 𝑒𝑟𝑟 = 𝑂 )$
𝔽  for  0 < 𝛿 < $%&

!
 

  𝑒𝑟𝑟 = 𝑂 )$"

𝔽
 for  $%&

!
< 𝛿 < 1 − 1.01 𝜌 

We will assume that
err is negligible, i.e.
err < ⁄1 2!"#

(if not, use multiple 𝑟)

𝑛 ≔ |ℒ|

https://eprint.iacr.org/2020/654.pdf


The proximity gap theorem

Suppose that     Pr𝑟[ 𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟
 then all  𝑢*  are 𝛿-close to RS 𝔽, ℒ, 𝑑

Contra-positive:  if some 𝑢* is 𝛿-far from RS 𝔽, ℒ, 𝑑   
   then 𝑢(,) is 𝛿-far with high probability, over 𝑟. 

Proximity gap error (𝑒𝑟𝑟) as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

unknown vacuous

(Johnson bound) (capacity bound)(uniqueness bound)

O 6$%
|𝔽| O 6$%!

|𝔽|

conjectured to 
be small

𝑛 ≔ |ℒ|



A stronger form:  correlated proximity
Thm (BCIKS’20, Thm. 6.2):

 Let 𝑢!, … , 𝑢): ℒ ⇾ 𝔽   and   0 < 𝛿 < 1 − 1.01 𝜌  .

 Suppose that     Pr𝑟[ 𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟

 then there is an  𝑆 ⊆ ℒ  such that  𝑆 ≥ (1 − 𝛿)% |ℒ|   and

 for all 𝑗:   ∃𝑓* ∊ RS[𝔽, ℒ, 𝑑]  s.t.   ∀𝑥 ∊ 𝑆:	𝑢* 𝑥 = 𝑓*(𝑥)  

⇒   𝑢!, … , 𝑢) are 𝛿-close to RS[𝔽, ℒ, 𝑑] on the same positions 𝑆 .

(recall   𝑢()) ≔ 𝑢+ + 𝑟 : 𝑢! + 𝑟"𝑢" +⋯+ 𝑟$𝑢$  )

https://eprint.iacr.org/2020/654.pdf


Why is this called a proximity gap??

Suppose that     Pr𝑟[ 𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟   then
 all  𝑢*  are 𝛿-close to RS 𝔽, ℒ, 𝑑   on the same positions 𝑆 ⊆ ℒ 

But if all 𝑢!, … , 𝑢): ℒ ⇾ 𝔽 are 𝛿-close to RS 𝔽, ℒ, 𝑑  
on positions 𝑆 ⊆ ℒ,  then 𝑢(,) is 𝛿-close for all 𝑟 ∊ 𝔽.

So    Pr𝑟[ 𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ]   exhibits a gap:

0 1𝑒𝑟𝑟

not possible

𝑢(") is 𝛿-close for all 𝑟 𝑢(") is 𝛿-close for few 𝑟 



Proximity gaps for other linear codes?
A similar proximity gap holds for every linear code.

Thm: (Zeilberger’24)  Let 𝒞 ⊆	𝔽$ be an 𝑛, 𝑑𝑖𝑚, 𝑙 =	linear code.
Then 𝒞 has a correlated proximity gap for 0 < 𝛿 < 1 − # 𝜏	
and  err = O [)$

|𝔽|  , where  𝜏 ≔ 1 − (𝑙/𝑛).

min. distance

This can be used in a 𝒞-proximity IOPP    (e.g., Basefold, Blaze)

(For RS-code 𝜏 ≈ 𝜌, so this gap is much weaker than BCIKS’20) 

https://eprint.iacr.org/2024/1843


2nd Distance preserving example:  2-way folding

From now on set  ℒ = 1,ω,ω#, … , ω$%& ⊆ 𝔽,   where

• 𝑛 is a power of two, and   

• ω is an 𝑛-th primitive root of unity   (𝜔$ = 1)
 (requires that 𝑛 divides 𝔽 − 1)

Then:
•    ω$/# = −1   so that if   𝑥 = ωB ∊ ℒ   then  −𝑥 = ωBC( ⁄$ #) ∊ ℒ

• ℒ# = 𝑎#: 𝑎 ∊ ℒ = ℒ /2 = 𝑛/2            ( −𝑎, 𝑎 → 𝑎! )



2-way folding a polynomial

A folding transformation:  let’s start with an example.

 Let    𝑓 𝑋 = 1 + 2𝑋 + 3𝑋! + 4𝑋' + 5𝑋( + 6X) ∊ 𝔽*+[𝑋]

Then: 𝑓 𝑋 = 𝑓DEDF 𝑋# + X % 𝑓GHH(X#)

Define:   for 𝑟 ∊ 𝔽  define  𝑓IGJH,, ≔ 𝑓DEDF+ 𝑟 % 𝑓GHH   ∊ 𝔽LM[𝑋]

Define   𝑓,-,.(𝑋) ≔ 1 + 3𝑋 + 5𝑋!   and   𝑓/00 X ≔ 2 + 4𝑋 + 6𝑋!



2-way folding a polynomial: more generally

For 𝑓 ∊ 𝔽LN[𝑋]  (with 𝑑 even)  define:

•  𝑓DEDF 𝑋# 	≔ 1 2 31 %2

!
     and    𝑓/00 X! ≔ 1 2 %1 %2

!2

•  𝑓IGJH,,(𝑋) ≔ 𝑓DEDF 𝑋 	+ 𝑟 % 𝑓GHH (𝑋)   ∊ 𝔽L ⁄N #[𝑋]

Then:      𝑓 𝑋 = 𝑓DEDF 𝑋# + X % 𝑓GHH(X#)

• for every 𝑎 ∊ 𝔽:   𝑓IGJH,,(𝑎#)  can be eval given  𝑓 𝑎 , 𝑓 −𝑎

• ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]    ⇒ 𝑓IGJH,, ∊ RS[𝔽, ℒ#, 𝑑/2] unchanged
rate = 𝑑/|ℒ|



Folding an arbitrary word  𝑢: ℒ ⇾ 𝔽  
For  𝑢: ℒ ⇾ 𝔽  and 𝑟 ∊ 𝔽 define   𝑢O, 𝑢P, 𝑢IGJH,,: ℒ# ⇾ 𝔽   as

• for  𝑎 ∊ ℒ:	 𝑢O(𝑎#) 	≔
4 5 34 %5

!
     and    𝑢6 𝑎! ≔ 4 5 %4 %5

!5

• for  𝑏 ∊ ℒ#: 	 𝑢IGJH,,(𝑏) 	≔ 𝑢O 𝑏 	+ 𝑟 % 𝑢P (𝑏)

Lemma (distance preservation):   for   0 < 𝛿 < 1 − 𝜌 

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑]    ⇒     𝑢IGJH,, ∊ RS[𝔽, ℒ#, 𝑑/2]  for all 𝑟 ∊ 𝔽 

• 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑]   ⇒   

   Pr
,

[ 𝑢IGJH,, is 𝛿-far from RS[𝔽, ℒ#, 𝑑/2] ] ≥ 1 − 𝑒𝑟𝑟

(recall ℒ$ = ℒ /2)



Folding an arbitrary word  𝑢: ℒ ⇾ 𝔽  
For  𝑢: ℒ ⇾ 𝔽  and 𝑟 ∊ 𝔽 define   𝑢O, 𝑢P, 𝑢IGJH,,: ℒ# ⇾ 𝔽   as

• for  𝑎 ∊ ℒ:	 𝑢O(𝑎#) 	≔
4 5 34 %5

!
     and    𝑢6 𝑎! ≔ 4 5 %4 %5

!5

• for  𝑏 ∊ ℒ#: 	 𝑢IGJH,,(𝑏) 	≔ 𝑢O 𝑏 	+ 𝑟 % 𝑢P (𝑏)

Lemma (distance preservation):   for   0 < 𝛿 < 1 − 𝜌 

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑]    ⇒     𝑢IGJH,, ∊ RS[𝔽, ℒ#, 𝑑/2]  for all 𝑟 ∊ 𝔽 

• Pr
,

[ 𝑢IGJH,, is 𝛿-close to RS[𝔽, ℒ#, 𝑑/2] ] > 𝑒𝑟𝑟      ⇒

   𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑] 

(recall ℒ$ = ℒ /2)

(contra-positive)



Why is this true?
The first part of the lemma is easy.  Let’s prove the second part.

• Suppose that Pr,[ 𝑢IGJH,, is 𝛿-close to RS[𝔽, ℒ#, 𝑑/2] ] > 𝑒𝑟𝑟

• Then by the BCIKS’20 theorem, there are  𝑔O, 𝑔P ∊ RS[𝔽, ℒ#, 𝑑/2] 
 that match 𝑢O, 𝑢P on a set 𝑆 ⊆ ℒ# of size 𝑆 ≥ 1 − 𝛿 ( ⁄𝑛 2)

• Define  𝑔: ℒ ⇾ 𝔽 as  𝑔 𝑎  ≔ 𝑔O 𝑎# + 𝑎 % 𝑔P(𝑎#) ∊ RS[𝔽, ℒ, 𝑑] 

• Then:   𝑔 𝑎 = 𝑢(𝑎) for all 𝑎 ∊ ℒ  for which 𝑎# ∊ 𝑆   (2|𝑆| values in ℒ)

• But then  ∆ 𝑢, 𝑔 ≤ 1 − # Q
$ = 1 − Q

$/# ≤ 𝛿.    

  ⇒  𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑]



An important corollary

Let  𝒞 = RS[𝔽, ℒ, 𝑑]    and   𝒞′ = RS[𝔽, ℒ#, 𝑑/2]

Corollary:  For 𝑢: ℒ ⇾ 𝔽

• if ∆ 𝑢, 𝒞 < 1 − 𝜌  then     Pr
7
	∆ 𝑢8/90,7, 𝒞; ≥ ∆ 𝑢, 𝒞 	 ≥ 1 − 𝑒𝑟𝑟

• if ∆ 𝑢, 𝒞 ≥ 1 − 𝜌  then     Pr
7
	∆ 𝑢8/90,7, 𝒞; ≥ 1 − 𝜌	 ≥ 1 − 𝑒𝑟𝑟

(folding does not decrease distance, w.h.p)

Recall:      ∆ 𝑢, 𝒞 ≤ 𝛿     ⟺     𝑢 is 𝛿-close to 𝒞



4-way folding  𝑢: ℒ ⇾ 𝔽   (using 𝒊𝟐 = −𝟏) 

For  𝑢: ℒ ⇾ 𝔽  define   𝑢!, 𝑢&, 𝑢#, 𝑢M ∶ ℒ' ⇾ 𝔽   for  𝑎 ∊ ℒ	 as

The 4-way fold of u:  for 𝑟 ∊ 𝔽 define 𝑢'IGJH,,: ℒ' ⇾ 𝔽 as
    𝑢'IGJH,,(𝑏) ≔ 𝑢! 𝑏 	+ 𝑟 % 𝑢& (𝑏) + 𝑟# % 𝑢# (𝑏) + 𝑟M % 𝑢M (𝑏)   for 𝑏 ∊ ℒ(

(a degree-4 FFT) 

Evaluating  𝑢'IGJH,,(𝑋)  at 𝑏 ∊ ℒ' requires four evals. of 𝑢(𝑋). 



4-way folding  𝑢: ℒ ⇾ 𝔽   (using 𝒊𝟐 = −𝟏) 

For  𝑢: ℒ ⇾ 𝔽  define   𝑢!, 𝑢&, 𝑢#, 𝑢M ∶ ℒ' ⇾ 𝔽   for  𝑎 ∊ ℒ	 as

The 4-way fold of u:  for 𝑟 ∊ 𝔽 define 𝑢'IGJH,,: ℒ' ⇾ 𝔽 as
    𝑢'IGJH,,(𝑏) ≔ 𝑢! 𝑏 	+ 𝑟 % 𝑢& (𝑏) + 𝑟# % 𝑢# (𝑏) + 𝑟M % 𝑢M (𝑏)   for 𝑏 ∊ ℒ(

(a degree-4 FFT) 

Fact:  the same distance preservation corollary holds for 𝑢'IGJH,, 



8-way folding  𝑢: ℒ ⇾ 𝔽   (using an 8th root of unity) 

Can similarly define 8-way folding, or even 2S folding for 𝑤 ≥ 3.

 maps   𝑢: ℒ ⇾ 𝔽    to   𝑢#$IGJH,,: ℒ#
$ ⇾ 𝔽            (  |ℒ""| = |ℒ|/2,  )

 (1)    evaluating  𝑢#$IGJH,,(𝑏)  requires 2S evals. of 𝑢(𝑋)
  ⇒    uses a degree-2S FFT    (degree-8 FFT for 8-way folding)

 (2)    the same distance preservation corollary holds for 𝑢#$IGJH,, 



Review: 2-way folding an arbitrary word  𝑢: ℒ ⇾ 𝔽  

For  𝑢: ℒ ⇾ 𝔽  and  𝑟 ∊ 𝔽  define   𝑢O, 𝑢P, 𝑢IGJH,,: ℒ# ⇾ 𝔽   as

• for  𝑎 ∊ ℒ:	 𝑢O(𝑎#) 	≔
4 5 34 %5

!
       and      𝑢6 𝑎! ≔ 4 5 %4 %5

!5

• for  𝑏 ∊ ℒ#: 	 𝑢IGJH,,(𝑏) 	≔ 𝑢O 𝑏 	+ 𝑟 % 𝑢P (𝑏)

Can similarly define 2S-way folding for 𝑤 ≥ 1.

Recall ℒ! = ℒ /2



A Reed-Solomon IOP of Proximity (RS-IOPP)

How FRI works



FRI phase 1:  commit phase

Phase 1:  (commit)
sample  𝑟$ ← 𝔽

sample  𝑟! ← 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ( ⇾ 𝔽 |ℒ(| = |ℒ|/4 

|ℒ!| = |ℒ|/2 
𝑢$ ≔ (𝑢")8/90,7%

honest prover:

𝑢! ≔ 𝑢$ 8/90,7&

honest prover:

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]



FRI phase 1:  commit phase

Phase 1:  (commit)
sample  𝑟$ ← 𝔽

𝑢$: ℒ! ⇾ 𝔽

sample  𝑟< ← 𝔽

𝑢<: ℒ!
' ⇾ 𝔽 |ℒ!'| = |ℒ|/2= 

𝑢< ≔ 𝑢<%$ 8/90,7'

honest prover:

𝑢$ ≔ (𝑢")8/90,7%
honest prover:

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]



FRI phase 2:  query phase

Phase 2:  (query) Verfier 𝑽"!,…,"% 𝒞, 𝑟&, . . , 𝑟W, 𝑢W

Note: prover sends short 𝑢< to verifier explicitly  
     (FRI terminates when 𝑢< is “short enough”)

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]

for 𝑖 = 1,2, … , 𝑡:

 spot check that 𝑢> = 𝑢>%$ 8/90,7(

output yes if  𝑢< ∊ RS[𝔽, ℒ!
' , U? !']

[Prover sent Merkle commits to 𝑢), … , 𝑢*]

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ( ⇾ 𝔽

⋮
𝑢<: ℒ!

' ⇾ 𝔽
⋮



FRI phase 2:  query phase

Phase 2:  (query)

for 𝑖 = 1,2, … , 𝑡:

 spot check that 𝑢> = 𝑢>%$ 8/90,7(

output yes if  𝑢< ∊ RS[𝔽, ℒ!
' , U? !']

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]

Why is this 𝛿-sound?  Intuition:   𝑢" is 𝛿-far from RS 𝔽, ℒ, 𝑑    ⇒

 𝑢$ is “far” from RS 𝔽, ℒ!, 𝑑/2    ⇒  …  ⇒  𝑢< is “far” from RS 𝔽, ℒ!' , 𝑑/2<  

Verfier 𝑽"!,…,"% 𝒞, 𝑟&, . . , 𝑟W, 𝑢W
𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ( ⇾ 𝔽

⋮
𝑢<: ℒ!

' ⇾ 𝔽



How to spot check:  method 1

Phase 2:  (query)

Let  𝒞 = RS[𝔽, ℒ, 𝑑],    𝑢!: ℒ ⇾ 𝔽,    and    𝛿 ∊ [0,1]

How to check that 𝑢> = 𝑢>%$ 8/90,7(  :

Repeat 𝑚 times: 

• choose random 𝑠 ∊ ℒ!(+%

• query  𝑢>%$(𝑠),  𝑢>%$(−𝑠),     𝑢>(𝑠!) 
• compute 𝑧 ≔ 𝑢>%$ 8/90,7((𝑠

!)
• reject if  𝑧 ≠ 𝑢>(𝑠!)

𝑧 =
𝑢!"#(𝑠) + 𝑢!"#(−𝑠)

2 + r$ 4
𝑢!"#(𝑠) − 𝑢!"#(−𝑠)

2𝑠

Verfier 𝑽"!,…,"% 𝒞, 𝑟&, . . , 𝑟W, 𝑢W
𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ( ⇾ 𝔽

⋮
𝑢<: ℒ!

' ⇾ 𝔽



How to spot check in a picture

𝑢": ℒ ⇾ 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢': ℒ@ ⇾ 𝔽

𝑢)(𝑠$)  ≟ 5!(6)75!(86)
$ + 𝑟9 6

5!(6)85!(86)
$6

Total of 2𝑚𝑡 queries to oracles:  2𝑚 per inner oracle (𝑢&, 𝑢#).

𝑢!: ℒ( ⇾ 𝔽

𝑚 = 2:    (spot check at two random spots per oracle)

Reject if any spot checks fail

Since prover opens (𝑠, −𝑠) jointly,
it places both into a single leaf
of Merkle tree
 ⇒  one query to get both

𝑠-𝑠

−𝑠"	 𝑠"	



Why is this protocol sound?
For 𝑖 = 0,… , 𝑡:    let 

• 𝒞B ≔ RS[𝔽, ℒ#) , 𝑑/2B]  and

• 𝜂B ≔ distance of 𝑢B to 𝒞B =	∆(𝑢B, 𝒞B) = min
S∊𝒞)

(∆ 𝑢B, 𝑤 )

Thm: if 0 < 𝜂" < 1 − 𝜌  then   Pr[Verifier accepts 𝑢!] ≤ 1 − $
!
𝜂"

A
 

 if 𝜂" ≥ 1 − 𝜌   then   Pr[Verifier accepts 𝑢"] ≤ 1 − !
"
(1 − 𝜌)

-
 

(recall:  𝑚 is the number of spot checks per round, and  𝜌 ≔ (rate of 𝒞>) = 𝑑/|ℒ| )

(simplified bound)



Why is this protocol sound?
Proof idea:   To simplify, let’s assume that  𝑚 = 1,   𝜂" < 1 − 𝜌,   and

      for all 𝑖 = 1,… , 𝑡  and  𝑟> ∊ 𝔽 :    ∆( 𝑢>%$ 8/90,7( , 𝒞>) ≥ ∆(𝑢>%$	, 𝒞>%$)
folding does 
not decrease 

distance

Then:   Pr accept = ∏>C$
< Pr not	reject	in	round	𝑖 = ∏>C$

< [1 − ∆(𝑢>, 𝑢>%$ 8/90,7()]
independent spot checks per round prob. 𝑢#  is accepted after one spot check

≤ exp(−∑>C$< [∆ 𝑢>%$, 𝒞>%$ − ∆ 𝑢>, 𝒞> ]) = exp(𝜂< − 𝜂") = exp(−𝜂") ≤ 1 − 𝜂"/2	

≤ exp(−∑>C$< ∆(𝑢>, 𝑢>%$ 8/90,7()) ≤ exp(−∑>C$< ∆( 𝑢>%$ 8/90,7( , 𝒞>) − ∆ 𝑢>, 𝒞> ) 

triangular inequality∀𝑥: 	1 − 𝑥 ≤ 𝑒$% = exp(−x)
𝜂& = 0 otherwise, Verifier rejects

(∗)

(∗)

(note: this only holds w.h.p over 𝑟9 ∊ 𝔽 by folding corollary)



How to spot check:  method 2  (the FRI method)

𝑢": ℒ ⇾ 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ( ⇾ 𝔽

Correlated spot checks:  spot check starting at a random 𝑠 ∊ ℒ

Total of only 𝑚𝑡 queries to oracles:    𝑚 per oracle

  (recall:  method 1 required 2𝑚 queries per oracle)

already have 𝑢$ 𝑠! , 𝑢$ −𝑠!

⇒  only query at  𝑢! 𝑠( , 𝑢! −𝑠(

⇒  1 query per check

𝑢': ℒ@ ⇾ 𝔽

−𝑠"	 𝑠"	

𝑠-𝑠

−𝑠'	 𝑠'	

−𝑠(	 𝑠(	



How to spot check:  the FRI method
Let  𝒞 = RS[𝔽, ℒ, 𝑑],   𝑢!: ℒ ⇾ 𝔽

How to check that 𝑢> = 𝑢>%$ 8/90,7(  :

Repeat 𝑚 times: 
• choose random 𝑠 ∊ ℒ,  query (𝑧", 𝑦") ⇽ (𝑢" 𝑠 , 𝑢"(−𝑠))
• for 𝑖 = 1,… , 𝑡:

• set  𝑠 ⇽ 𝑠! ∊ ℒ!(  
• compute 𝑧 ≔ 𝑢>%$ 8/90,7((𝑠)  from 𝑧>%$, 𝑦>%$
• query (𝑧>, 𝑦>) ⇽ (𝑢> 𝑠 , 𝑢>(−𝑠))	
• reject if  𝑧 ≠ 𝑧> 

only one 
query
per round



Why is this sound?   (using notation as in earlier proof)

Proof idea:   To simplify, let’s assume that  𝑚 = 1,   𝜂" < 1 − 𝜌,   and

      for all 𝑖 = 1,… , 𝑡  and  𝑟> ∊ 𝔽 :    ∆( 𝑢>%$ 8/90,7( , 𝒞>) ≥ ∆(𝑢>%$	, 𝒞>%$)
folding does 
not decrease 

distance

Then:   Pr reject = Pr ⋃>C$< (not	reject	in	round	𝑖) = ∑>C$< Pr not	reject	in	round	𝑖
can be made into a union of disjoint events

(∗)

(∗)
≥	∑>C$< ∆ 𝑢>%$, 𝒞>%$ − ∆ 𝑢>, 𝒞> 	=  𝜂" − 𝜂< 	= 	 𝜂" 	 ⇒ 	 Pr accept ≤ 1 − 𝜂"

=	∑>C$< ∆(𝑢>, 𝑢>%$ 8/90,7() ≥ 	∑>C$
< ∆( 𝑢>%$ 8/90,7( , 𝒞>) − ∆ 𝑢>, 𝒞>  

triangular inequality
𝜂& = 0 otherwise, Verifier rejects

[BKS’18, Thm 7.2]

https://www.math.toronto.edu/swastik/fri.pdf


Comparing methods 1 vs. 2

To obtain a SNARK via the BCS’16 compiler we need round-by-round soundness

• method 1:   independent spot checks ⇒  easy to prove R-by-R soundness

• FRI method:  correlated spot checks  ⇒  harder to prove R-by-R soundness

The FRI method has better soundness:    for   𝜂" =	∆ 𝑢", 𝒞" < 1 − 𝜌 

• method 1: Pr[Verifier accepts 𝑢"] ≤ 1 − $
!
𝜂"

A

• FRI method: Pr[Verifier accepts 𝑢"] ≤ 1 − 𝜂" A         (lower prob. ⇒ better bound)

(see [BJKTTZ’23] for R-by-R analysis of FRI)

https://eprint.iacr.org/2023/1071


The number of spot checks 𝑚

Goal:  𝑢! is 𝛿-far from RS 𝔽, ℒ, 𝑑   ⇒  Pr[Verifier accepts 𝑢!] ≤ 1/2$!@ 

For  𝛿 < 1 − 𝜌 :  when 𝑢! is 𝛿-far from RS 𝔽, ℒ, 𝑑  we know that

  Pr[ FRI Verifier accepts 𝑢!	] ≤ (1 − 𝛿)Z   

So:  we want 𝑚 where  (1 − 	𝛿)Z 	≤ 1/2&#[

  ⇒   𝑚 ≥ −128/ log#(1 − 𝛿)

Main point: (1)  the bigger 𝛿 is, the smaller 𝑚 needs to be
 (2)  smaller 𝑚   ⇒   shorter proof and faster verifier

𝑚

𝛿



Choosing the code rate 𝝆 = 𝑑/|ℒ|
in practice, set    𝛿 = 𝛿\]^ ≈ 1 − 𝜌     (to get smallest possible 𝑚)

Example 1:     𝜌 = 1/2

⇒  𝛿\]^ ≈ 0.29 ,     ℒ = 2𝑑

Example 2 :   𝜌 = 1/4   

⇒  𝛿\]^ ≈ 0.5 ,     ℒ = 4𝑑

Proof length:          Longer                                      Shorter  (smaller 𝑚) 

Prover work:          Less                                           More

shorter codewords  ⇒  less work for Prover to commit

(Plonky3)



Is 128-bit security enough??

Suppose 𝑚 is such that   Pr[ FRI Verifier accepts a far 𝑢! ] ≤ 2%&#[

Fact 1:   An adversary that runs FRI 2&#[ times will find a run with 
favorable spot checks (and forge a proof) with probability  ≈ 1/2 

Fact 2:   An adversary that runs FRI 2[! times will find a run with 
favorable spot checks (and forge a proof) with probability ≈ 2%'[

⇒  do not use less than 120-bits of security;  otherwise a 2@" adv. will forge proofs.

For most applications this is sufficient



FRI variants

(1) Higher-order folding
(2) Batch FRI for varying degrees
(3) Reduce proof size by grinding
(4) STIR and WHIR variants



(1) The benefits of higher-order folding

𝑢": ℒ ⇾ 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ( ⇾ 𝔽

−𝑠 𝑠

𝑠" -𝑠"

𝑠'

𝑢': ℒ@ ⇾ 𝔽
𝑠( 𝑠(

2-way folding three times 8-way folding once

degree-8
FFT

But:  total of 6 queries per 8-way step
Protocol has  𝑡 = log! 𝑛  rounds Protocol has  log@ 𝑛 = 𝑡/3  rounds

vs. total of 8 queries per 8-way step

𝑠

Can shrink Merkle proofs by placing entire coset in one leaf of Merkle tree:

|ℒ| = 𝑛

⇒ 3 Merkle proofs are about 3log"𝑛 hashes ⇒ 1 Merkle proof is about log"𝑛 hashes

Shorter
proof

𝑠𝜇)𝑠𝜇*… …

𝜂: = 1
coset	of	roots	of	 𝑠!



(2) Batch FRI for varying degrees:  two methods

Poly-IOPP often do multiple RS proximity tests:
 Let 𝑢*: ℒe⇾ 𝔽  be words for 𝑗 = 1,… , 𝑘
 All 𝑢&, … , 𝑢) are encoded with the same rate 𝜌 = 𝑑*/|ℒ*|

 Goal: reject if for any 𝑗,    𝑢*is 𝛿-far from RS 𝔽, ℒe, 𝑑*

The plan:  test all 𝑘 words as a batch.
different 𝑑D



Method 1:  degree padding
Let  𝑑<=> ≔ max

?
𝑑?  ,       ℒ@AB ≔ ⋃? ℒ? 

𝑢$: ℒ$⇾ 𝔽

𝑢!: ℒ!⇾ 𝔽

𝑢': ℒ'⇾ 𝔽

𝑢(: ℒ(⇾ 𝔽

𝑑! = 𝑑EFG/4

𝑑' = 𝑑EFG/2

𝑑( = 𝑑EFG

Honest prover can interpolate all 𝑢$, … , 𝑢# to ℒEFG 

𝑑$ = 𝑑EFG    (= 𝜌 6 ℒ;<=  )



Method 1:  degree padding
Let  𝑑<=> ≔ max

?
𝑑?  ,       ℒ@AB ≔ ⋃? ℒ? 

𝑢$: ℒEFG⇾ 𝔽

𝑢!: ℒEFG⇾ 𝔽

𝑢': ℒEFG⇾ 𝔽

𝑢(: ℒEFG⇾ 𝔽

pad

Prover can interpolate all 𝑢$, … , 𝑢# to ℒEFG 

𝑑! = 𝑑EFG/4

𝑑' = 𝑑EFG/2

𝑑( = 𝑑EFG

𝑑$ = 𝑑EFG    (= 𝜌 6 ℒ;<=  )



Method 1:  degree padding

𝑣7 𝑎 	 ≔ 	 q
DC"

#

	 q
>C"

?>?@%?A

𝑟H(,A r [𝑎>r 𝑢D 𝑎 ]

Now, batch as follows:    Verifier samples a random  𝑟 ∊ 𝔽,  sends to prover      

Honest prover defines:      𝑣7: ℒEFG ⇾ 𝔽     as

where  𝑒>,D  is a running counter

Example:  suppose  𝑢$, 𝑑$ , 𝑢!, 𝑑! , 𝑢', 𝑑'   s.t.   𝑑$ = 3, 	 𝑑! = 4,	 𝑑'= 5.

    𝑣)(𝑎) ≔ [𝑢!(𝑎) + 𝑟 : 𝑎𝑢! 𝑎 + 𝑟" : 𝑎"𝑢! 𝑎 ] + [𝑟.: 𝑢" 𝑎 + 𝑟/ : 𝑎𝑢" 𝑎 ] + 𝑟0 : 𝑢. (𝑎)

linear comb. of 𝑢! 𝑎 , 𝑎𝑢! 𝑎 ,	𝑎"𝑢! 𝑎 linear comb. of 𝑢" 𝑎 , 𝑎𝑢" 𝑎
𝑢+ ∊ RS 𝔽, ℒ+, 3	 ⇒   𝑎"𝑢+ 𝑎 ∊ RS 𝔽, ℒ+, 5	 𝑢" ∊ RS 𝔽, ℒ", 4	 ⇒   𝑎𝑢" 𝑎 ∊ RS 𝔽, ℒ", 4	



Method 1:  degree padding
Lemma: [STIR, Lemma 4.13]  the transform  𝑢$, … , 𝑢#; 𝑟 ⇾ 𝑣7  is distance preserving

case 1:  (the honest case)
  if  ∀𝑗: 	 𝑢D∈ RS[𝔽, ℒD, 𝑑I]   then   𝑣7 ∈ RS[𝔽, ℒEFG, 𝑑EFG]    for all 𝑟.

case 2:  (the dishonest case)
 if  some 𝑢D is 𝛿-far from RS[𝔽, ℒD, 𝑑D]  then 
  𝑣7 is 𝛿-far from RS[𝔽, ℒEFG, 𝑑EFG],  w.h.p over 𝑟.

The proof follows directly from the RS proximity gap  (the BCIKS’20 theorem)

Prover now uses an RS-IOPP to prove that  𝑣7  is 𝛿-close to RS[𝔽, ℒEFG, 𝑑EFG]



Method 2:  pipelining   (no padding or interpolation)

Phase 1:  (commit)
sample  𝑟$ ← 𝔽

sample  𝑟! ← 𝔽

|ℒ(| = |ℒ|/4 

|ℒ!| = |ℒ|/2 

Prover 𝑷 𝒞, (𝑢&, 𝑢#, 𝑢M),% Verfier 𝑽"F,"","G 𝒞
suppose  𝑑! = 𝑑$/2    and    𝑑' = 𝑑$/4

𝑤$: ℒ! ⇾ 𝔽

𝑤!: ℒ( ⇾ 𝔽

⋮ ⋮

𝑤$ ≔ 𝑢$ 8/90,7% + 𝑟$
!𝑢!

honest prover:

(fold 𝑢" into 𝑤!)

𝑤! ≔ 𝑤$ 8/90,7& + 𝑟!
!𝑢'

honest prover:

(fold 𝑢. into 𝑤")



(3)  Grinding to reduce # of spot checks
Prover 𝑷 𝒞, 𝛿 , 𝑢!,% Verfier 𝑽"! 𝒞, 𝛿

Commit phase:
𝑢$: ℒ! ⇾ 𝔽
𝑢!: ℒ( ⇾ 𝔽
𝑢': ℒ@ ⇾ 𝔽

MerkleCommits  (including 𝑢+)

Query phase:
(Fiat-Shamir)

Derive queries for spot checks by hashing all MerkleCommits

Goal:  reduce the number of spot checks 𝑚   (to reduce proof size)

The problem:  reducing 𝑚 below the computed bound enables adversary to try 
 multiple MerkleCommits, until it finds a favorable set of spot checks



Grinding to reduce # of spot checks

Commit phase:
𝑢$: ℒ! ⇾ 𝔽
𝑢!: ℒ( ⇾ 𝔽
𝑢': ℒ@ ⇾ 𝔽

MerkleCommits  (including 𝑢+)

Query phase:
(Fiat-Shamir)

Derive queries for spot checks by hashing 
      all MerkleCommits AND 𝑮

One option:  add a grinding phase after commit phase  (often used in FRI)

Nonce prevents adversary from pre-computing 𝐺   (e.g,  nonce = head of blockchain)

Grind: Find 𝐺 s.t.  MSB(SHA3(𝐺,MerkleCommits,nonce)) = 01/



Why does grinding help?
Adversary:  wants 𝛿-far 𝑢C for which it can generate an RS-proximity proof

FRI without grinding:   

 𝑚 is set so that E[time to find 𝛿-far 𝑢C with favorable queries] ≥ 2DEF 
 ⇒    time to find a false proximity proof is  ≈ 2DEF

FRI with grinding:  every 𝑢C attempt takes time ≈ 2GH  to find 𝐺

 ⇒    suffice that E[time to find 𝛿-far 𝑢C with favorable queries] ≥ 2GH

 ⇒    can halve the number of spot checks 𝑚
 ⇒    shrink proof length by about ×2

( I)$:
8 CDE,()8F) 	 ⇾   IGH 8 CDE,()8F) )



(4)  STIR: an FRI variant     [ACFY’24]

input: 𝑢+
distance 𝑢+ to RS 𝔽, ℒ, 𝑑 :

round 1:  (4-way fold)
distance 𝑢! to RS 𝔽, ℒ/, 𝑑/4 :

round 2:  (4-way fold)
distance 𝑢" to RS 𝔽, ℒ!1, 𝑑/16 :

Honest prover Dishonest prover
# spot 
checks

Recall: in FRI, distances and # spot checks 𝑚 are fixed round-to-round

𝑚

𝑚

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

https://eprint.iacr.org/2024/390


0 1

STIR: an FRI variant     [ACFY’24]

input: 𝑢+
distance 𝑢+ to RS 𝔽, ℒ, 𝑑 :

round 1:  (4-way fold)
distance 𝑢! to RS 𝔽, ℒ!, 𝑑/4 :

round 2:  (4-way fold)
distance 𝑢" to RS 𝔽, ℒ", 𝑑/16 :

Honest prover Dishonest prover # spot 
checks

𝑚&

smaller 
𝑚#

0 1

0 11 − 𝜌/2

0 11 − 𝜌/4

STIR main idea:  in each round reduce the rate and increase distance
 ⇒  # spot checks can be decreased from round to round

0 1

0 11 − 𝜌(rate 𝜌)

(rate 𝜌/2)

(rate 𝜌/4)

https://eprint.iacr.org/2024/390


STIR: an FRI variant     [ACFY’24]

Idea 1: reduce the code rate by making the honest prover interpolate

𝑢": ℒ ⇾ 𝔽
Goal:  prove 𝑢" is 𝛿-close to RS[𝔽, ℒ, 𝑑]

  rate = 𝜌 = 𝑑/|ℒ|4-way fold 𝑣"

New goal:  prove 𝑣" is 𝛿-close to RS[𝔽,ωℒ!, 𝑑/4]

  rate = ( ⁄? ()/( U|ℒ|
!) = 𝜌/2     ⇒    lower rate

interpolate

send   𝑣":	ωℒ!⇾ 𝔽  to Verifier
honest prover interpolates 𝑣+ from (𝑢+)/2345,)

domain = ℒ(
domain = ωℒ!     (half the size of ℒ)

https://eprint.iacr.org/2024/390


STIR: an FRI variant     [ACFY’24]

Goal:  prove 𝑢" is 𝛿-close to RS[𝔽, ℒ, 𝑑]

  rate = 𝜌 = 𝑑/|ℒ|4-way fold 𝑣"

Main point:  Lower rate 𝜌/2	means # spot checks for new goal 𝑣" can be smaller.

     Rate drops by a factor of 2 after every folding step   ⇒   shorter overall proof

interpolate

domain = ℒ(
domain = ωℒ!     (half the size of ℒ)

Idea 1: reduce the code rate by making the honest prover interpolate

send   𝑣":	ωℒ!⇾ 𝔽  to Verifier
honest prover interpolates 𝑣+ from (𝑢+)/2345,)

𝑢": ℒ ⇾ 𝔽

https://eprint.iacr.org/2024/390


STIR: an FRI variant     [ACFY’24]

The problem:   now we cannot spot check   𝑣!:	ωℒ#⇾ 𝔽

Idea 2:   use quotienting for two things:
(1) spot checks on 𝑣! ,  and
(2) for a malicious prover, increase distance to RS[𝔽,ωℒ#, 𝑑/4]

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣"

interpolate

send   𝑣":	ωℒ!⇾ 𝔽  to Verifier

how to spot check this? 
       Its 4th roots are not in ℒ   !!Can only spot check here

https://eprint.iacr.org/2024/390


How to spot check 𝑣!	by quotienting
How?    Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send   𝑣":	ωℒ!⇾ 𝔽  to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

Prover sends back  𝑦 ≔ 𝑓(𝑡)
force prover to choose
one  𝑓 ∊ 𝔽* ⁄? ( 𝑋    s.t.
̅𝑓 ∊ List[𝑣", 𝑑/4,  1 − 𝜌/2  ]

Honest prover will use  𝑓 ∊ 𝔽* ⁄? ( 𝑋    s.t.   ̅𝑓 = (𝑢")(8/90,7   on   ℒ(



How to spot check 𝑣!	by quotienting
How?    Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send   𝑣":	ωℒ!⇾ 𝔽  to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

𝑢$:	ωℒ!⇾ 𝔽

Verifier sends spot check points 𝑠!, … , 𝑠- ∊ ℒ/

Prover sends back  𝑦 ≔ 𝑓(𝑡)

Prover sends back  𝑦7 ≔ 𝑓 𝑠7 ,  𝑖 = 1, … ,𝑚

Honest prover defines  𝑢$  as
the result of quotienting 𝑣" by 
{ (𝑡, 𝑦), (𝑠$, 𝑦$), … , (𝑠A, 𝑦A)	}



How to spot check 𝑣!	by quotienting
How?    Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send   𝑣":	ωℒ!⇾ 𝔽  to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

𝑢$:	ωℒ!⇾ 𝔽

Verifier sends spot check points 𝑠!, … , 𝑠- ∊ ℒ/

Prover sends back  𝑦 ≔ 𝑓(𝑡)

Prover sends back  𝑦7 ≔ 𝑓 𝑠7 ,  𝑖 = 1, … ,𝑚

In query phase, Verifier computes 𝑦> itself by querying 𝑢" at 4𝑚 points and folding

That is, 𝑢! a ≔ 8, 9 :;(9)
<(9)

   where 

• 𝐼 𝑡 = 𝑦   and   𝐼 𝑠7 = 𝑦7  
• 𝑉 𝑡 = 0  and   𝑉 𝑠7 = 0
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How?    Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send   𝑣":	ωℒ!⇾ 𝔽  to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

𝑢$:	ωℒ!⇾ 𝔽

Verifier sends spot check points 𝑠!, … , 𝑠- ∊ ℒ/

Prover sends back  𝑦 ≔ 𝑓(𝑡)

Prover sends back  𝑦7 ≔ 𝑓 𝑠7 ,  𝑖 = 1, … ,𝑚

Iterate to prove that 𝑢$ is (1 − 𝜌/2 )-close to RS[𝔽,ωℒ!, 𝑑/4]  with a smaller  𝑚

That is, 𝑢! a ≔ 8, 9 :;(9)
<(9)

   where 

• 𝐼 𝑡 = 𝑦   and   𝐼 𝑠7 = 𝑦7  
• 𝑉 𝑡 = 0  and   𝑉 𝑠7 = 0



STIR:  summary

Main benefit:   STIR proof is about 2× shorter than FRI proof

Cons:
• Prover is a bit slower because of interpolation and quotienting
• Verifier is a bit slower because of quotienting
• Batching via pipelining is more cumbersome:

• Often, functions to batch are all defined using the same rate 𝜌,
 but STIR iterations use a different rate in every round
 ⇒  Prover will need to interpolate functions to expand to lower rate

(using the same rate 𝜌 for the input 𝑢")



WHIR:  better than STIR   [ACFY’24]

WHIR:  combines all spot checks into a Sumcheck  ⇒  no quotienting

• Fold 𝑘 levels per round, but Verifier now does fewer field ops.
  ⇒   fast verifier  (≈1.9M gas in the EVM)

• Supports queries to a multilinear polynomial (not just univariate)

How?  Not today.        (Builds on BaseFold)

https://eprint.iacr.org/2024/1586
https://ethresear.ch/t/on-the-gas-efficiency-of-the-whir-polynomial-commitment-scheme/21301


Are there better codes than Reed-Solomon?

The future:  other codes



The problem with RS-based SNARKs

• Not field agnostic:  requires an 𝑛-th primitive root of unity in 𝔽
  ⇒   can only use fields where  𝑛 = |ℒ|  divides  |𝔽| − 1
  ⇒   difficult to support specific fields (e.g., for ECDSA arithmetic)

• Encoding is done via an FFT:   takes time  𝑂(𝑛 % log 𝑛)
  ⇒  when  𝑛 ≈ 2#!, the (log# 𝑛) causes 20× work for prover

• FRI enables:   a (univariate Poly-IOP) ⇾ IOP compiler
  ⇒  what about (multilinear Poly-IOP) ⇾ IOP compiler??
    e.g.,   𝑔 𝑥!, 𝑥", 𝑥. = 5𝑥! + 2𝑥" + 4𝑥!𝑥" + 12𝑥!𝑥. + 7𝑥!𝑥"𝑥.



FRI-like proximity proof for other linear codes

FRI can be generalized to any 𝑛, 𝑘, 𝑙 = linear code 𝒞 ⊆	𝔽$ where:

There is a sequence of linear codes  𝒞 = 𝒞!, 𝒞&, …	, 𝒞W  s.t.

1. 𝒞� is a 𝑛B, 𝑘B, 𝑙B = linear code where 𝑛 = 𝑛! > 𝑛& > ⋯ > 𝑛W
and 𝑛W is “sufficiently small”, 

2. there are distance preserving maps  𝒞B%& ⇾	𝒞B  for  𝑖 = 1,… , 𝑡 ,

3. there is a “fast” encoding algorithm 𝔽)⇾ 𝒞,  and

4. min-distance of 𝒞! is sufficiently large
𝑘 𝑛(to reduce # of spot checks)



A proximity proof for other linear codes
A field agnostic proximity test:   (e.g., FRI over the ECDSA prime)

• Gives a (univariate Poly-IOPP) ⇾ IOPP over an arbitrary prime 𝑝

(1) ECFFT [BCKL’22]:   

  FRI using functions over an elliptic curve 𝐸/𝔽= , 
  where the order of 𝐸(𝔽=)	is divisible by 𝑛
  (even though 𝑝 is not)

(2)  a proximity proof for algebraic geometric codes  [BLNR’20].
 Here polynomials are replaced with “functions on a curve”

https://eprint.iacr.org/2022/1542
https://arxiv.org/abs/2011.04295


A proximity proof for other linear codes
Circle Stark [HLP’24]:    Let  𝑀$$ ≔ 2'$ − 1   (the 11th Mersenne prime)

  arithmetic mod 𝑀&& is super fast,    (𝑥	𝑚𝑜𝑑	𝑀!! is just an addition)
  but 𝑀KK − 1  is not divisible by a high power of 2

 Instead: run FRI over the projective line mod 𝑀$$ whose size is 𝑀$$ + 1
 One way to represent the projective line is as points on a circle: 

divisible by a high 
power of 2

0𝔽=

So:  the circle (𝑥! + 𝑦! = 1) is the same as 𝔽M ∪ {∞}   ⇒  (𝑝 + 1) points

∞

https://eprint.iacr.org/2024/278


BaseFold  [ZCF’23]

BaseFold:  generalizes FRI to any foldable code
⇒  The generalization gives a field agnostic proximity test
[note:  every foldable code is a multilinear Reed-Muller code]

For a (multilinear Poly-IOPP) ⇾ IOPP compiler need a multilinear PCS
• The problem:   quotienting only applies to univariates
• BaseFold solution:  

  build a multilinear PCS from Sumcheck and a proximity test

How?  Not today.
(also adopted into Whir)

https://eprint.iacr.org/2023/1705.pdf


More SNARK-useful linear codes

Spielman codes:   [BCG’20,  Breakdown’21,  Orion’22]

• Linear codes with a good minimum distance
and a very fast (linear time) encoding algorithm  𝔽) ⇾ 𝒞.

• Also field-agnostic.
  Cons:   large IOPP proof   ⇒   large SNARK proof

Expand Accumulate codes:  [BFKTWZ’24]

• Field-agnostic codes, but shorter proofs than Breakdown
  Cons:   𝑂(𝑛 % log 𝑛) time encoding.

https://eprint.iacr.org/2020/1426.pdf
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2024/1871.pdf


More SNARK-useful linear codes

Repeat-Accumulate-Accumulate (RAA) codes:   [Blaze’24]

• Constructs a multilinear polynomial commitment over 𝔽#L   
with a fast (linear time) prover time and 𝑂(log# 𝑛) proof size

  ⇒  𝔽#L  is friendly to modern CPU instructions

• The commitment uses the tensor code approach of [BCG’20] 
(making use of Sumcheck).

Much more to do in non-RS based SNARKs

https://eprint.iacr.org/2024/1609
https://eprint.iacr.org/2020/1426.pdf


Further reading
• FRI (2018) and analysis (2018):  Fast Reed–Solomon Interactive Oracle Proofs of Proximity

• DEEP-FRI (2019):  Out of domain sampling improves soundness

• BCIKS (2020):  Proximity Gaps for Reed–Solomon Codes

• CircleSTARK (2024):  FRI using a Mersenne prime

• STIR (2024):  Reed–Solomon proximity testing with fewer queries

• WHIR (2024):  Reed–Solomon proximity testing with a fast verifier

Beyond Reed-Solomon codes (a few recent results):

• Breakdown (2021),  Orion (2022):  Polynomial commitments with a fast prover

• BaseFold (2023):  Efficient Polynomial commitments from foldable codes

• Blaze (2024):  Fast SNARKs from Interleaved RAA Codes

https://drops.dagstuhl.de/storage/00lipics/lipics-vol107-icalp2018/LIPIcs.ICALP.2018.14/LIPIcs.ICALP.2018.14.pdf
https://www.math.toronto.edu/swastik/fri.pdf
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654.pdf
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/390
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2023/1705.pdf
https://eprint.iacr.org/2024/1609


END  OF  MODULE


