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Review: Poly-IOP = IOP = SNARK

A direct SNARK construction:

RS-IOPP Merkle
(suchas FRI) commitments Fiat-Shamir

Polynomial

interactive ’ ’ Interactive | °* (zk)SNARK for
— — >

oracle proof 0P Proof (IP) general circuits

(Poly-10P)
An RS-IOPP is the key ingredient in compilation




FRI: a Reed-Solomon IOP of Proximity

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

Prover P(C, ug,*) Verfier V%o (C)

Goal:

* uy € RS|F,L,d] = Verifier outputs accept (with prob. 1)
* 1y is &-far from RS|[F, L,d] = Verifier outputs reject w.h.p

We don’t care what happens when 1 is between the two cases

Why needed? A key tool for compiling a Poly-IOP into an IOP.



FRI: a Reed-Solomon IOP of Proximity

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

Prover P(C, ug,*) Verfier V%o (C)

We will set:
L={1,w w0 .., 0"} CF and n,d are powers of two,

where w™ = 1 is an n-th primitive root of unity

Then: |£?]| == |{a*:a € L} =|L|/2 =n/2 (—a, a > a?)
|L*] = |{a*:a € L}| = |L|/4 =n/4



Distance Preserving

Transformations

Towards an efficient RS-IOPP



Distance Preserving Transformations

Let £,L' € TF, d,d’ some degree bounds, and § € [0,1].

Def: A distance preserving transformation is a randomized map
T(uUq, ..., uy;r) > u
that maps uq,.,up: L —=>F to wu:L — F such that:
case 1: (the honest case)
if uq,...,u,€RS[F, L,d] then ueRS[F, L, d'] forallr.

case 2: (the dishonest case)

if some u; is §-far from RS[F, L,d] then
u is 8-far from RS[IF, L', d'], w.h.p overr.




Example 1: batch RS-IOPP

Setting: Prover has u,, ...,u;: L = F, Verifier has oracles for uy, ..., u.

Goal: convince Verifier that all uy, ..., uy are 6-close to RS[F, £, d].
* Naively: run k RS-IOPP protocols = expensive

e Better: batch all k into a single function u: L —» F

step 1: Verifier samples random r in [F; sends to prover
step 2: Proversets u:=1ug+71r-u; +r?uy; + - +rfu: L - F
step 3: Both run RS-IOPPon u: L = F

when Verifier wants u(a) for some a € L, prover opens all uy(a), ..., ux(a)




Why is this distance preserving?

Case 1: (an honest prover)
if ug, ..., ur€ RS[IF, L,d] then ue RS[F, £,d] forallr € F

Case 2: (a dishonest prover)

if some u; is 6-far from RS[F, £,d]|, we need to argue that
u is 6-far from RS|[F, £, d], with high probability over r € [F

When § € [0,1 — \/p), Case 2 follows from the
celebrated BCIKS proximity gap theorem.


https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem

Thm (sciks'20, Thm. 6.2): RS[F, £, d] an RS-code with const. rate p := d/n (say, p = 0.5)
Let ug, .., up: L= F and 0<§<1-1.01,p . n=|L]

Forr € F define u( := Ug + 7 uy +7%uU, + -

k
+rtuy .

then all u; are §-close to RSIF, L, d],

Suppose that  Pr,[ u™is §-close to RS[F, £,d] | > err

o

k _
where err=0(|ﬁ) for O<6<1—2p

q

knz 1-p
err =0 (W) for —=<6<1-1.01yp

We will assume that
err is negligible, i.e.
err < 1/2128

(if not, use multiple r)


https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem

Suppose that  Pr,[ u( is §-close to RS[F, £, d] | > err
then all u; are §-close to RS[F, £, d]

Contra-positive: if some u; is §-far from RS|F, £, d |
then u( is §-far with high probability, over r.

conjectured to

Proximity gap error (err) as a function of § € [0,1‘]:/ be small

2

- O("/ig) | O(*™ /i) . unknown” |,  vacuous
| 1 1 1 1
6=0 (1-p)/2 1—+p 1—p 1

(uniqueness bound) (Johnson bound) (capacity bound) n=|L|




A stronger form: correlated proximity

Thm (Bciks'20, Thm. 6.2):

Let ug, ..., up: L > F and 0<06<1-1.01,/p .

Suppose that  Pr,[ u(™ is §-close to RS[F, £, d] | > err
then thereisan S € L suchthat |S| = (1 —§)- |£| and
forall j: 3f; € RS[F, £,d] s.t. Vx €S: ui(x) = f;(x)

= U, ..., U are d-close to RS|[IF, £, d]| on the same positions S .

(recall u( :=wuy+71-uy +r2uy + -+ r*uy)


https://eprint.iacr.org/2020/654.pdf

Why is this called a proximity gap??

Suppose that  Pr.[ u(™ is §-close to RS[F, £,d] | > err then

all u; are §-close to RS[FF, £, d]| on the same positions S € L

But if all ug, ..., uy: L — IF are §-close to RS[FF, £, d]
on positions S € L, then u™ is §-close for all r € F.

So Pr.[ u(™ is §-close to RS[F, £,d] ] exhibits a gap:

| | not Eossible |

0 err 1

il f 1
'u(") is &-close for few r ' u™ is 6-close for all r




Proximity gaps for other linear codes?

A similar proximity gap holds for every linear code.

min. distance

/

Thm: (zeilberger'24) Let C € F™ be an [n, dim, l],, linear code.
Then C has a correlated proximity gapfor0 < § < 1 — 3/t
and err = O(kn/|IF|) , Where 7:=1— (I/n).

(For RS-code T = p, so this gap is much weaker than BCIKS'20)

This can be used in a C-proximity IOPP (e.g., Basefold, Blaze)


https://eprint.iacr.org/2024/1843

2"d Distance preserving example: 2-way folding

Fromnowon set £ = {1, w, ®w?, ..., " 1} C F, where
* nisa power of two, and

* w is an n-th primitive root of unity (w™ = 1)

(requires that n divides |F| — 1)

Then:
e "2 =—-1 sothatif x=w! e L then —x = T2 e ¢

+ L% = {a*:a e L} = |L]|/2 = n/2 (—a, a—>a®)



2-way folding a polynomial

A folding transformation: let’s start with an example.

Let f(X) =14 2X+3X%2+4X3+5X*+ 6X° e FO[X]

Define fiyen(X)=1+3X+5X? and f,34(X) =2 +4X + 6X?

Then: f(X) = feven(XZ) + X fodd(XZ)

Define: forr € F define froiar *= fevent 7 * foaa € FS[X]



2-way folding a polynomial: more generally

For f € F<[X] (with d even) define:

_ fOO+f(=Xx) X)-f(=X)
° feven(XZ) = 5 and f,qq(X?) = ! 2;

*  froldrX) = foyen(X) +7 - fogq (X) € F<¥/2[X]

Then: f(X) =feven(X2) +X'fodd(X2)
 foreverya € F: fpq,-(a®) can be eval given f(a), f(—a)

* feRS[F.Ld] = froar€RS[F,L%d/2] =




Folding an arbitrary word u: L — [F

For u: L = F and r € F define u,, Uy, Ugo1gr: L* = F as

u(a)+u(-a)

2y . ula)—u(-a)
- and u,(a®) = >

» for b e L ugiqr(b) = ue(b) +71-u, (b)

e« forael: u,(a®) =

(recall |£2| = |£|/2)

Lemma (distance preservation): for 0 <o <1—./p
 ueRS[F L, d] = ugqr€ RS[F, L%d/2] forallr € F

* uiso-far from RS[F, £, d] =
Pr[ ugoq,r is 6-far from RS[F, £%,d/2] ] =1 —err
r




Folding an arbitrary word u: L — [F

For u: L = F and r € F define u,, Uy, Ugo1gr: L* = F as

u(a)+u(-a) —u(—
2) = - and  u,(a?) = “(“)ZZ( a)

» for b€ L ugiqr(b) = ue(b) +71-u, (b)

e forael: u,(a

(recall |£2| = |£|/2)

Lemma (distance preservation): for 0 <o <1—./p
 ueRS[F L, d] = ugqr€ RS[F, L%d/2] forallr € F

* Pr[ ugoq, is 6-close to RS[F, £L%,d/2] ] > err =
r

u is 6-close to RS[FF, £, d] (contra-positive)



Why is this true?

The first part of the lemma is easy. Let’s prove the second part.

Suppose that Prr[ Usold.r IS 0-close to RS[F, £?,d /2] ] > err

Then by the BCIKS’20 theorem, there are g,, g, € RS[F, L%, d /2]
that match u,, u, on asetS € L of size |S| = (1 — §)(n/2)

Define g: L - Fas g(a) :==g.(a?) + a- g,(a?) € RS[F, L, d]

Then: g(a) = u(a) foralla € L for which a? € S (2|S| values in £)

2lsl _ 4 _ 181
Butthen A(u,g) <1 -— —=1 n/2S6'

= uis 6-close to RS[F, £, d]



An important corollary

Llet C =RS[F,£,d] and ¢’ =RS[F, L2 d/2]

Corollary: Foru: L = F (folding does not decrease distance, w.h.p)

« ifA(u,C) <1—/p then Pr|A(upigrC') =AW C)|=1—err

r

« ifA(u,C) 21—,/p then Pr[A(usg,C)=1—p|=1—err

r

Recall A(u,C)<6 < uisd-closetoC



4-way folding u: L = [F (usingi?2 = -1)

For u: L = F define ug,uq, Uy, ug : L* = F for ae L as

4 - ug(a*) 1 1 1 1 u(a)
(4a- \ /1 —i  (—1)? (—i)3\ | /u(.ia)\

ui(a®) | _
4a° -ux(a®) | 7 [1 -1 1 —1 u(i’a)
\4&3 C U3 (a4)) \1 0 72 i3 ) \u(z’?’a))

(a degree-4 FFT)

The 4-way fold of u: for r € F define uyfo1q,: L* — F as
Ustoldr (D) = ug(b) +7 - ug (b) +7% - uy (b) +7° - uz (b) forb e L*

Evaluating usgo1q - (X) at b € L* requires four evals. of u(X).



4-way folding u: L = [F (usingi?2 = -1)

For u: L = F define ug,uq, Uy, ug : L* = F for ae L as

4 - ug(a*) 1 1 1 1 u(a)
(4a- \ /1 —i  (—1)? (—i)3\ | /u(.ia)\

ui(a®) | _
4a° -ux(a®) | 7 [1 -1 1 —1 u(i’a)
\4&3 C U3 (a4)) \1 0 72 i3 ) \u(z’?’a))

(a degree-4 FFT)

The 4-way fold of u: for r € F define uyfo1q,: L* — F as
Ustoldr (D) = ug(b) +7 - ug (b) +7% - uy (b) +7° - uz (b) forb e L*

Fact: the same distance preservation corollary holds for u4¢4)q r



8-way foldlng u. L » F (using an 8t root of unity)

Can similarly define 8-way folding, or even 2% folding for w > 3.
maps w:L = F to Upweog,: L2 — F (1£2°] = 1£]/2% )

(1) evaluating upweoiq (D) requires 2% evals. of u(X)

= uses a degree-2" FFT (degree-8 FFT for 8-way folding)

(2) the same distance preservation corollary holds for u,wegq r



Review: 2-way folding an arbitrary word u: L — [F

For u: L = F and r € F define ug, uy, Ugoiqr: L2 = F as

u(a)+u(-a)

2y . u(a)—u(-a)
- and | u,(a?) = >

e foraeL: |u,(a®) =

» for b e L% Utoldr (D) = Ue(b) +7 - uy (b)

Can similarly define 2"-way folding forw > 1.

Recall |£?| = |£]/2



How FRI works

A Reed-Solomon IOP of Proximity (RS-IOPP)




FRI phase 1: commit phase

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

Prover P(C, ug,*) Verfier V%o (C)

Phase 1: (commit)

sample ry « [F

honest prover:
Uy = (uO)fold,rl

Ui L% - F CTIITITTTIT] L% = |L|/2

honest prover: ) sample 1, « F
Uy = (ul)fold,rz

Uy L* —» F L] ' L4 = |£]/4



FRI phase 1: commit phase

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

Prover P(C, ug,*) Verfier V%o (C)

Phase 1: (commit)

sample ry « [F

honest prover:
Uy = (uO)fold,rl

U L? > F [ IIITTITT1]

honest prover: sample 1 « F

U = (Ug—1)fold,r, -

. t
u L2° - F [T L] = |£]/2"



FRI phase 2: query phase

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

/

Phase 2: (query) Verfier VYo% (C,ry, .. 1, Uy )
upi L2 = F LTI  for = 1.2, .t

. r4
up L= F LTI spot check that u; = (Ui_l)fold'ri

ut:[,zt — F L[] output yes if u; € RS[IF,LZt, d/zt]

[Prover sent Merkle commits to 14, ..., U]

Note: prover sends short u, to verifier explicitly
(FRI terminates when u; is “short enough”)



FRI phase 2: query phase

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

Phase 2: (query) Verfier VYo% (C,ry, .. 1, Uy )
upi L2 = F LTI  for = 1.2, .t
uy: L* » F [CIITTTTT] spot check that u; = (Ui_l)fold'ri

ut:[,zt — F L[] output yes if u; € RS[IF,LZt, d/zt]

Why is this §-sound? Intuition: 1w is §-far from RS[F, £, d] =
U is “far” from RS[F, £?, d/2] = .. = u;is“far” from RS[IF,LZt, d/Zt]



How to spot check: method 1

Let C = RS|[F, L, d], ug:L—1F, and 6 €[0,1]

Phase 2: (query)

Verfier VYo"t (C 1y, .., 1¢, Uyt )

ul:LZ—D[F HEEEEEEEEEEEEEN

Uy L* - F [CIITTTTT]

u: L2 - F [

2 2s

, = Liz1(8) + U1 (55) ;- Ui—1(s) — ui—1(=5) |

How to check that u; = (u;—1)fo1dr;
Repeat m times:

. choose random s € £

* query u;_1(5), ui—1(—5), ui(s?)

*_.compute zZ = (ui—l)fold,ri(sz)

* rejectif z # u;(s?)




How to spot check in a picture

m = 2: (spot check at two random spots per oracle)

-5 S
ug: L — F v H
| - uy(s?) = Up($)+uo(=5) +ry Up($)—Up(=$)

2
ul:LZ—DIF >

N 2
7 _SZ SZ /
U LAY 5 F Since prover opens (s, —s) jointly,
: it places both into a single leaf
Uat L8 o F \ of Merkle tree
3.

= one query to get both

Reject if any spot checks fail

Total of 2mt queries to oracles: 2m per inner oracle (uq, u,).



Why is this protocol sound?

Fori =0,...,t: let

. ;= RS[F, £2',d/2!] and

e 7; = (distance of u; to C;) = A(u;, C;) = mig(A(ui,W))
wel;
(simplified bound)

Thm: if0<ny<1—+/p then Pr[Verifier accepts uy] < (1 —%no)m

ifng =1—4/p then Pr[Verifier accepts uy] < (1 —%(1 — \/ﬁ))m

(recall: m is the number of spot checks per round, and p := (rate of C;) = d /| L] )



Why is this protocol sound?

Proof idea: To simplify, let’s assume that m =1, n, < 1—./p, and
() foralli=1,..,t and 1; € F: A((Wj-1)fo1dry» Ci) = A(Ui—1,Ci—1) M
(note: this only holds w.h.p over 1; € IF by folding corollary)

Then: Pr[accept] = [];-, Pr[not rejectin round i] = [Ti—4[1 — A(w;, (Ui—1)fo1d )]

independent spot checks per round prob. u; is accepted after one spot check

< exp(— Xioq AUy, Wim)foldry)) < exp(— X1 |A(Wi—1so1d,r Ci) — Alwy, €)))

Vx: 1 —x < e ™ =exp(—x) triangular inequality
n: = 0 otherwise, Verifier rejects

(§) exp(— M= [A(ui—1, Ci—1) — Auy, C)]) = exp(ne — Mo) i exp(—1o) <1 —1¢/2



How to spot check: method 2 (the FRI method)

Correlated spot checks: spot check starting at arandom s € L

Uy L—F

already have u;(s%), uy(—s?)
u;: L? —» F B } = only query at u,(s%), uy(—s%)
Uy LY — F = 1 query per check
U3:L8 — [F E.

_58 58
Total of only mt queries to oracles: m per oracle

(recall: method 1 required 2m queries per oracle)



How to spot check: the FRI method

Let C = RS[F, L, d], up: L~ F

How to check that u; = (u;—1)fold,r, :
Repeat m times:
* chooserandom s € L, query (zy, Vo) — (ug(s),ug(—s))
e fori=1,..,t:
. set s« s2eL?

+ compute z = (u_1)golar, (5) from zi_1, Y1

« query (z;,y;) «+ (u(s), ui(—s))
* rejectif z # z;

only one

query
per round




Why iS th iS SOU nd ? (using notation as in earlier proof)

[BKS’18, Thm 7.2]

Proof idea: To simplify, let’s assume that m =1, ny <1 —,/p, and
() foralli=1,..,t and 1; € F: A((4j-1)fo1dryp Ci) = A(ui—1,Ci—1) M
Then: Pr[reject] = Pr|Uf_;(notreject in round i)| = Y.}, Pr[not reject in round i]

can be made into a union of disjoint events

= Niz1 A, WimDfoldry) = Lica|AWUi—foldrp C) — Aluy, C) ]

triangular inequality _ - _
n: = 0 otherwise, Verifier rejects

> Yiq[A(ui—q,Cimq) — AWy, C)] = no—ne =My =  Prlaccept] < 1 —n,

(*)


https://www.math.toronto.edu/swastik/fri.pdf

Comparing methods 1 vs. 2

The FRI method has better soundness: for 1o = A(ug, Co) <1 —4/p

.. 1 \™
* method 1: Pr[Verifier accepts ug] < (1 — Eno)

* FRImethod: Pr[Verifier accepts uy] < (1 —ng)™ (lower prob. = better bound)

To obtain a SNARK via the BCS’16 compiler we need round-by-round soundness
* method 1: independent spot checks = easy to prove R-by-R soundness
* FRI method: correlated spot checks = harder to prove R-by-R soundness

(see [BJKTTZ'23] for R-by-R analysis of FRI)



https://eprint.iacr.org/2023/1071

The number of spot checks m

Goal: u is 6-far from RS[IF, L, d] = Pr[Verifier accepts uy] < 172128

For 6 <1 —4/p: whenugis §-far from RS[F, £, d] we know that
Pr[ FRI Verifier acceptsuy ] < (1 — )™

So: we wantm where (1 — §)™ < 1/2128 m
= m = —128/log,(1 — 0) 5

Main point: (1) the bigger ¢ is, the smaller m needs to be

(2) smallerm = shorter proof and faster verifier




Choosing the coderate p = d/|L]

in practice, set 0 = Opax ® 1 —+/p  (to get smallest possible m)

Examplel: p=1/2 Example2: p=1/4
= Omax = 0.29, |L| =2d = Omax = 0.5, |L| =4d
(Plonky3)
Proof length: Longer Shorter (smallerm

as;

Prover work: @ More
g

L

shorter codewords = less work for Prover to commit




Is 128-bit security enough??

Suppose m is such that Pr[ FRI Verifier accepts a far uy ] < 27148

Fact 1: An adversary that runs FRI 2128 times will find a run with
favorable spot checks (and forge a proof) with probability =~ 1/2

Fact 2: An adversary that runs FRI 28° times will find a run with
favorable spot checks (and forge a proof) with probability ~ 2748

For most applications this is sufficient

= do not use less than 120-bits of security; otherwise a 28° adv. will forge proofs.



FRI variants

(1) Higher-order folding

(2) Batch FRI for varying degrees
(3) Reduce proof size by grinding
(4) STIR and WHIR variants



(1) The benefits of higher-order folding

[£l=mn 2-way folding three times 8-way folding once
—SS S wee su3 o su’
Ug:L - F ||||||||||||-\|| EEEEEE cosetof roots of s° I
. n8=1
Ui L2 = F degree-8
UZ:L4 — [F
Shorter
u3: L8 = F [] = proof
s8 ©
Protocol has t = log, n rounds Protocol has loggn = t/3 rounds
But: total of 6 queries per 8-way step vs. total of 8 queries per 8-way step

Can shrink Merkle proofs by placing entire coset in one leaf of Merkle tree:
= 3 Merkle proofs are about 3log,n hashes I = 1 Merkle proof is about log,n hashes



(2) Batch FRI for varying degrees: two methods

Poly-IOPP often do multiple RS proximity tests:
Let u;: [,]-—D F bewordsforj=1,...,k

All uy, ..., uy are encoded with the same rate p = d; /| ;]

Goal: reject if for any j, u;is o-far from RS[IF, L;, d]-]

L

different dj

The plan: test all kK words as a batch.



Method 1: degree padding

Let dppax = maxd; , Lyax = U;L;

J
U Ly F I IIIIITTIT] di = dmax (=0 Lmaxl)
Uy: Lo— [F [T TT] dy = dmax/4

Uz: L3— F HEEEEEER d; = dpax/2

Uy L, F O] dy = dmax

Honest prover can interpolate all u4, ..., Uy to L%



Method 1: degree padding

Let dppax = maxd; , Lyax = U;L;
J

Uyt Lonay— B I I T T I T I T T TTT] di = dmax (=P~ [Lmaxl)
Uyt Lopay— F - LT T dy = d /4
pad
Us: Loay— F - I I T T TT] ds = d/2
Up: Lopay— F I I I I I I T T TTT] dy = dmax

Prover can interpolate all uq, ..., ug to Lax



Method 1: degree padding

Now, batch as follows: Verifier samples a random r € [F, sends to prover

Honest prover defines:  v,: Lijax @ F  as

Amax—adj j

k
ve(a) : 2 z j-[a* uj(a)] where e; j isarunning counter

Example: suppose (uq,d,), (u,,d,), (us,ds) st. di =3, d, =4, d3=05.

5

ve(a) =[u(a) + r-auy(a) + % - a?uy(@)] + [r3-uy (a) +r* - auy(a)] + 7° - uz (a)

linear comb. of u;(a), auq(a), a®u,(a) linear comb. of u,(a), au,(a)
u; € RS[F,£,3] = a?uy(a) € RS[F, L,,5] u, € RS[F, £L,,4] = au,(a) € RS[F, L,, 4]



Method 1: degree padding

Lemma: [sTIR, Lemma 4.13] the transform (uq, ..., ux; ) — v, is distance preserving

case 1: (the honest case)
if Vj: u;€ RS[F, L;,d;] then v, € RS[F, Liyax, dmax] forallr.

case 2: (the dishonest case)

if some u; is §-far from RS[F, Lj, dj] then
v, is 8-far from RS[FF, L35 Amax], W-h.p over r.

The proof follows directly from the RS proximity gap (the BCIKS’20 theorem)

Prover now uses an RS-IOPP to prove that v, is 6-close to RS[FF, £2x Amax]




Method 2: plpellnlng (no padding or interpolation)

Prover P(C, (U, U5, U3),") Verfier V#4243 ()

suppose d, =d;/2 and d3 =d,/4

Phase 1: (commit)

sample r; « F
honest prover: P 1

— 2
wy = (Ug)foldr, T 71U

we L2 5 F CIIIITD L2 = |L|/2
(fold u, into wy) 1 51 = L1/
honest prover: ) sample r, « [F
wy = (Wi)foldr, + T5U3 .
wy: L* - F [T |IL* = |L|/4

(fold u3 into w,)



(3) Grinding to reduce # of spot checks

Prover P((C. 5), UQ.‘) Verfier V”O((C“', 5))
Commit phase:

u L% - F O]

u L* > F [ > MerkleCommits (including u,)

us: L8 F [

Query phase: Derive queries for spot checks by hashing all MerkleCommits
(Fiat-Shamir)

Goal: reduce the number of spot checks m (to reduce proof size)

The problem: reducing m below the computed bound enables adversary to try
multiple MerkleCommits, until it finds a favorable set of spot checks




Grinding to reduce # of spot checks

One option: add a grinding phase after commit phase (often used in FRI)

Commit phase:

w L2 - F LI
u L* > F [ . MerkleCommits (including u,)
u: L8 F [ ‘

Grind: Find G s.t. MSB(SHA3(G,MerkleCommits,nonce)) = 0%* :

Query phase: Derive queries for spot checks by hashing
(Fiat-Shamir) all MerkleCommits AND G

Nonce prevents adversary from pre-computing G (e.g, nonce = head of blockchain)



Why does grinding help?

Adversary: wants 0-far uy for which it can generate an RS-proximity proof

FRI without grinding:

m is set so that E[time to find §-far u, with favorable queries] > 2128
= time to find a false proximity proof is ~ 2148

FRI with grinding: every u, attempt takes time =~ 2%* to find G

= suffice that E[time to find §-far u, with favorable queries] > 26*

= can halve the number of spot checks m  (128/_,,, ,_ 5y = */_10g,1-5 )
= shrink proof length by about X2



(4) STIR: an FRI variant  [acry’2a

Recall: in FRI, distances and # spot checks m are fixed round-to-round

| |
H | bish | # spot
. | onest prover : ishonest prover : checks
Input: u, | | - | | | -
distance u, to RS[F, £, d]: + | | : | [ ] | | :
0 1-vp 1,0 1-vp 1|
round 1: (4-way fold) | | | | | | |
| |
distance u; to RS[F, £L*,d /4]: + | | ' | @ | om
| |
0 1-vp 1,0 1-vp 1,
round 2: (4-way fold) | | : | | | :
distance u, to RS[F, £1°,d/16]: + | | : | [ ] | | : m
0 1-vp 1,0 1-vp 1,


https://eprint.iacr.org/2024/390

STIR: an FRI variant [acry24]

STIR main idea: in each round reduce the rate and increase distance
= # spot checks can be decreased from round to round

1
Honest prover Dishonest prover 1 # spot

T
|

input: u, : | checks
distance u, to(EtSe[LF), L,d]: + ! E ! 1‘ ! ! E
0 - 1
round 1: (4-way fold) 0> T E | \:ﬁ | E

distance u, to RS[FF, £, d/4]: + | ' | lromy
(rate p/2) o> 1,0 1- ,0-)__/2 1,

round 2: (4-way fold) | : | ' | : smaller

distance u, to RS[F, £,,d/16]: + | : | | : mo
(rate p/4) 0 10 1-/p/4 1!


https://eprint.iacr.org/2024/390

STIR: an FRI variant [acry24

Idea 1: reduce the code rate by making the honest prover interpolate

Goal: prove uy is §-close to RS[F, £, d]

Ug: L - F HEEEEREEEREEEREN
4-way fold rate =p = d/|L|
| Vo
\/L| — send vy wL2— F to Verifier R
interpolate honest prover interpolates vy from (ug) 4fo1q,r

domain = £L*
domain = wL? (half the size of L)

New goal: prove vy is §-close to RS|F, wLl?, d/4]

rate = (d/4)/(|L|/2) =p/2 = lower rate



https://eprint.iacr.org/2024/390

STIR: an FRI variant [acry24

Idea 1: reduce the code rate by making the honest prover interpolate

Goal: prove uy is §-close to RS[F, £, d]

Ug: L - F HEEEEEEEEEEEEEN
4-way fold rate =p = d/|L|

Vo
—— lll ~ send vo: wL?— F to Verifier N

/ interpolate honest prover interpolates vy from (ug) 4fo1q,r

domain = £*

domain = wL? (half the size of L)

Main point: Lower rate p/2 means # spot checks for new goal vy can be smaller.

Rate drops by a factor of 2 after every folding step = shorter overall proof



https://eprint.iacr.org/2024/390

STIR: an FRI variant [acry24]

The problem: now we cannot spot check vy: wL*— F

Ug: L - F HEEEEEEEEEEREEN
4-way fold

S .Vlo| send vy: wL?— F to Verifier

N

interpolate

>

how to spot check this?
Its 4th roots are notin £ !

Can only spot check here

Idea 2: use quotienting for two things:
(1) spot checks on vy, and

(2) for a malicious prover, increase distance to RS|F, wL?, d/4] |


https://eprint.iacr.org/2024/390

How to spot check v, by quotienting

How? Honest prover will quotient vy by the query points

Uy L =+ F [T I T T T T T TITTTITT1] Verfier V
4-way fold

Vo send vy: wL?— F to Verifier N

s [ [ [T 1]

Verifier sends an out of domain query t € F\ £L*

force prover to choose
one f e [F'<d/4[X] St Prover sends back y = f(t)

f € List[vy,d/4, 1-/p/2 |

Honest prover will use f € F<%4[X] st. f = (ug)afolar on L*



How to spot check v, by quotienting

How? Honest prover will quotient vy by the query points

Uy L =+ F [T I T T T T T TITTTITT1] Verfier V
4-way fold

Vo send vy: wL?— F to Verifier N

s [ [ [ [T T 1]

Verifier sends an out of domain query t € F\ £L*

Honest prover defines u; as

the result of quotienting v, by Prover sends back y := f (f)

{ (&), (51, Y1), o (S Vi) } Verifier sends spot check points sy, ..., S, € L*

Prover sends back y; := f(s;), i =1,...,m

Uy wL2—=F LTI IT]




How to spot check v, by quotienting

How? Honest prover will quotient vy by the query points

Uy L =+ F [T I T T T T T TITTTITT1] Verfier V
4-way fold
Y SN Ivlol send vy: wL?— F to Verifier N
vo(@)—I(a) Verifier sends an out of domain query ¢t € F\ £*
. — 20 _ <
Thats, us (a) = V(a) where Prover sends back y := f(t)

* It)=y and I(s;) =y;
e V(t)=0and V(s;)) =0

U wL?— F

Verifier sends spot check points sy, ..., s, € L*

Prover sends back y; := f(s;), i =1,...,m

AVA

In query phase, Verifier computes y; itself by querying uy at 4m points and folding



How to spot check v, by quotienting

How? Honest prover will quotient vy by the query points

Uy L =+ F [T I T T T T T TITTTITT1] Verfier V
4-way fold
Y SN Ivlol send vy: wL?— F to Verifier N
vo(@)—I(a) Verifier sends an out of domain query ¢t € F\ £*
. — 20 _ <
Thats, us (a) = V(a) where Prover sends back y := f(t)

* It)=y and I(s;) =y;
e V(t)=0and V(s;)) =0

U wL?— F

Verifier sends spot check points sy, ..., s, € L*

Prover sends back y; := f(s;), i =1,...,m

AVA

lterate to prove that u; is (1 — 1/p/2 )-close to RS[FF, wL?, d /4] with a smaller m




STIR: summary

Main benefit: STIR proof is about 2X shorter than FRI proof
(using the same rate p for the input ug)
Cons:
* Prover is a bit slower because of interpolation and quotienting
* Verifier is a bit slower because of quotienting
e Batching via pipelining is more cumbersome:

* Often, functions to batch are all defined using the same rate p,

but STIR iterations use a different rate in every round
= Prover will need to interpolate functions to expand to lower rate



WHIR: better than STIR [acry24]

WHIR: combines all spot checks into a Sumcheck = no quotienting

* Fold k levels per round, but Verifier now does fewer field ops.
= fast verifier (=1.9M gas in the EVM)

* Supports queries to a multilinear polynomial (not just univariate)

How? Not today. (Builds on BaseFold)


https://eprint.iacr.org/2024/1586
https://ethresear.ch/t/on-the-gas-efficiency-of-the-whir-polynomial-commitment-scheme/21301

The future: other codes

Are there better codes than Reed-Solomon?



The problem with RS-based SNARKSs

* Not field agnostic: requires an n-th primitive root of unity in [F
= can only use fields where n = |L| divides |F| —1
= difficult to support specific fields (e.g., for ECDSA arithmetic)

* Encoding is done via an FFT: takes time O(n-logn)
= when n = 249, the (log, n) causes 20x work for prover

* FRIl enables: a (univariate Poly-IOP) — IOP compiler
= what about (multilinear Poly-IOP) = IOP compiler??

e.g., g(xq,xp,x3) =5x1 + 2x, + 4x1%5 + 12x1%3 + 7X1 X5 X3



FRI-like proximity proof for other linear codes

FRI can be generalized to any [n, k, [], linear code C S " where:

There is a sequence of linear codes C = Cy, C4, ... ,C¢ s.t.

1. Cjisalng k], linear code wheren =ng >ny >« > ng
and n; is “sufficiently small”,

2. there are distance preserving maps C;_1 = C; fori=1,..,t,

3. thereis a “fast” encoding algorithm F¥— C, and

4. min-distance of Cy is sufficiently large E L 1 L

(to reduce # of spot checks) k n




A proximity proof for other linear codes

A field agnostic proximity test: (e.g., FRI over the ECDSA prime)

* Gives a (univariate Poly-IOPP) — IOPP over an arbitrary prime p

(1) ECFFT [BCKL22]:

FRI using functions over an elliptic curve E/IF,, ,
where the order of E(IF,) is divisible by n

(even though p is not)

(2) a proximity proof for algebraic geometric codes [BLNR’20].
Here polynomials are replaced with “functions on a curve”


https://eprint.iacr.org/2022/1542
https://arxiv.org/abs/2011.04295

A proximity proof for other linear codes

Circle Stark [HLP’24]: Let M, := 231 —1 (the 11th Mersenne prime)

arithmetic mod M, is super fast, (x mod M, is just an addition)
but M;; — 1 is not divisible by a high power of 2

Instead: run FRI over the projective line mod M;; whose size is M;; + 1

One way to represent the projective line is as points on a circle:

(00)

power of 2

So: the circle (x? + y* = 1) is the same as F,, U {0} = (p + 1) points


https://eprint.iacr.org/2024/278

BaseFold [zcr23;

BaseFold: generalizes FRI to any foldable code
= The generalization gives a field agnostic proximity test
[note: every foldable code is a multilinear Reed-Muller code]

For a (multilinear Poly-IOPP) — IOPP compiler need a multilinear PCS
 The problem: quotienting only applies to univariates

* BaseFold solution:
build a multilinear PCS from Sumcheck and a proximity test

(also adopted into Whir)
How? Not today.


https://eprint.iacr.org/2023/1705.pdf

More SNARK-useful linear codes

Spielman codes: [BCG’20, Breakdown’21, Orion’22]

* Linear codes with a good minimum distance
and a very fast (linear time) encoding algorithm F* — C.

* Also field-agnostic.
Cons: large IOPP proof = large SNARK proof

Expand Accumulate codes: [BFKTWZ'24]

* Field-agnostic codes, but shorter proofs than Breakdown
Cons: O(n-logn) time encoding.


https://eprint.iacr.org/2020/1426.pdf
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2024/1871.pdf

More SNARK-useful linear codes

Repeat-Accumulate-Accumulate (RAA) codes: [Blaze’24]

* Constructs a multilinear polynomial commitment over IF,«
with a fast (linear time) prover time and O (log? n) proof size

= [F,k is friendly to modern CPU instructions

* The commitment uses the tensor code approach of [BCG’20]
(making use of Sumcheck).

Much more to do in non-RS based SNARKs



https://eprint.iacr.org/2024/1609
https://eprint.iacr.org/2020/1426.pdf

Further reading

 FRI(2018) and analysis (2018): Fast Reed—Solomon Interactive Oracle Proofs of Proximity
e DEEP-FRI (2019): Out of domain sampling improves soundness

* BCIKS (2020): Proximity Gaps for Reed—Solomon Codes

e CircleSTARK (2024): FRI using a Mersenne prime

* STIR (2024): Reed-Solomon proximity testing with fewer queries

* WHIR (2024): Reed-Solomon proximity testing with a fast verifier
Beyond Reed-Solomon codes (a few recent results):

 Breakdown (2021), Orion (2022): Polynomial commitments with a fast prover

 BaseFold (2023): Efficient Polynomial commitments from foldable codes

* Blaze (2024): Fast SNARKs from Interleaved RAA Codes


https://drops.dagstuhl.de/storage/00lipics/lipics-vol107-icalp2018/LIPIcs.ICALP.2018.14/LIPIcs.ICALP.2018.14.pdf
https://www.math.toronto.edu/swastik/fri.pdf
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654.pdf
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/390
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2023/1705.pdf
https://eprint.iacr.org/2024/1609

END OF MODULE



