
Dan Boneh
Stanford University

FRI and Proximity Proofs: continued

Review: Poly-IOP ⇒ IOP ⇒ SNARK

Polynomial
interactive

oracle proof
(Poly-IOP)

Interactive
Proof (IP)

(zk)SNARK for
general circuits

Fiat-Shamir
RS-IOPP

(such as FRI)

IOP

Merkle
commitments

A direct SNARK construction:

An RS-IOPP is the key ingredient in compilation

FRI: a Reed-Solomon IOP of Proximity

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Goal:

• 𝑢! ∊ RS 𝔽, ℒ, 𝑑 ⇒ Verifier outputs accept (with prob. 1)

• 𝑢! is 𝛿-far from RS 𝔽, ℒ, 𝑑 ⇒ Verifier outputs reject w.h.p

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

We don’t care what happens when 𝑢! is between the two cases

Why needed? A key tool for compiling a Poly-IOP into an IOP.

FRI: a Reed-Solomon IOP of Proximity

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

ℒ = 1,ω,ω#, … , ω$%& ⊆ 𝔽 and 𝑛, 𝑑 are powers of two,

 where ω$ = 1 is an 𝑛-th primitive root of unity

We will set:

Then: ℒ# ≔ 𝑎#: 𝑎 ∊ ℒ = ℒ /2 = 𝑛/2 (−𝑎, 𝑎 → 𝑎!)

ℒ' ≔ 𝑎': 𝑎 ∊ ℒ = ℒ /4 = 𝑛/4

Towards an efficient RS-IOPP

Distance Preserving
Transformations

Distance Preserving Transformations
Let ℒ, ℒ′ ⊆ 𝔽, 𝑑, 𝑑(some degree bounds, and 𝛿 ∊ [0,1].

Def: A distance preserving transformation is a randomized map
𝑇 𝑢&, … , 𝑢); 𝑟 ⇾ 𝑢

 that maps 𝑢&, … , 𝑢): ℒ ⇾ 𝔽 to 𝑢: ℒ′ ⇾ 𝔽 such that:

 case 1: (the honest case)
 if 𝑢&, … , 𝑢)∊ RS[𝔽, ℒ, 𝑑] then 𝑢∊ RS[𝔽, ℒ′, 𝑑′] for all 𝑟.

 case 2: (the dishonest case)
 if some 𝑢* is 𝛿-far from RS[𝔽, ℒ, 𝑑] then
 𝑢 is 𝛿-far from RS[𝔽, ℒ′, 𝑑′], w.h.p over 𝑟.

Example 1: batch RS-IOPP
Setting: Prover has 𝑢", … , 𝑢#: ℒ ⇾ 𝔽, Verifier has oracles for 𝑢", … , 𝑢#.

Goal: convince Verifier that all 𝑢!, … , 𝑢) are 𝛿-close to RS[𝔽, ℒ, 𝑑].

• Naively: run 𝑘 RS-IOPP protocols ⇒ expensive

• Better: batch all 𝑘 into a single function 𝑢: ℒ ⇾ 𝔽

 step 1: Verifier samples random 𝑟 in 𝔽; sends to prover

 step 2: Prover sets 𝑢 ≔ 𝑢! + 𝑟 % 𝑢& + 𝑟#𝑢# +⋯+ 𝑟)𝑢): ℒ ⇾ 𝔽
 step 3: Both run RS-IOPP on 𝑢: ℒ ⇾ 𝔽
 when Verifier wants 𝑢(𝑎) for some 𝑎 ∊ ℒ, prover opens all 𝑢"(𝑎), … , 𝑢#(𝑎)

Why is this distance preserving?

Case 1: (an honest prover)
 if 𝑢!, … , 𝑢)∊ RS[𝔽, ℒ, 𝑑] then 𝑢∊ RS 𝔽, ℒ, 𝑑 for all 𝑟 ∊ 𝔽

Case 2: (a dishonest prover)
 if some 𝑢* is 𝛿-far from RS 𝔽, ℒ, 𝑑 , we need to argue that
 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑], with high probability over 𝑟 ∊ 𝔽

When 𝛿 ∊ 0,1 − 𝜌 , Case 2 follows from the
 celebrated BCIKS proximity gap theorem.

https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem
Thm (BCIKS’20, Thm. 6.2): RS[𝔽, ℒ, 𝑑] an RS-code with const. rate 𝜌 ≔ 𝑑/𝑛 (say, 𝜌 = 0.5)

 Let 𝑢!, … , 𝑢): ℒ ⇾ 𝔽 and 0 < 𝛿 < 1 − 1.01 𝜌 .
 For 𝑟 ∊ 𝔽 define 𝑢(,) ≔ 𝑢! + 𝑟 % 𝑢& + 𝑟#𝑢# +⋯+ 𝑟)𝑢) .

 Suppose that Pr𝑟[𝑢(,)is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟
 then all 𝑢* are 𝛿-close to RS 𝔽, ℒ, 𝑑 ,

 where 𝑒𝑟𝑟 = 𝑂)$
𝔽 for 0 < 𝛿 < $%&

!

 𝑒𝑟𝑟 = 𝑂)$"

𝔽
 for $%&

!
< 𝛿 < 1 − 1.01 𝜌

We will assume that
err is negligible, i.e.
err < ⁄1 2!"#

(if not, use multiple 𝑟)

𝑛 ≔ |ℒ|

https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem

Suppose that Pr𝑟[𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟
 then all 𝑢* are 𝛿-close to RS 𝔽, ℒ, 𝑑

Contra-positive: if some 𝑢* is 𝛿-far from RS 𝔽, ℒ, 𝑑
 then 𝑢(,) is 𝛿-far with high probability, over 𝑟.

Proximity gap error (𝑒𝑟𝑟) as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

unknown vacuous

(Johnson bound) (capacity bound)(uniqueness bound)

O 6$%
|𝔽| O 6$%!

|𝔽|

conjectured to
be small

𝑛 ≔ |ℒ|

A stronger form: correlated proximity
Thm (BCIKS’20, Thm. 6.2):

 Let 𝑢!, … , 𝑢): ℒ ⇾ 𝔽 and 0 < 𝛿 < 1 − 1.01 𝜌 .

 Suppose that Pr𝑟[𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟

 then there is an 𝑆 ⊆ ℒ such that 𝑆 ≥ (1 − 𝛿)% |ℒ| and

 for all 𝑗: ∃𝑓* ∊ RS[𝔽, ℒ, 𝑑] s.t. ∀𝑥 ∊ 𝑆:	𝑢* 𝑥 = 𝑓*(𝑥)

⇒ 𝑢!, … , 𝑢) are 𝛿-close to RS[𝔽, ℒ, 𝑑] on the same positions 𝑆 .

(recall 𝑢()) ≔ 𝑢+ + 𝑟 : 𝑢! + 𝑟"𝑢" +⋯+ 𝑟$𝑢$)

https://eprint.iacr.org/2020/654.pdf

Why is this called a proximity gap??

Suppose that Pr𝑟[𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟 then
 all 𝑢* are 𝛿-close to RS 𝔽, ℒ, 𝑑 on the same positions 𝑆 ⊆ ℒ

But if all 𝑢!, … , 𝑢): ℒ ⇾ 𝔽 are 𝛿-close to RS 𝔽, ℒ, 𝑑
on positions 𝑆 ⊆ ℒ, then 𝑢(,) is 𝛿-close for all 𝑟 ∊ 𝔽.

So Pr𝑟[𝑢(,) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] exhibits a gap:

0 1𝑒𝑟𝑟

not possible

𝑢(") is 𝛿-close for all 𝑟 𝑢(") is 𝛿-close for few 𝑟

Proximity gaps for other linear codes?
A similar proximity gap holds for every linear code.

Thm: (Zeilberger’24) Let 𝒞 ⊆	𝔽$ be an 𝑛, 𝑑𝑖𝑚, 𝑙 =	linear code.
Then 𝒞 has a correlated proximity gap for 0 < 𝛿 < 1 − # 𝜏	
and err = O [)$

|𝔽| , where 𝜏 ≔ 1 − (𝑙/𝑛).

min. distance

This can be used in a 𝒞-proximity IOPP (e.g., Basefold, Blaze)

(For RS-code 𝜏 ≈ 𝜌, so this gap is much weaker than BCIKS’20)

https://eprint.iacr.org/2024/1843

2nd Distance preserving example: 2-way folding

From now on set ℒ = 1,ω,ω#, … , ω$%& ⊆ 𝔽, where

• 𝑛 is a power of two, and

• ω is an 𝑛-th primitive root of unity (𝜔$ = 1)
 (requires that 𝑛 divides 𝔽 − 1)

Then:
• ω$/# = −1 so that if 𝑥 = ωB ∊ ℒ then −𝑥 = ωBC(⁄$ #) ∊ ℒ

• ℒ# = 𝑎#: 𝑎 ∊ ℒ = ℒ /2 = 𝑛/2 (−𝑎, 𝑎 → 𝑎!)

2-way folding a polynomial

A folding transformation: let’s start with an example.

 Let 𝑓 𝑋 = 1 + 2𝑋 + 3𝑋! + 4𝑋' + 5𝑋(+ 6X) ∊ 𝔽*+[𝑋]

Then: 𝑓 𝑋 = 𝑓DEDF 𝑋# + X % 𝑓GHH(X#)

Define: for 𝑟 ∊ 𝔽 define 𝑓IGJH,, ≔ 𝑓DEDF+ 𝑟 % 𝑓GHH ∊ 𝔽LM[𝑋]

Define 𝑓,-,.(𝑋) ≔ 1 + 3𝑋 + 5𝑋! and 𝑓/00 X ≔ 2 + 4𝑋 + 6𝑋!

2-way folding a polynomial: more generally

For 𝑓 ∊ 𝔽LN[𝑋] (with 𝑑 even) define:

• 𝑓DEDF 𝑋# 	≔ 1 2 31 %2

!
 and 𝑓/00 X! ≔ 1 2 %1 %2

!2

• 𝑓IGJH,,(𝑋) ≔ 𝑓DEDF 𝑋 	+ 𝑟 % 𝑓GHH (𝑋) ∊ 𝔽L ⁄N #[𝑋]

Then: 𝑓 𝑋 = 𝑓DEDF 𝑋# + X % 𝑓GHH(X#)

• for every 𝑎 ∊ 𝔽: 𝑓IGJH,,(𝑎#) can be eval given 𝑓 𝑎 , 𝑓 −𝑎

• ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑] ⇒ 𝑓IGJH,, ∊ RS[𝔽, ℒ#, 𝑑/2] unchanged
rate = 𝑑/|ℒ|

Folding an arbitrary word 𝑢: ℒ ⇾ 𝔽
For 𝑢: ℒ ⇾ 𝔽 and 𝑟 ∊ 𝔽 define 𝑢O, 𝑢P, 𝑢IGJH,,: ℒ# ⇾ 𝔽 as

• for 𝑎 ∊ ℒ:	 𝑢O(𝑎#) 	≔
4 5 34 %5

!
 and 𝑢6 𝑎! ≔ 4 5 %4 %5

!5

• for 𝑏 ∊ ℒ#: 	 𝑢IGJH,,(𝑏) 	≔ 𝑢O 𝑏 	+ 𝑟 % 𝑢P (𝑏)

Lemma (distance preservation): for 0 < 𝛿 < 1 − 𝜌

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑] ⇒ 𝑢IGJH,, ∊ RS[𝔽, ℒ#, 𝑑/2] for all 𝑟 ∊ 𝔽

• 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑] ⇒

 Pr
,

[𝑢IGJH,, is 𝛿-far from RS[𝔽, ℒ#, 𝑑/2]] ≥ 1 − 𝑒𝑟𝑟

(recall ℒ$ = ℒ /2)

Folding an arbitrary word 𝑢: ℒ ⇾ 𝔽
For 𝑢: ℒ ⇾ 𝔽 and 𝑟 ∊ 𝔽 define 𝑢O, 𝑢P, 𝑢IGJH,,: ℒ# ⇾ 𝔽 as

• for 𝑎 ∊ ℒ:	 𝑢O(𝑎#) 	≔
4 5 34 %5

!
 and 𝑢6 𝑎! ≔ 4 5 %4 %5

!5

• for 𝑏 ∊ ℒ#: 	 𝑢IGJH,,(𝑏) 	≔ 𝑢O 𝑏 	+ 𝑟 % 𝑢P (𝑏)

Lemma (distance preservation): for 0 < 𝛿 < 1 − 𝜌

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑] ⇒ 𝑢IGJH,, ∊ RS[𝔽, ℒ#, 𝑑/2] for all 𝑟 ∊ 𝔽

• Pr
,

[𝑢IGJH,, is 𝛿-close to RS[𝔽, ℒ#, 𝑑/2]] > 𝑒𝑟𝑟 ⇒

 𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑]

(recall ℒ$ = ℒ /2)

(contra-positive)

Why is this true?
The first part of the lemma is easy. Let’s prove the second part.

• Suppose that Pr,[𝑢IGJH,, is 𝛿-close to RS[𝔽, ℒ#, 𝑑/2]] > 𝑒𝑟𝑟

• Then by the BCIKS’20 theorem, there are 𝑔O, 𝑔P ∊ RS[𝔽, ℒ#, 𝑑/2]
 that match 𝑢O, 𝑢P on a set 𝑆 ⊆ ℒ# of size 𝑆 ≥ 1 − 𝛿 (⁄𝑛 2)

• Define 𝑔: ℒ ⇾ 𝔽 as 𝑔 𝑎 ≔ 𝑔O 𝑎# + 𝑎 % 𝑔P(𝑎#) ∊ RS[𝔽, ℒ, 𝑑]

• Then: 𝑔 𝑎 = 𝑢(𝑎) for all 𝑎 ∊ ℒ for which 𝑎# ∊ 𝑆 (2|𝑆| values in ℒ)

• But then ∆ 𝑢, 𝑔 ≤ 1 − # Q
$ = 1 − Q

$/# ≤ 𝛿.

 ⇒ 𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑]

An important corollary

Let 𝒞 = RS[𝔽, ℒ, 𝑑] and 𝒞′ = RS[𝔽, ℒ#, 𝑑/2]

Corollary: For 𝑢: ℒ ⇾ 𝔽

• if ∆ 𝑢, 𝒞 < 1 − 𝜌 then Pr
7
	∆ 𝑢8/90,7, 𝒞; ≥ ∆ 𝑢, 𝒞 	 ≥ 1 − 𝑒𝑟𝑟

• if ∆ 𝑢, 𝒞 ≥ 1 − 𝜌 then Pr
7
	∆ 𝑢8/90,7, 𝒞; ≥ 1 − 𝜌	 ≥ 1 − 𝑒𝑟𝑟

(folding does not decrease distance, w.h.p)

Recall: ∆ 𝑢, 𝒞 ≤ 𝛿 ⟺ 𝑢 is 𝛿-close to 𝒞

4-way folding 𝑢: ℒ ⇾ 𝔽 (using 𝒊𝟐 = −𝟏)

For 𝑢: ℒ ⇾ 𝔽 define 𝑢!, 𝑢&, 𝑢#, 𝑢M ∶ ℒ' ⇾ 𝔽 for 𝑎 ∊ ℒ	 as

The 4-way fold of u: for 𝑟 ∊ 𝔽 define 𝑢'IGJH,,: ℒ' ⇾ 𝔽 as
 𝑢'IGJH,,(𝑏) ≔ 𝑢! 𝑏 	+ 𝑟 % 𝑢& (𝑏) + 𝑟# % 𝑢# (𝑏) + 𝑟M % 𝑢M (𝑏) for 𝑏 ∊ ℒ(

(a degree-4 FFT)

Evaluating 𝑢'IGJH,,(𝑋) at 𝑏 ∊ ℒ' requires four evals. of 𝑢(𝑋).

4-way folding 𝑢: ℒ ⇾ 𝔽 (using 𝒊𝟐 = −𝟏)

For 𝑢: ℒ ⇾ 𝔽 define 𝑢!, 𝑢&, 𝑢#, 𝑢M ∶ ℒ' ⇾ 𝔽 for 𝑎 ∊ ℒ	 as

The 4-way fold of u: for 𝑟 ∊ 𝔽 define 𝑢'IGJH,,: ℒ' ⇾ 𝔽 as
 𝑢'IGJH,,(𝑏) ≔ 𝑢! 𝑏 	+ 𝑟 % 𝑢& (𝑏) + 𝑟# % 𝑢# (𝑏) + 𝑟M % 𝑢M (𝑏) for 𝑏 ∊ ℒ(

(a degree-4 FFT)

Fact: the same distance preservation corollary holds for 𝑢'IGJH,,

8-way folding 𝑢: ℒ ⇾ 𝔽 (using an 8th root of unity)

Can similarly define 8-way folding, or even 2S folding for 𝑤 ≥ 3.

 maps 𝑢: ℒ ⇾ 𝔽 to 𝑢#$IGJH,,: ℒ#
$ ⇾ 𝔽 (|ℒ""| = |ℒ|/2,)

 (1) evaluating 𝑢#$IGJH,,(𝑏) requires 2S evals. of 𝑢(𝑋)
 ⇒ uses a degree-2S FFT (degree-8 FFT for 8-way folding)

 (2) the same distance preservation corollary holds for 𝑢#$IGJH,,

Review: 2-way folding an arbitrary word 𝑢: ℒ ⇾ 𝔽

For 𝑢: ℒ ⇾ 𝔽 and 𝑟 ∊ 𝔽 define 𝑢O, 𝑢P, 𝑢IGJH,,: ℒ# ⇾ 𝔽 as

• for 𝑎 ∊ ℒ:	 𝑢O(𝑎#) 	≔
4 5 34 %5

!
 and 𝑢6 𝑎! ≔ 4 5 %4 %5

!5

• for 𝑏 ∊ ℒ#: 	 𝑢IGJH,,(𝑏) 	≔ 𝑢O 𝑏 	+ 𝑟 % 𝑢P (𝑏)

Can similarly define 2S-way folding for 𝑤 ≥ 1.

Recall ℒ! = ℒ /2

A Reed-Solomon IOP of Proximity (RS-IOPP)

How FRI works

FRI phase 1: commit phase

Phase 1: (commit)
sample 𝑟$ ← 𝔽

sample 𝑟! ← 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ(⇾ 𝔽 |ℒ(| = |ℒ|/4

|ℒ!| = |ℒ|/2
𝑢$ ≔ (𝑢")8/90,7%

honest prover:

𝑢! ≔ 𝑢$ 8/90,7&

honest prover:

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

FRI phase 1: commit phase

Phase 1: (commit)
sample 𝑟$ ← 𝔽

𝑢$: ℒ! ⇾ 𝔽

sample 𝑟< ← 𝔽

𝑢<: ℒ!
' ⇾ 𝔽 |ℒ!'| = |ℒ|/2=

𝑢< ≔ 𝑢<%$ 8/90,7'

honest prover:

𝑢$ ≔ (𝑢")8/90,7%
honest prover:

Prover 𝑷 𝒞, 𝑢!,% Verfier 𝑽"! 𝒞

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

FRI phase 2: query phase

Phase 2: (query) Verfier 𝑽"!,…,"% 𝒞, 𝑟&, . . , 𝑟W, 𝑢W

Note: prover sends short 𝑢< to verifier explicitly
 (FRI terminates when 𝑢< is “short enough”)

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

for 𝑖 = 1,2, … , 𝑡:

 spot check that 𝑢> = 𝑢>%$ 8/90,7(

output yes if 𝑢< ∊ RS[𝔽, ℒ!
' , U? !']

[Prover sent Merkle commits to 𝑢), … , 𝑢*]

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ(⇾ 𝔽

⋮
𝑢<: ℒ!

' ⇾ 𝔽
⋮

FRI phase 2: query phase

Phase 2: (query)

for 𝑖 = 1,2, … , 𝑡:

 spot check that 𝑢> = 𝑢>%$ 8/90,7(

output yes if 𝑢< ∊ RS[𝔽, ℒ!
' , U? !']

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

Why is this 𝛿-sound? Intuition: 𝑢" is 𝛿-far from RS 𝔽, ℒ, 𝑑 ⇒

 𝑢$ is “far” from RS 𝔽, ℒ!, 𝑑/2 ⇒ … ⇒ 𝑢< is “far” from RS 𝔽, ℒ!' , 𝑑/2<

Verfier 𝑽"!,…,"% 𝒞, 𝑟&, . . , 𝑟W, 𝑢W
𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ(⇾ 𝔽

⋮
𝑢<: ℒ!

' ⇾ 𝔽

How to spot check: method 1

Phase 2: (query)

Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

How to check that 𝑢> = 𝑢>%$ 8/90,7(:

Repeat 𝑚 times:

• choose random 𝑠 ∊ ℒ!(+%

• query 𝑢>%$(𝑠), 𝑢>%$(−𝑠), 𝑢>(𝑠!)
• compute 𝑧 ≔ 𝑢>%$ 8/90,7((𝑠

!)
• reject if 𝑧 ≠ 𝑢>(𝑠!)

𝑧 =
𝑢!"#(𝑠) + 𝑢!"#(−𝑠)

2 + r$ 4
𝑢!"#(𝑠) − 𝑢!"#(−𝑠)

2𝑠

Verfier 𝑽"!,…,"% 𝒞, 𝑟&, . . , 𝑟W, 𝑢W
𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ(⇾ 𝔽

⋮
𝑢<: ℒ!

' ⇾ 𝔽

How to spot check in a picture

𝑢": ℒ ⇾ 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢': ℒ@ ⇾ 𝔽

𝑢)(𝑠$) ≟ 5!(6)75!(86)
$ + 𝑟9 6

5!(6)85!(86)
$6

Total of 2𝑚𝑡 queries to oracles: 2𝑚 per inner oracle (𝑢&, 𝑢#).

𝑢!: ℒ(⇾ 𝔽

𝑚 = 2: (spot check at two random spots per oracle)

Reject if any spot checks fail

Since prover opens (𝑠, −𝑠) jointly,
it places both into a single leaf
of Merkle tree
 ⇒ one query to get both

𝑠-𝑠

−𝑠"	 𝑠"	

Why is this protocol sound?
For 𝑖 = 0,… , 𝑡: let

• 𝒞B ≔ RS[𝔽, ℒ#) , 𝑑/2B] and

• 𝜂B ≔ distance of 𝑢B to 𝒞B =	∆(𝑢B, 𝒞B) = min
S∊𝒞)

(∆ 𝑢B, 𝑤)

Thm: if 0 < 𝜂" < 1 − 𝜌 then Pr[Verifier accepts 𝑢!] ≤ 1 − $
!
𝜂"

A

 if 𝜂" ≥ 1 − 𝜌 then Pr[Verifier accepts 𝑢"] ≤ 1 − !
"
(1 − 𝜌)

-

(recall: 𝑚 is the number of spot checks per round, and 𝜌 ≔ (rate of 𝒞>) = 𝑑/|ℒ|)

(simplified bound)

Why is this protocol sound?
Proof idea: To simplify, let’s assume that 𝑚 = 1, 𝜂" < 1 − 𝜌, and

 for all 𝑖 = 1,… , 𝑡 and 𝑟> ∊ 𝔽 : ∆(𝑢>%$ 8/90,7(, 𝒞>) ≥ ∆(𝑢>%$, 𝒞>%$)
folding does
not decrease

distance

Then: Pr accept = ∏>C$
< Pr not	reject	in	round	𝑖 = ∏>C$

< [1 − ∆(𝑢>, 𝑢>%$ 8/90,7()]
independent spot checks per round prob. 𝑢# is accepted after one spot check

≤ exp(−∑>C$< [∆ 𝑢>%$, 𝒞>%$ − ∆ 𝑢>, 𝒞>]) = exp(𝜂< − 𝜂") = exp(−𝜂") ≤ 1 − 𝜂"/2	

≤ exp(−∑>C$< ∆(𝑢>, 𝑢>%$ 8/90,7()) ≤ exp(−∑>C$< ∆(𝑢>%$ 8/90,7(, 𝒞>) − ∆ 𝑢>, 𝒞>)

triangular inequality∀𝑥: 	1 − 𝑥 ≤ 𝑒$% = exp(−x)
𝜂& = 0 otherwise, Verifier rejects

(∗)

(∗)

(note: this only holds w.h.p over 𝑟9 ∊ 𝔽 by folding corollary)

How to spot check: method 2 (the FRI method)

𝑢": ℒ ⇾ 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ(⇾ 𝔽

Correlated spot checks: spot check starting at a random 𝑠 ∊ ℒ

Total of only 𝑚𝑡 queries to oracles: 𝑚 per oracle

 (recall: method 1 required 2𝑚 queries per oracle)

already have 𝑢$ 𝑠! , 𝑢$ −𝑠!

⇒ only query at 𝑢! 𝑠(, 𝑢! −𝑠(

⇒ 1 query per check

𝑢': ℒ@ ⇾ 𝔽

−𝑠"	 𝑠"	

𝑠-𝑠

−𝑠'	 𝑠'	

−𝑠(𝑠(

How to spot check: the FRI method
Let 𝒞 = RS[𝔽, ℒ, 𝑑], 𝑢!: ℒ ⇾ 𝔽

How to check that 𝑢> = 𝑢>%$ 8/90,7(:

Repeat 𝑚 times:
• choose random 𝑠 ∊ ℒ, query (𝑧", 𝑦") ⇽ (𝑢" 𝑠 , 𝑢"(−𝑠))
• for 𝑖 = 1,… , 𝑡:

• set 𝑠 ⇽ 𝑠! ∊ ℒ!(
• compute 𝑧 ≔ 𝑢>%$ 8/90,7((𝑠) from 𝑧>%$, 𝑦>%$
• query (𝑧>, 𝑦>) ⇽ (𝑢> 𝑠 , 𝑢>(−𝑠))	
• reject if 𝑧 ≠ 𝑧>

only one
query
per round

Why is this sound? (using notation as in earlier proof)

Proof idea: To simplify, let’s assume that 𝑚 = 1, 𝜂" < 1 − 𝜌, and

 for all 𝑖 = 1,… , 𝑡 and 𝑟> ∊ 𝔽 : ∆(𝑢>%$ 8/90,7(, 𝒞>) ≥ ∆(𝑢>%$, 𝒞>%$)
folding does
not decrease

distance

Then: Pr reject = Pr ⋃>C$< (not	reject	in	round	𝑖) = ∑>C$< Pr not	reject	in	round	𝑖
can be made into a union of disjoint events

(∗)

(∗)
≥	∑>C$< ∆ 𝑢>%$, 𝒞>%$ − ∆ 𝑢>, 𝒞> 	= 𝜂" − 𝜂< 	= 	 𝜂" 	 ⇒ 	 Pr accept ≤ 1 − 𝜂"

=	∑>C$< ∆(𝑢>, 𝑢>%$ 8/90,7() ≥ 	∑>C$
< ∆(𝑢>%$ 8/90,7(, 𝒞>) − ∆ 𝑢>, 𝒞>

triangular inequality
𝜂& = 0 otherwise, Verifier rejects

[BKS’18, Thm 7.2]

https://www.math.toronto.edu/swastik/fri.pdf

Comparing methods 1 vs. 2

To obtain a SNARK via the BCS’16 compiler we need round-by-round soundness

• method 1: independent spot checks ⇒ easy to prove R-by-R soundness

• FRI method: correlated spot checks ⇒ harder to prove R-by-R soundness

The FRI method has better soundness: for 𝜂" =	∆ 𝑢", 𝒞" < 1 − 𝜌

• method 1: Pr[Verifier accepts 𝑢"] ≤ 1 − $
!
𝜂"

A

• FRI method: Pr[Verifier accepts 𝑢"] ≤ 1 − 𝜂" A (lower prob. ⇒ better bound)

(see [BJKTTZ’23] for R-by-R analysis of FRI)

https://eprint.iacr.org/2023/1071

The number of spot checks 𝑚

Goal: 𝑢! is 𝛿-far from RS 𝔽, ℒ, 𝑑 ⇒ Pr[Verifier accepts 𝑢!] ≤ 1/2$!@

For 𝛿 < 1 − 𝜌 : when 𝑢! is 𝛿-far from RS 𝔽, ℒ, 𝑑 we know that

 Pr[FRI Verifier accepts 𝑢!] ≤ (1 − 𝛿)Z

So: we want 𝑚 where (1 − 	𝛿)Z 	≤ 1/2&#[

 ⇒ 𝑚 ≥ −128/ log#(1 − 𝛿)

Main point: (1) the bigger 𝛿 is, the smaller 𝑚 needs to be
 (2) smaller 𝑚 ⇒ shorter proof and faster verifier

𝑚

𝛿

Choosing the code rate 𝝆 = 𝑑/|ℒ|
in practice, set 𝛿 = 𝛿\]^ ≈ 1 − 𝜌 (to get smallest possible 𝑚)

Example 1: 𝜌 = 1/2

⇒ 𝛿\]^ ≈ 0.29 , ℒ = 2𝑑

Example 2 : 𝜌 = 1/4

⇒ 𝛿\]^ ≈ 0.5 , ℒ = 4𝑑

Proof length: Longer Shorter (smaller 𝑚)

Prover work: Less More

shorter codewords ⇒ less work for Prover to commit

(Plonky3)

Is 128-bit security enough??

Suppose 𝑚 is such that Pr[FRI Verifier accepts a far 𝑢!] ≤ 2%&#[

Fact 1: An adversary that runs FRI 2&#[times will find a run with
favorable spot checks (and forge a proof) with probability ≈ 1/2

Fact 2: An adversary that runs FRI 2[! times will find a run with
favorable spot checks (and forge a proof) with probability ≈ 2%'[

⇒ do not use less than 120-bits of security; otherwise a 2@" adv. will forge proofs.

For most applications this is sufficient

FRI variants

(1) Higher-order folding
(2) Batch FRI for varying degrees
(3) Reduce proof size by grinding
(4) STIR and WHIR variants

(1) The benefits of higher-order folding

𝑢": ℒ ⇾ 𝔽

𝑢$: ℒ! ⇾ 𝔽

𝑢!: ℒ(⇾ 𝔽

−𝑠 𝑠

𝑠" -𝑠"

𝑠'

𝑢': ℒ@ ⇾ 𝔽
𝑠(𝑠(

2-way folding three times 8-way folding once

degree-8
FFT

But: total of 6 queries per 8-way step
Protocol has 𝑡 = log! 𝑛 rounds Protocol has log@ 𝑛 = 𝑡/3 rounds

vs. total of 8 queries per 8-way step

𝑠

Can shrink Merkle proofs by placing entire coset in one leaf of Merkle tree:

|ℒ| = 𝑛

⇒ 3 Merkle proofs are about 3log"𝑛 hashes ⇒ 1 Merkle proof is about log"𝑛 hashes

Shorter
proof

𝑠𝜇)𝑠𝜇*… …

𝜂: = 1
coset	of	roots	of	 𝑠!

(2) Batch FRI for varying degrees: two methods

Poly-IOPP often do multiple RS proximity tests:
 Let 𝑢*: ℒe⇾ 𝔽 be words for 𝑗 = 1,… , 𝑘
 All 𝑢&, … , 𝑢) are encoded with the same rate 𝜌 = 𝑑*/|ℒ*|

 Goal: reject if for any 𝑗, 𝑢*is 𝛿-far from RS 𝔽, ℒe, 𝑑*

The plan: test all 𝑘 words as a batch.
different 𝑑D

Method 1: degree padding
Let 𝑑<=> ≔ max

?
𝑑? , ℒ@AB ≔ ⋃? ℒ?

𝑢$: ℒ$⇾ 𝔽

𝑢!: ℒ!⇾ 𝔽

𝑢': ℒ'⇾ 𝔽

𝑢(: ℒ(⇾ 𝔽

𝑑! = 𝑑EFG/4

𝑑' = 𝑑EFG/2

𝑑(= 𝑑EFG

Honest prover can interpolate all 𝑢$, … , 𝑢# to ℒEFG

𝑑$ = 𝑑EFG (= 𝜌 6 ℒ;<=)

Method 1: degree padding
Let 𝑑<=> ≔ max

?
𝑑? , ℒ@AB ≔ ⋃? ℒ?

𝑢$: ℒEFG⇾ 𝔽

𝑢!: ℒEFG⇾ 𝔽

𝑢': ℒEFG⇾ 𝔽

𝑢(: ℒEFG⇾ 𝔽

pad

Prover can interpolate all 𝑢$, … , 𝑢# to ℒEFG

𝑑! = 𝑑EFG/4

𝑑' = 𝑑EFG/2

𝑑(= 𝑑EFG

𝑑$ = 𝑑EFG (= 𝜌 6 ℒ;<=)

Method 1: degree padding

𝑣7 𝑎 	 ≔ 	 q
DC"

#

	 q
>C"

?>?@%?A

𝑟H(,A r [𝑎>r 𝑢D 𝑎]

Now, batch as follows: Verifier samples a random 𝑟 ∊ 𝔽, sends to prover

Honest prover defines: 𝑣7: ℒEFG ⇾ 𝔽 as

where 𝑒>,D is a running counter

Example: suppose 𝑢$, 𝑑$, 𝑢!, 𝑑! , 𝑢', 𝑑' s.t. 𝑑$ = 3, 	 𝑑! = 4,	 𝑑'= 5.

 𝑣)(𝑎) ≔ [𝑢!(𝑎) + 𝑟 : 𝑎𝑢! 𝑎 + 𝑟" : 𝑎"𝑢! 𝑎] + [𝑟.: 𝑢" 𝑎 + 𝑟/ : 𝑎𝑢" 𝑎] + 𝑟0 : 𝑢. (𝑎)

linear comb. of 𝑢! 𝑎 , 𝑎𝑢! 𝑎 ,	𝑎"𝑢! 𝑎 linear comb. of 𝑢" 𝑎 , 𝑎𝑢" 𝑎
𝑢+ ∊ RS 𝔽, ℒ+, 3	 ⇒ 𝑎"𝑢+ 𝑎 ∊ RS 𝔽, ℒ+, 5	 𝑢" ∊ RS 𝔽, ℒ", 4	 ⇒ 𝑎𝑢" 𝑎 ∊ RS 𝔽, ℒ", 4	

Method 1: degree padding
Lemma: [STIR, Lemma 4.13] the transform 𝑢$, … , 𝑢#; 𝑟 ⇾ 𝑣7 is distance preserving

case 1: (the honest case)
 if ∀𝑗: 	 𝑢D∈ RS[𝔽, ℒD, 𝑑I] then 𝑣7 ∈ RS[𝔽, ℒEFG, 𝑑EFG] for all 𝑟.

case 2: (the dishonest case)
 if some 𝑢D is 𝛿-far from RS[𝔽, ℒD, 𝑑D] then
 𝑣7 is 𝛿-far from RS[𝔽, ℒEFG, 𝑑EFG], w.h.p over 𝑟.

The proof follows directly from the RS proximity gap (the BCIKS’20 theorem)

Prover now uses an RS-IOPP to prove that 𝑣7 is 𝛿-close to RS[𝔽, ℒEFG, 𝑑EFG]

Method 2: pipelining (no padding or interpolation)

Phase 1: (commit)
sample 𝑟$ ← 𝔽

sample 𝑟! ← 𝔽

|ℒ(| = |ℒ|/4

|ℒ!| = |ℒ|/2

Prover 𝑷 𝒞, (𝑢&, 𝑢#, 𝑢M),% Verfier 𝑽"F,"","G 𝒞
suppose 𝑑! = 𝑑$/2 and 𝑑' = 𝑑$/4

𝑤$: ℒ! ⇾ 𝔽

𝑤!: ℒ(⇾ 𝔽

⋮ ⋮

𝑤$ ≔ 𝑢$ 8/90,7% + 𝑟$
!𝑢!

honest prover:

(fold 𝑢" into 𝑤!)

𝑤! ≔ 𝑤$ 8/90,7& + 𝑟!
!𝑢'

honest prover:

(fold 𝑢. into 𝑤")

(3) Grinding to reduce # of spot checks
Prover 𝑷 𝒞, 𝛿 , 𝑢!,% Verfier 𝑽"! 𝒞, 𝛿

Commit phase:
𝑢$: ℒ! ⇾ 𝔽
𝑢!: ℒ(⇾ 𝔽
𝑢': ℒ@ ⇾ 𝔽

MerkleCommits (including 𝑢+)

Query phase:
(Fiat-Shamir)

Derive queries for spot checks by hashing all MerkleCommits

Goal: reduce the number of spot checks 𝑚 (to reduce proof size)

The problem: reducing 𝑚 below the computed bound enables adversary to try
 multiple MerkleCommits, until it finds a favorable set of spot checks

Grinding to reduce # of spot checks

Commit phase:
𝑢$: ℒ! ⇾ 𝔽
𝑢!: ℒ(⇾ 𝔽
𝑢': ℒ@ ⇾ 𝔽

MerkleCommits (including 𝑢+)

Query phase:
(Fiat-Shamir)

Derive queries for spot checks by hashing
 all MerkleCommits AND 𝑮

One option: add a grinding phase after commit phase (often used in FRI)

Nonce prevents adversary from pre-computing 𝐺 (e.g, nonce = head of blockchain)

Grind: Find 𝐺 s.t. MSB(SHA3(𝐺,MerkleCommits,nonce)) = 01/

Why does grinding help?
Adversary: wants 𝛿-far 𝑢C for which it can generate an RS-proximity proof

FRI without grinding:

 𝑚 is set so that E[time to find 𝛿-far 𝑢C with favorable queries] ≥ 2DEF
 ⇒ time to find a false proximity proof is ≈ 2DEF

FRI with grinding: every 𝑢C attempt takes time ≈ 2GH to find 𝐺

 ⇒ suffice that E[time to find 𝛿-far 𝑢C with favorable queries] ≥ 2GH

 ⇒ can halve the number of spot checks 𝑚
 ⇒ shrink proof length by about ×2

(I)$:
8 CDE,()8F) 	 ⇾ IGH 8 CDE,()8F))

(4) STIR: an FRI variant [ACFY’24]

input: 𝑢+
distance 𝑢+ to RS 𝔽, ℒ, 𝑑 :

round 1: (4-way fold)
distance 𝑢! to RS 𝔽, ℒ/, 𝑑/4 :

round 2: (4-way fold)
distance 𝑢" to RS 𝔽, ℒ!1, 𝑑/16 :

Honest prover Dishonest prover
spot
checks

Recall: in FRI, distances and # spot checks 𝑚 are fixed round-to-round

𝑚

𝑚

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

0 11 − 𝜌

https://eprint.iacr.org/2024/390

0 1

STIR: an FRI variant [ACFY’24]

input: 𝑢+
distance 𝑢+ to RS 𝔽, ℒ, 𝑑 :

round 1: (4-way fold)
distance 𝑢! to RS 𝔽, ℒ!, 𝑑/4 :

round 2: (4-way fold)
distance 𝑢" to RS 𝔽, ℒ", 𝑑/16 :

Honest prover Dishonest prover # spot
checks

𝑚&

smaller
𝑚#

0 1

0 11 − 𝜌/2

0 11 − 𝜌/4

STIR main idea: in each round reduce the rate and increase distance
 ⇒ # spot checks can be decreased from round to round

0 1

0 11 − 𝜌(rate 𝜌)

(rate 𝜌/2)

(rate 𝜌/4)

https://eprint.iacr.org/2024/390

STIR: an FRI variant [ACFY’24]

Idea 1: reduce the code rate by making the honest prover interpolate

𝑢": ℒ ⇾ 𝔽
Goal: prove 𝑢" is 𝛿-close to RS[𝔽, ℒ, 𝑑]

 rate = 𝜌 = 𝑑/|ℒ|4-way fold 𝑣"

New goal: prove 𝑣" is 𝛿-close to RS[𝔽,ωℒ!, 𝑑/4]

 rate = (⁄? ()/(U|ℒ|
!) = 𝜌/2 ⇒ lower rate

interpolate

send 𝑣":	ωℒ!⇾ 𝔽 to Verifier
honest prover interpolates 𝑣+ from (𝑢+)/2345,)

domain = ℒ(
domain = ωℒ! (half the size of ℒ)

https://eprint.iacr.org/2024/390

STIR: an FRI variant [ACFY’24]

Goal: prove 𝑢" is 𝛿-close to RS[𝔽, ℒ, 𝑑]

 rate = 𝜌 = 𝑑/|ℒ|4-way fold 𝑣"

Main point: Lower rate 𝜌/2	means # spot checks for new goal 𝑣" can be smaller.

 Rate drops by a factor of 2 after every folding step ⇒ shorter overall proof

interpolate

domain = ℒ(
domain = ωℒ! (half the size of ℒ)

Idea 1: reduce the code rate by making the honest prover interpolate

send 𝑣":	ωℒ!⇾ 𝔽 to Verifier
honest prover interpolates 𝑣+ from (𝑢+)/2345,)

𝑢": ℒ ⇾ 𝔽

https://eprint.iacr.org/2024/390

STIR: an FRI variant [ACFY’24]

The problem: now we cannot spot check 𝑣!:	ωℒ#⇾ 𝔽

Idea 2: use quotienting for two things:
(1) spot checks on 𝑣! , and
(2) for a malicious prover, increase distance to RS[𝔽,ωℒ#, 𝑑/4]

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣"

interpolate

send 𝑣":	ωℒ!⇾ 𝔽 to Verifier

how to spot check this?
 Its 4th roots are not in ℒ !!Can only spot check here

https://eprint.iacr.org/2024/390

How to spot check 𝑣!	by quotienting
How? Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send 𝑣":	ωℒ!⇾ 𝔽 to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

Prover sends back 𝑦 ≔ 𝑓(𝑡)
force prover to choose
one 𝑓 ∊ 𝔽* ⁄? (𝑋 s.t.
̅𝑓 ∊ List[𝑣", 𝑑/4, 1 − 𝜌/2]

Honest prover will use 𝑓 ∊ 𝔽* ⁄? (𝑋 s.t. ̅𝑓 = (𝑢")(8/90,7 on ℒ(

How to spot check 𝑣!	by quotienting
How? Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send 𝑣":	ωℒ!⇾ 𝔽 to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

𝑢$:	ωℒ!⇾ 𝔽

Verifier sends spot check points 𝑠!, … , 𝑠- ∊ ℒ/

Prover sends back 𝑦 ≔ 𝑓(𝑡)

Prover sends back 𝑦7 ≔ 𝑓 𝑠7 , 𝑖 = 1, … ,𝑚

Honest prover defines 𝑢$ as
the result of quotienting 𝑣" by
{ (𝑡, 𝑦), (𝑠$, 𝑦$), … , (𝑠A, 𝑦A)	}

How to spot check 𝑣!	by quotienting
How? Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send 𝑣":	ωℒ!⇾ 𝔽 to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

𝑢$:	ωℒ!⇾ 𝔽

Verifier sends spot check points 𝑠!, … , 𝑠- ∊ ℒ/

Prover sends back 𝑦 ≔ 𝑓(𝑡)

Prover sends back 𝑦7 ≔ 𝑓 𝑠7 , 𝑖 = 1, … ,𝑚

In query phase, Verifier computes 𝑦> itself by querying 𝑢" at 4𝑚 points and folding

That is, 𝑢! a ≔ 8, 9 :;(9)
<(9)

 where

• 𝐼 𝑡 = 𝑦 and 𝐼 𝑠7 = 𝑦7
• 𝑉 𝑡 = 0 and 𝑉 𝑠7 = 0

How to spot check 𝑣!	by quotienting
How? Honest prover will quotient 𝑣! by the query points

𝑢": ℒ ⇾ 𝔽
4-way fold 𝑣" send 𝑣":	ωℒ!⇾ 𝔽 to Verifier

Verifier sends an out of domain query 𝑡 ∈ 𝔽 ∖ ℒH

Verfier 𝑽

𝑢$:	ωℒ!⇾ 𝔽

Verifier sends spot check points 𝑠!, … , 𝑠- ∊ ℒ/

Prover sends back 𝑦 ≔ 𝑓(𝑡)

Prover sends back 𝑦7 ≔ 𝑓 𝑠7 , 𝑖 = 1, … ,𝑚

Iterate to prove that 𝑢$ is (1 − 𝜌/2)-close to RS[𝔽,ωℒ!, 𝑑/4] with a smaller 𝑚

That is, 𝑢! a ≔ 8, 9 :;(9)
<(9)

 where

• 𝐼 𝑡 = 𝑦 and 𝐼 𝑠7 = 𝑦7
• 𝑉 𝑡 = 0 and 𝑉 𝑠7 = 0

STIR: summary

Main benefit: STIR proof is about 2× shorter than FRI proof

Cons:
• Prover is a bit slower because of interpolation and quotienting
• Verifier is a bit slower because of quotienting
• Batching via pipelining is more cumbersome:

• Often, functions to batch are all defined using the same rate 𝜌,
 but STIR iterations use a different rate in every round
 ⇒ Prover will need to interpolate functions to expand to lower rate

(using the same rate 𝜌 for the input 𝑢")

WHIR: better than STIR [ACFY’24]

WHIR: combines all spot checks into a Sumcheck ⇒ no quotienting

• Fold 𝑘 levels per round, but Verifier now does fewer field ops.
 ⇒ fast verifier (≈1.9M gas in the EVM)

• Supports queries to a multilinear polynomial (not just univariate)

How? Not today. (Builds on BaseFold)

https://eprint.iacr.org/2024/1586
https://ethresear.ch/t/on-the-gas-efficiency-of-the-whir-polynomial-commitment-scheme/21301

Are there better codes than Reed-Solomon?

The future: other codes

The problem with RS-based SNARKs

• Not field agnostic: requires an 𝑛-th primitive root of unity in 𝔽
 ⇒ can only use fields where 𝑛 = |ℒ| divides |𝔽| − 1
 ⇒ difficult to support specific fields (e.g., for ECDSA arithmetic)

• Encoding is done via an FFT: takes time 𝑂(𝑛 % log 𝑛)
 ⇒ when 𝑛 ≈ 2#!, the (log# 𝑛) causes 20× work for prover

• FRI enables: a (univariate Poly-IOP) ⇾ IOP compiler
 ⇒ what about (multilinear Poly-IOP) ⇾ IOP compiler??
 e.g., 𝑔 𝑥!, 𝑥", 𝑥. = 5𝑥! + 2𝑥" + 4𝑥!𝑥" + 12𝑥!𝑥. + 7𝑥!𝑥"𝑥.

FRI-like proximity proof for other linear codes

FRI can be generalized to any 𝑛, 𝑘, 𝑙 = linear code 𝒞 ⊆	𝔽$ where:

There is a sequence of linear codes 𝒞 = 𝒞!, 𝒞&, …	, 𝒞W s.t.

1. 𝒞� is a 𝑛B, 𝑘B, 𝑙B = linear code where 𝑛 = 𝑛! > 𝑛& > ⋯ > 𝑛W
and 𝑛W is “sufficiently small”,

2. there are distance preserving maps 𝒞B%& ⇾	𝒞B for 𝑖 = 1,… , 𝑡 ,

3. there is a “fast” encoding algorithm 𝔽)⇾ 𝒞, and

4. min-distance of 𝒞! is sufficiently large
𝑘 𝑛(to reduce # of spot checks)

A proximity proof for other linear codes
A field agnostic proximity test: (e.g., FRI over the ECDSA prime)

• Gives a (univariate Poly-IOPP) ⇾ IOPP over an arbitrary prime 𝑝

(1) ECFFT [BCKL’22]:

 FRI using functions over an elliptic curve 𝐸/𝔽= ,
 where the order of 𝐸(𝔽=)	is divisible by 𝑛
 (even though 𝑝 is not)

(2) a proximity proof for algebraic geometric codes [BLNR’20].
 Here polynomials are replaced with “functions on a curve”

https://eprint.iacr.org/2022/1542
https://arxiv.org/abs/2011.04295

A proximity proof for other linear codes
Circle Stark [HLP’24]: Let 𝑀$$ ≔ 2'$ − 1 (the 11th Mersenne prime)

 arithmetic mod 𝑀&& is super fast, (𝑥	𝑚𝑜𝑑	𝑀!! is just an addition)
 but 𝑀KK − 1 is not divisible by a high power of 2

 Instead: run FRI over the projective line mod 𝑀$$ whose size is 𝑀$$ + 1
 One way to represent the projective line is as points on a circle:

divisible by a high
power of 2

0𝔽=

So: the circle (𝑥! + 𝑦! = 1) is the same as 𝔽M ∪ {∞} ⇒ (𝑝 + 1) points

∞

https://eprint.iacr.org/2024/278

BaseFold [ZCF’23]

BaseFold: generalizes FRI to any foldable code
⇒ The generalization gives a field agnostic proximity test
[note: every foldable code is a multilinear Reed-Muller code]

For a (multilinear Poly-IOPP) ⇾ IOPP compiler need a multilinear PCS
• The problem: quotienting only applies to univariates
• BaseFold solution:

 build a multilinear PCS from Sumcheck and a proximity test

How? Not today.
(also adopted into Whir)

https://eprint.iacr.org/2023/1705.pdf

More SNARK-useful linear codes

Spielman codes: [BCG’20, Breakdown’21, Orion’22]

• Linear codes with a good minimum distance
and a very fast (linear time) encoding algorithm 𝔽) ⇾ 𝒞.

• Also field-agnostic.
 Cons: large IOPP proof ⇒ large SNARK proof

Expand Accumulate codes: [BFKTWZ’24]

• Field-agnostic codes, but shorter proofs than Breakdown
 Cons: 𝑂(𝑛 % log 𝑛) time encoding.

https://eprint.iacr.org/2020/1426.pdf
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2024/1871.pdf

More SNARK-useful linear codes

Repeat-Accumulate-Accumulate (RAA) codes: [Blaze’24]

• Constructs a multilinear polynomial commitment over 𝔽#L
with a fast (linear time) prover time and 𝑂(log# 𝑛) proof size

 ⇒ 𝔽#L is friendly to modern CPU instructions

• The commitment uses the tensor code approach of [BCG’20]
(making use of Sumcheck).

Much more to do in non-RS based SNARKs

https://eprint.iacr.org/2024/1609
https://eprint.iacr.org/2020/1426.pdf

Further reading
• FRI (2018) and analysis (2018): Fast Reed–Solomon Interactive Oracle Proofs of Proximity

• DEEP-FRI (2019): Out of domain sampling improves soundness

• BCIKS (2020): Proximity Gaps for Reed–Solomon Codes

• CircleSTARK (2024): FRI using a Mersenne prime

• STIR (2024): Reed–Solomon proximity testing with fewer queries

• WHIR (2024): Reed–Solomon proximity testing with a fast verifier

Beyond Reed-Solomon codes (a few recent results):

• Breakdown (2021), Orion (2022): Polynomial commitments with a fast prover

• BaseFold (2023): Efficient Polynomial commitments from foldable codes

• Blaze (2024): Fast SNARKs from Interleaved RAA Codes

https://drops.dagstuhl.de/storage/00lipics/lipics-vol107-icalp2018/LIPIcs.ICALP.2018.14/LIPIcs.ICALP.2018.14.pdf
https://www.math.toronto.edu/swastik/fri.pdf
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654.pdf
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/390
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2023/1705.pdf
https://eprint.iacr.org/2024/1609

END OF MODULE

