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FRI and Proximity Proofs:
What they are what they are for



Recap: a General Paradigm for a Modern SNARK

ℱ-interactive
oracle proof 

(ℱ	− IOP)

ℱ-functional 
commitment

scheme
SNARK for 

general circuits
(cryptographic object)

(info. theoretic object)



Recap:  three function families

Polynomial-IOP  (PIOP)  +
Polynomial Commitment

PLONK  +  
KZG SNARK

𝑂(𝑛𝑙𝑜𝑔𝑛) time prover

Multilinear-IOP  (MIOP)  +
Multilinear Commitment

HyperPLONK  +  
Mercury SNARK

𝑂(𝑛) time prover

𝑛 = size of comp. trace

Vector-IOP  (IOP)  +
Vector Commitment

???  +  
MerkleTree ???  



Papers we discuss in this lecture and the next
• FRI (2018) and analysis (2018):  Fast Reed–Solomon Interactive Oracle Proofs of Proximity

• DEEP-FRI (2019):  Out of domain sampling improves soundness

• BCIKS (2020):  Proximity Gaps for Reed–Solomon Codes

• CircleSTARK (2024):  FRI using a Mersenne prime

• STIR (2024):  Reed–Solomon proximity testing with fewer queries

• WHIR (2024):  Proximity testing with a faster verifier

Beyond Reed-Solomon codes (a few recent results):

• Breakdown (2021),  Orion (2022):  Polynomial commitments with a fast prover

• BaseFold (2023):  Polynomial commitments from foldable codes with shorter proofs

• Blaze (2024):  Fast SNARKs from Interleaved RAA Codes

https://drops.dagstuhl.de/storage/00lipics/lipics-vol107-icalp2018/LIPIcs.ICALP.2018.14/LIPIcs.ICALP.2018.14.pdf
https://www.math.toronto.edu/swastik/fri.pdf
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654.pdf
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/390
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2023/1705.pdf
https://eprint.iacr.org/2024/1609


FRI:  Fast Reed-Solomon IOPP

• Let  𝔽  be a finite field   (say,  𝔽 = {0,1,2, … , 𝑝 − 1})   and   ℒ ⊆ 𝔽.
• Let  𝕪: ℒ ⇾ 𝔽 be a committed function  (a vector of size |ℒ|)

FRI:  a way to prove that 𝕪 is “close” to a Reed-Solomon codeword

So what?    Who cares?    What does this even mean?

Let’s get started … first some background



(1) Codes

(2)  IOP and IOPP

(3)  Poly-IOP

Background



(1)  Linear codes
Def: an 𝑛, 𝑘, 𝑙 ! linear code 𝒞	is a linear subspace 𝒞 ⊆	𝔽" of 

dimension 𝑘  (so |𝒞| = 𝑝!)  where  𝑢 ' ≥ 𝑙  for all  0 ≠ 𝑢 ∊ 𝒞

Recall: For  𝑢, 𝑣 in 𝔽"

𝑢 ' ≔	(Hamming weight of 𝑢) = ∑()'" 𝑢( '       (where 0" = 0)

∆(𝑢, 𝑣) ≔ (relative Hamming distance) = ," 𝑢 − 𝑣 '    ∊ [0,1]

  example:    ∆ 1, 𝟓, 9, 𝟒, 𝟏 , 1, 𝟐, 9, 𝟕, 𝟒 = 3/5 

µ = µ 𝒞 	≔	𝑙/𝑛 = (relative min weight of 𝒞) = !
"	. min'/0∊𝒞

𝑢 '     ∊ [0,1]

(sum as integers)



(1)  Linear codes

Let 𝒞 ⊆	𝔽" be a 𝑛, 𝑘, 𝑙 ! linear code.   Then:

Fact 1: For all distinct 𝑢, 𝑣 ∊ 𝒞  we have  ∆ 𝑢, 𝑣 ≥ µ 𝒞 = 𝑙/𝑛  
    (otherwise   0 ≠ 𝑢 − 𝑣 ' < 𝑙   and   𝑢 − 𝑣 ∊ 𝒞)

Fact 2: 𝑘 ≤ 𝑛 − 𝑙 + 1    (i.e.  |𝒞| ≤ 𝑝"234, )       (the singleton bound) 
 

Def:   if   𝑘 = 𝑛 − 𝑙 + 1   then 𝒞	is called an MDS Code

 The classic MDS code:  the Reed-Solomon code (more in a bit)



Encoding a message as a codeword

Let 𝒞 ⊆	𝔽" be a 𝑛, 𝑘, 𝑙 ! linear code. 

Encoding:    Let   𝒄𝟏, … , 𝒄𝒌 ∊	𝔽"   be a basis of 𝒞.
 A message 𝑚 = 𝑚,, … ,𝑚7  ∊	𝔽7 can be encoded as a codeword

Def:  The rate of a code is   𝜌 ≔ 𝑘/𝑛 ∊ [0,1]  (e.g., 𝜌 = 0.5)

𝑚 ∊ 𝔽7 m,𝒄𝟏 +⋯+𝑚7𝒄𝒌 ∊ 𝔽" ( 1/𝜌 expansion)encode

In practice:  for fast encoding, want 𝜌 as large as possible  (𝜌=0.5  ⇒  𝑛=2𝑘)

We can treat  𝒞  as a linear map   𝒞: 𝔽! ⇾ 𝔽"  that encodes messages in 𝔽!



Unique decoding distance   ( 𝑛, 𝑘, 𝑙 ! linear code)

𝑢 ∊ 𝒞 𝑣 ∊ 𝒞∆(𝑢, 𝑣) ≥ µ 𝒞

𝑤 ∊	𝔽! Fact 3:   for every 𝑤 ∊	𝔽" 
there is at most one codeword 
𝑢 ∊ 𝒞  s.t.   ∆(𝑢,𝑤) < µ 𝒞 /2

(by triangular inequality)

Def: µ 𝒞 /2 in [0,0.5] is called the unique decoding distance of 𝒞

D
"∊𝒞

𝐵% 𝑢, 𝑙/2 = D
"∊𝒞

𝑛
𝑙/2 𝑝&/( ≤	𝑝!)&*+ G

𝑛
𝑙/2 𝑝&/( < 𝑛&/( G p!)&/(*+ ≪ 𝑝!

Most  𝑤 ∊	𝔽"  are not uniquely decodable 𝑛 < 𝑝



List decoding

Def:  For a 𝑛, 𝑘, 𝑙 ! linear code 𝒞,   𝑤 ∊ 𝔽",   and   𝛿 ∊ [0,1],   let

   List[𝑤, 𝒞, 𝛿] ≔ { 𝑐 ∊ 𝒞   s.t.   ∆(𝑐, 𝑤) ≤ 𝛿 }

Then    𝛿 < µ 𝒞 /2        ⇒      |List[𝑤, 𝒞, 𝛿]|≤ 1
(unique decoding distance)



List decoding

The Johnson bound: For  𝒞 ⊆	𝔽",   𝑤 ∊ 𝔽",   0 < 𝛿 < 1 − 1 − 𝜇 

|List[𝑤, 𝒞, 𝛿]|	≤ 1/𝜀?   where    𝜀, ≔ 2 1 − 𝜇 1 − 1 − 𝜇 − 𝛿

( blows up as 𝛿 approaches	 1 − 1 − 𝜇 ) 

Size of List[𝑤, 𝒞, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 𝜇/2 1 − 1 − 𝜇 𝜇 1

size ≤1 size ≤ 1/𝜀, depends on 𝒞 ≥ 𝑝

(Johnson bound) (capacity bound)(uniqueness bound)

𝒞



Convenient terms:  𝛿-close and 𝛿-far

Def:  We say that  𝑤 ∊ 𝔽"  is 𝜹-close to  𝒞 ⊆	𝔽"

  if there is some  𝑐 ∊ 𝒞  s.t.   ∆(𝑤, 𝑐) ≤ 𝛿 

  (i.e. |List[𝑤, 𝒞, 𝛿]|≥ 1 ).         We write  ∆(𝑤, 𝒞) ≤ 𝛿.

Def:  We say that  𝑤 ∊ 𝔽" is 𝜹-far from 𝒞 ⊆	𝔽"

  if for all 𝑐 ∊ 𝒞 we have   ∆ 𝑤, 𝑐 > 𝛿 

  (i.e. |List[𝑤, 𝒞, 𝛿]|= 0 ).         We write  ∆(𝑤, 𝒞) > 𝛿.



The classic MDS code:  Reed-Solomon
First, polynomials over a field 𝔽

• 𝔽CD[𝑋]:  set of all univariate polynomials over 𝔽 of degree < 𝑑 

• For  a polynomial  𝑓 ∊ 𝔽CD[𝑋]   and   ℒ ⊆ 𝔽
    write  ̅𝑓: ℒ ⇾ 𝔽  for the restriction of 𝑓 to the domain ℒ

A function  𝑤: ℒ ⇾ 𝔽,  where 𝑛 ≔ ℒ , can be treated as a vector 

   vec 𝑤 ≔ 𝑤 𝑎, , … , 𝑤 𝑎" ∊	𝔽" 
where ℒ = {𝑎,, … , 𝑎"} ⊆ 𝔽  has a natural ordering 



The classic MDS code:  Reed-Solomon
Def: The Reed-Solomon code over the field 𝔽,  
 evaluation domain ℒ ⊆ 𝔽, and degree 𝑑, is the linear code

   RS[𝔽, ℒ, 𝑑] ≔ { ̅𝑓: ℒ ⇾ 𝔽   where   𝑓 ∊ 𝔽CD[𝑋]   }
Fact:   Let 𝑑 < 𝑛 ≔ ℒ .
 RS[𝔽, ℒ, 𝑑] is a   𝑛, 𝑑, 𝑙 = (𝑛 − 𝑑 + 1) !  linear code

 ⇒   RS[𝔽, ℒ, 𝑑] is an MDS code   (has 𝑝- codewords)

Def:  The rate of RS[𝔽, ℒ, 𝑑] is   𝜌 ≔ 𝑑/𝑛 ∊ [0,1]  (e.g., 𝜌 = 0.5)

𝑚 ∊ 𝔽D vec( ̅𝑓E) ∊ 𝔽" ( 1/𝜌 expansion)encode



Unique decoding and list decoding

Recall:     𝜌 ≔ 𝑑/𝑛 ∊ [0,1]    where 𝑛 ≔ ℒ .       For MDS code: 𝜇 ≈ 1 − 𝜌.

Def:    For RS[𝔽, ℒ, 𝑑] ,   𝑤: ℒ ⇾ 𝔽,   and   𝛿 ∊ [0,1],   let

   List[𝑤, 𝑑, 𝛿] ≔ { ̅𝑓 ∊ RS[𝔽, ℒ, d]   s.t.   ∆( ̅𝑓, 𝑤) ≤ 𝛿 }

So:    𝛿 < #
$
= %

$"
= "&'()

$"
≈ )&*

$
        ⇒      |List[𝑤, 𝑑, 𝛿]|	≤ 1

(unique decoding distance)



Unique decoding and list decoding

The Johnson bound: For  RS[𝔽, ℒ, 𝑑],    𝑤: ℒ ⇾ 𝔽,    𝛿 < 1 − 𝜌 

|List[𝑤, 𝑑, 𝛿]|	≤ 1/𝜀?   where    𝜀, ≔ 2 𝜌(1 − 𝜌 − 𝛿)  ∊ 	 (0,1)

( blows up as 𝛿 approaches	 1 − 𝜌 ) 

size of List[𝑤, 𝑑, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

size ≤1 size ≤ 1/𝜀? unknown ≥ 𝑝

(Johnson bound) (capacity bound)(uniqueness bound)

𝒞



Unique decoding and list decoding

The Johnson bound: For  RS[𝔽, ℒ, 𝑑],    𝑤: ℒ ⇾ 𝔽,    𝛿 < 1 − 𝜌 

|List[𝑤, 𝑑, 𝛿]|	≤ 1/𝜀?   where    𝜀, ≔ 2 𝜌(1 − 𝜌 − 𝛿)  ∊ 	 (0,1)

( blows up as 𝛿 approaches	 1 − 𝜌 ) 

size of List[𝑤, 𝑑, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

size ≤1 size ≤ 1/𝜀? unknown

Conjectured to be poly(𝑛) size   (true for random ℒ ⊆ 𝔽  [BGM’24] )

≥ 𝑝

https://arxiv.org/abs/2206.05256


Unique decoding and list decoding

The Johnson bound: For  RS[𝔽, ℒ, 𝑑],    𝑤: ℒ ⇾ 𝔽,    𝛿 < 1 − 𝜌 

|List[𝑤, 𝑑, 𝛿]|	≤ 1/𝜀?   where    𝜀, ≔ 2 𝜌(1 − 𝜌 − 𝛿)  ∊ 	 (0,1)

( blows up as 𝛿 approaches	 1 − 𝜌 ) 

size of List[𝑤, 𝑑, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 3/8 1/2 3/4 1

size ≤1 size ≤ 1/𝜀? unknown

An example:  𝜌 = 1/4 

≥ 𝑝



Review (1)  IOP and IOPP

 (2)  Poly-IOP

Background on IOPs



Interactive Oracle Proofs  (IOP)   [BCS’16, RRR’16]

Let  𝑅 = 𝕩,𝕨  be a poly-time relation   (e.g., 𝕩 = sha3(𝕨) )

Def:  an IOP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩,𝕨 Verifier 𝕩
𝜋% =

𝛼+ ⇽ 	𝔘

𝛼. ⇽ 	𝔘

𝜋. = 𝑽+#,…,+$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
𝜋+ =

𝛼/: short random challenges

𝜋/: poly-size strings (oracles)

𝑽 can query for cells of 𝜋/

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652


Interactive Oracle Proofs  (IOP)   [BCS’16, RRR’16]

Let  𝑅 = 𝕩,𝕨  be a poly-time relation   (e.g., 𝕩 = sha3(𝕨) )

Def:  an IOP (𝑷, 𝑽) for 𝑅

is complete if for all 𝕩,𝕨 ∊ 𝑅,  when 𝑽 interacts with 𝑷     
    Pr[ 𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes ]	= 1

is sound if for all 𝑷∗ and 𝕩	 ∉ 𝐿 𝑅 ≔ 𝕩	 ∃𝕨: 𝕩,𝕨 ∊ 𝑅}     

    Pr[ 𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes ] < 𝑒𝑟𝑟       (≈2%&'()

is knowledge sound (informally) if for all 𝑷∗, 
   𝑽 accepts 𝕩   ⇒  prover “knows” 𝕨	s.t. 𝕩,𝕨 ∊ 𝑅 

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652


Interactive Oracle Proofs  (IOP)   [BCS’16, RRR’16]

Let  𝑅 = 𝕩,𝕨  be a poly-time relation   (e.g., 𝕩 = sha3(𝕨) )

Def:  an IOP (𝑷, 𝑽) for 𝑅

is complete if for all 𝕩,𝕨 ∊ 𝑅,  when 𝑽 interacts with 𝑷
    Pr[ 𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes ]	= 1

is sound if for all 𝑷∗ and 𝕩	 ∉ 𝐿 𝑅 ≔ 𝕩	 ∃𝕨: 𝕩,𝕨 ∊ 𝑅}     

    Pr[ 𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes ] < 𝑒𝑟𝑟       (≈2%&'()

is succinct if time(𝑽) is at most polylog(time(𝑅)) and O( 𝕩 , log(1/𝑒𝑟𝑟))
   ⇒  𝑘	is small and 𝑽	makes few queries to the oracles 𝜋., … , 𝜋! 	

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652


IOP for 𝑅  ⇒  SNARK for 𝑅  (the BCS’16 compiler)

Step 1:   replace  𝜋.,…, 𝜋! 	 by Merkle commitments  

Prover 𝑷 𝕩,𝕨 Verifier 𝕩
MerkleCommit(𝜋%)

𝛼+ ⇽ 	𝔘

𝛼. ⇽ 	𝔘

MerkleCommit(𝜋.) 𝑽+#,…,+$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
MerkleCommit(𝜋+)

𝑽 queries 𝜋( at cell 𝑗    ⇒   𝑷 responds with a Merkle proof for cell 𝑗 

Security now depends
on collision resistance
of Merkle hash function

We obtain an
interactive proof (IP)



IOP for 𝑅  ⇒  SNARK for 𝑅  (the BCS’16 compiler)

Step 2:   Make non-interactive using the Fiat-Shamir transform

Prover 𝑷 𝕩,𝕨
𝑐% ≔	MerkleCommit(𝜋%)

𝛼+ ⇽ 𝐻𝑎𝑠ℎ(𝕩, c%)

𝛼. ⇽ 𝐻𝑎𝑠ℎ(𝕩, c%, 𝛼+, 𝑐+… , 𝑐.)+)
𝑐. ≔	MerkleCommit(𝜋.)

𝑽+#,…,+$ 𝕩,𝛼), … , 𝛼!

⋮
𝑐+ ≔	MerkleCommit(𝜋+)

MerkleProofs (one per 𝑽	query)

SNARK
Proof



IOP for 𝑅  ⇒  SNARK for 𝑅  (the BCS’16 compiler)

“Thm”  (BCS’16, CCH+’19, Hol’19):

 the IOP has round-by-round soundness
   ⇒ 
 the derived SNARG is secure in the random oracle model

Efficiency:
• To reduce prover work:  minimize  𝜋' +⋯+ |𝜋7|

• To reduce proof size:  minimize 𝑘 and number of verifier queries

(see also Chiesa-Yogev SNARK book)

⇒  Merkle Commitments ⇒   Merkle Proofs (𝑂!(log |𝜋"|) size)

https://eprint.iacr.org/2019/1261.pdf
https://snargsbook.org/


A generalization:  IOP of Proximity  (IOPP)

Let  𝑅 = 𝕩, 𝕪,𝕨  be a poly-time relation

Def:  an IOPP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩, 𝕪,𝕨 Verifier𝕪 𝕩
𝜋% =

𝛼+ ⇽ 	𝔘

𝛼. ⇽ 	𝔘

𝜋. = 𝑽𝕪,+#,…,+$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
𝜋+ =

𝕪, 𝜋/: poly-size strings (oracles)

𝑽 can query for cells of 𝕪, 𝜋/
The IOPP proves properties 
of 𝕩	and a committed 𝕪

(𝕪 =                                   )



Completeness and proximity soundness
Let  𝑅 = 𝕩, 𝕪,𝕨  be a poly-time relation (𝕪 =                                   )

if 𝕩, 𝕪  is neither, then no guarantee on the output of 𝑽

Def: (𝕩, 𝕪) is 𝜹-far from 𝑹, if (𝕩, 𝕪′,𝕨) ∉ 𝑅	for all 𝕪′,𝕨 with ∆(𝕪, 𝕪′) ≤ 𝛿

Def:  an IOPP (𝑷, 𝑽) for 𝑅
is complete if for all 𝕩, 𝕪,𝕨 ∊ 𝑅 the Verifier 𝑽 always accepts 𝑷

is 𝛿-sound if for all (𝕩, 𝕪) that are 𝛿-far from 𝑅:
  ∀𝑷∗:	 Pr[ 𝑽𝕪,M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes ] < 𝑒𝑟𝑟       (≈2%&'()



An important example:  a Reed-Solomon IOPP

Let  𝒞 = RS[𝔽, ℒ, 𝑑] ,   𝑢: ℒ ⇾ 𝔽,   and   𝛿 ∊ [0,1]

Def:  an IOPP for RS, a  𝛿-RS-IOPP,  is an IOPP (𝑷, 𝑽)  such that

FRI is an efficient RS-IOPP.       But why is this useful?

𝑷 𝕩 = 𝒞, 𝕪 = 𝑢,𝕨 =⊥ Verifier𝕪 𝕩 = 𝒞
complete: 𝑢 ∊ 𝒞    ⇒    for 𝑷: 	 Pr[𝑽",2!,…,2" 𝕩, 𝛼+, … , 𝛼. = yes ]	 = 1

𝛿-sound: ∆ 𝑢, 𝒞 > 𝛿 ⇒  ∀𝑷∗: Pr[𝑽",2!,…,2" 𝕩, 𝛼+, … , 𝛼. = yes ] < 𝑒𝑟𝑟



A special type of IOP:  Poly-IOP
Let  𝑅 = 𝕩,𝕨  be a poly-time relation

Def:  a Poly-IOP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩,𝕨
𝑓% ∊ 𝔽5-[𝑋]

𝛼+ ⇽ 𝔽

𝛼. ⇽ 𝔽

𝑓. ∊ 𝔽5-[𝑋] 𝑽6#,…,0$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
𝑓+ ∊ 𝔽5-[𝑋]

𝑓%, … , 𝑓.: must be oracles 
   for functions in 𝔽5-[𝑋]

𝑽 can eval 𝑓/ at any 𝑥 ∊ 𝔽

Verifier 𝕩



A special type of IOP:  Poly-IOP
Let  𝑅 = 𝕩,𝕨  be a poly-time relation

Def:  a Poly-IOP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩,𝕨

𝛼. ⇽ 	𝔘

𝑓. ∊ 𝔽5-[𝑋] 𝑽6#,…,0$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

Verifier 𝕩

Completeness and soundness as for an IOP



Compiling a Poly-IOP to a SNARK

Method 1:  use an algebraic polynomial commitment
• univariate IOP: use KZG
• multilinear IOP: use Zeromorph or Mercury

Method 2:   use an IOPP 
• Fast:  using only a Merkle tree



An important application of an RS-IOPP

Compiling a Poly-IOP to a SNARK
Using a Reed-Solomon IOP of Proximity



Poly-IOP  ⇒  IOP  ⇒  SNARK

Polynomial 
interactive

oracle proof 
(Poly-IOP)

Interactive
Proof (IP)

(zk)SNARK for 
general circuits

Fiat-Shamir
RS-IOPP

(such as FRI)

IOP

Merkle 
commitments

A direct SNARK construction:



The interesting step:  Poly-IOP  ⇒  IOP

Poly-IOP IOP

eval  𝑓/  at  𝑥/ ∊ 𝔽

y7 ⇽	𝑓/(𝑥/) ↺

𝑓/ ∊ 𝔽5-[𝑋] ↺ 𝜋/ = ↺

open  𝜋/  at cell  𝑗

y7 ⇽ 𝜋/[𝑗] ↺

Challenge:  how to build a polynomial eval oracle from a list lookup oracle??



Representing a polynomial as an IOP oracle

The problem:      𝑓 ∊ 𝔽CD[𝑋]      ⇾     string 𝜋:                                ∊ 𝔽"

Let  𝒞 = RS[𝔽, ℒ, 𝑑]     with    ℒ = {𝑎,, … , 𝑎"}      (𝑑 < 𝑛)

• The honest prover represents  𝑓 ∊ 𝔽CD[𝑋]  by its encoding

   𝑓    ⇾    𝜋 = 𝑓 𝑎, , 𝑓 𝑎` , … , 𝑓 𝑎" = ̅𝑓 ∊ 𝒞 ⊆ 𝔽"

New problem:  in a Poly-IOP the prover can only send 𝑓 ∊ 𝔽CD[𝑋], 
 but now the prover can send any 𝜋: ℒ ⇾ 𝔽,  possibly not in 𝒞

We will treat 𝜋 as a function  𝜋: ℒ ⇾ 𝔽



• Can Verifier confirm that 𝜋 is a codeword in 𝒞	by only opening 
a few cells in 𝜋 ??

• Can’t be done  (what if 𝜋 is wrong in only one cell?) 

• But Verifier can confirm that 𝜋 is 𝛿-close to some codeword,
for 𝛿<(unique decoding distance)   ⇒   𝜋 represents a unique poly.

   How to check?   Reed-Solomon IOPP    (e.g., FRI) 

The new problem:  prover sends an oracle   𝜋: ℒ ⇾ 𝔽

Representing a polynomial as an IOP oracle

But this is not yet a PCS.    First, let’s develop some tools …



Quotienting
Let  𝑎 ∊ 𝔽  s.t.  𝑎 ∉ ℒ  and let  𝑏 ∊ 𝔽 .   Let  𝑓 ∊ 𝔽CD 𝑋   and  𝛿 ∊ [0,1].

Define the quotient map:    𝑢: ℒ ⇾ 𝔽	 ⇾ 	 𝑞(𝑋) ≔ 0(a)2b
a2c  ∶ ℒ ⇾ 𝔽

Fact 1:   if   𝑢 = ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]  and  𝑏 = 𝑓 𝑎   then  𝑞 ∊ RS[𝔽, ℒ, 𝑑 − 1]

Fact 2:   Suppose that for all  𝑔̅ ∊ List 𝑢, 𝑑, 𝜹   we have  𝑏 ≠ 𝑔(𝑎).
 Then 𝑞 is 𝜹-far from RS 𝔽, ℒ, 𝑑 − 1 .
Proof:   Suppose  ∆ 𝑞, zℎ ≤ 𝛿  for some  ℎ ∊ 𝔽5-)+ 𝑋      (i.e.  zℎ ∊ RS[𝔽, ℒ, 𝑑 − 1]).
 Set  𝑔(𝑋) ≔ ℎ(𝑋) G 𝑋 − 𝑎 + 𝑏.   Then  𝑔̅ ∊ RS[𝔽, ℒ, 𝑑]   and   ∆ 𝑢, 𝑔̅ ≤ 𝛿.
 But then  𝑔̅ ∊ List 𝑢, 𝑑, 𝜹   and  g 𝑎 = 𝑏.   Contradiction!



Visualizing Quotienting

distance 𝑢 to RS 𝔽, ℒ, 𝑑 :

distance 𝑞 to RS 𝔽, ℒ, 𝑑 − 1 :

Honest prover Dishonest prover

0 1

0 10 1

0 1𝜂

The quotient map for 𝑎 ∊ 𝔽 ∖ ℒ	:        𝑢: ℒ ⇾ 𝔽	 ⇾ 	 𝑞(𝑋) ≔ "(9));
9)<

 ∶ ℒ ⇾ 𝔽

𝑢 = ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑] 
  and  𝑏 = 𝑓 𝑎

∆ 𝑢, RS 𝔽, ℒ, 𝑑 = 𝜂  and

∀𝑔̅ ∊ List 𝑢, 𝑑, 𝜹 :  𝑏 ≠ 𝑔(𝑎)

𝛿



Quotienting by more values
Let  {𝑎,, … , 𝑎7} ⊆ 𝔽 ∖ ℒ   and {𝑏,, … , 𝑏7} ⊆ 𝔽.    Let  𝑓: ℒ ⇾ 𝔽. 

Define polynomials  𝑉 𝑋 , 𝐼 𝑋 ∊ 𝔽k7[𝑋]   as
 𝑉(𝑋) ≔ ∏(∊[7](𝑋 − 𝑎()    and    𝐼 𝑎( = 𝑏(  for all 𝑖 ∊ [𝑘] .

Define the map:      𝑢: ℒ ⇾ 𝔽	 ⇾ 	 𝑞(𝑋) ≔ 0(a)2l(a)
m(a)

 ∶ ℒ ⇾ 𝔽

Fact 1: if   𝑢 = ̅𝑓   and  𝑏( = 𝑓(𝑎()  for 𝑖 ∊ [𝑘]  then  𝑞∊ RS[𝔽, ℒ, 𝑑 − 𝑘] 

Fact 2: (STIR, Lemma 4.4)   Suppose that for every  𝑔̅ ∊ List 𝑢, 𝑑, 𝜹  
  we have that  𝑏( ≠ 𝑔(𝑎()  for some 𝑖 ∊ [𝑘].
 Then 𝑞(𝑋) is 𝜹-far from RS 𝔽, ℒ, 𝑑 − 𝑘 .



Poly-IOP  ⇒  IOP:   first attempt

eval 𝑓 at  𝑎+ ∊ 𝔽 ∖ ℒ

𝑏+ ⇽ 𝑓(𝑎+)

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞+ 𝑋 ≔ 2 9 );#
9)<#

∊ RS[𝔽, ℒ, 𝑑 − 1]

for some 𝛿 ∊ [0,1]       (𝑞% is easy to calculate from 𝜋)

𝜋 = ∶ ℒ ⇾ 𝔽
honest prover:    𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

𝛿-RS-IOPP accepts     ⇒     ∆ 𝑞1, RS 𝔽, ℒ, 𝑑 < 𝛿     ⇒
  there is a codeword   ̅𝑓1 ∊ List 𝝅, 𝑑, 𝛿  s.t.   𝑓1 𝑎1 = 𝑏1



Poly-IOP  ⇒  IOP:   first attempt

eval 𝑓 at  𝑎+ ∊ 𝔽 ∖ ℒ

𝑏+ ⇽ 𝑓(𝑎+)

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞+ 𝑋 ≔ 2 9 );#
9)<#

∊ RS[𝔽, ℒ, 𝑑 − 1]

for some 𝛿 ∊ [0,1]       (𝑞% is easy to calculate from 𝜋)

𝜋 = ∶ ℒ ⇾ 𝔽
honest prover:    𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

eval 𝑓 at  𝑎( ∊ 𝔽 ∖ ℒ

𝑏( ⇽ 𝑓(𝑎()

𝑃 𝑃𝑉 𝑉

𝛿-RS-IOPP for 𝑞( 𝑋 ≔ 2 9 );$
9)<$

∊ RS[𝔽, ℒ, 𝑑 − 1]

Verifier can conclude:  there are  ̅𝑓,, �𝑓 ∊ List 𝝅, 𝑑, 𝛿  s.t.  �𝑓+ 𝑎+ = 𝑏+
𝑓( 𝑎( = 𝑏(

Insufficient!    What if  𝑓, ≠ 𝑓 	?   (can happen if 𝜹>unique decoding distance)



A simple observation          (DEEP)

𝑓 ∊ 𝔽5-[𝑋] 𝜋 = ∶ ℒ ⇾ 𝔽
Honest prover:    𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

sample random   𝑟 ∊ 𝔽 ∖ ℒ

return  𝑠 ∊ 𝔽 .       Honest prover:  𝑠 ≔ 𝑓(𝑟)
Claim:  (𝑟, 𝑠) commits prover to 
     one 𝑓 ∊ List 𝝅, 𝑑, 𝛿  

union bound
over all pairs Pr[BAD] for a fixed 𝑓%, 𝑓&

Fact:   Let BAD be the event that  ∃	 ̅𝑓+ ≠ �𝑓( ∊ List 𝝅, 𝑑, 𝛿    s.t.   𝑓+ 𝑟 = 𝑓( 𝑟 = 𝑠

Pr[BAD] ≤ |rstu 𝝅,D,? |
` 	 � D

𝔽 2|ℒ|𝑟



A simple observation
Fact:   Let BAD be the event that  ∃	 ̅𝑓+ ≠ �𝑓( ∊ List 𝝅, 𝑑, 𝛿    s.t.   𝑓+ 𝑟 = 𝑓( 𝑟 = 𝑠

Pr[BAD] ≤ |rstu 𝝅,D,? |
` 	 � D

𝔽 2|ℒ|𝑟

When  𝛿 < 1 − 𝜌   (Johnson bound)   then   |List 𝝅, 𝑑, 𝛿 | < const𝛿 

⇒ If 𝔽	is sufficiently large then   Pr BAD < 22,`w	 (negligible)

⇒ Only one 𝑓∊List 𝝅, 𝑑, 𝛿  satisfies 𝑓 𝑟 = 𝑠, with high probability 

(otherwise, repeat with multiple random 𝑟%, … , 𝑟' ∊ 𝔽 ∖ ℒ)



Poly-IOP  ⇒  IOP:   second attempt

eval 𝑓 at  𝑎+ ∊ 𝔽 ∖ ℒ

𝑏+ ⇽ 𝑓(𝑎+)

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞+ 𝑋 ≔ 2 9 )> 9
? 9

∊ RS[𝔽, ℒ, 𝑑 − 2]

𝜋 = ∶ ℒ ⇾ 𝔽
Honest prover:    𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

sample random   𝑟 ∊ 𝔽 ∖ ℒ

return  𝑠 ∊ 𝔽 .       Honest prover:  𝑠 ≔ 𝑓(𝑟)

𝑉 𝑋 ≔ (𝑋 − 𝑎%)(𝑋 − 𝑟)

𝐼 𝑎% ≔ 𝑏%,    𝐼 𝑟 = 𝑠

Verifier can conclude:  there is  ̅𝑓, ∊ List 𝝅, 𝑑, 𝛿  s.t.  �𝑓+ 𝑎+ = 𝑏+
𝑓+ 𝑟 = 𝑠



Poly-IOP  ⇒  IOP:   second attempt

eval 𝑓 at  𝑎( ∊ 𝔽 ∖ ℒ

𝑏( ⇽ 𝑓(𝑎()

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞( 𝑋 ≔ 2 9 )> 9
? 9

∊ RS[𝔽, ℒ, 𝑑 − 2]

𝜋 = ∶ ℒ ⇾ 𝔽
Honest prover:    𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

sample random   𝑟 ∊ 𝔽 ∖ ℒ

return  𝑠 ∊ 𝔽 .       Honest prover:  𝑠 ≔ 𝑓(𝑟)

𝑉 𝑋 ≔ (𝑋 − 𝑎&)(𝑋 − 𝑟)

𝐼 𝑎& ≔ 𝑏&,    𝐼 𝑟 = 𝑠

Verifier can conclude:  there is  ̅𝑓( ∊ List 𝝅, 𝑑, 𝛿     s.t.     𝑓( 𝑎( = 𝑏(, 𝑓( 𝑟 = 𝑠

Now:  𝛿 < 1 − 𝜌   and   𝑓+ 𝑟 = 𝑓( 𝑟 = 𝑠     ⇒     𝑓+ = 𝑓(  w.h.p,   as required



Poly-IOP  ⇒  IOP:  summary

• The IOP prover encodes 𝑓 ∊ 𝔽CD[𝑋] using a linear code (RS)
(other linear codes can be used, possibly with a faster encoding than RS)

• 𝛿-RS-IOPP applied to a quotient  𝑞(𝑋) ≔ M a 2l a
m a  

proves evaluations of the encoded polynomial to the Verifier.

• For  𝛿 < 1 − 𝜌  :   an out of domain query (𝑟, 𝑠) ensures that 
the prover is bound to a unique polynomial, w.h.p



Poly-IOP  ⇒  IOP  ⇒  SNARK

Polynomial 
interactive

oracle proof 
(Poly-IOP)

Interactive
Proof (IP)

(zk)SNARK for 
general circuits

Fiat-Shamir
RS-IOPP

(such as FRI)

IOP

Merkle 
commitments

A direct SNARK construction:

An RS-IOPP is the key ingredient in compilation



Poly-IOP  ⇒  IOP:   remarks

Remark 2:  naively, the IOP uses one RS-IOPP per query to 𝑓
• In practice, we can batch many RS-IOPPs into one RS-IOPP
• Let’s see how … first we need some tools

Remark 1:   what if Poly-IOP Verifier wants to query 𝑓 at 𝑎 ∈ ℒ  ??

• The problem:      𝑞 𝑋 ≔ M a 2l(a)
(a2c)(a2�) ∶ ℒ ⇾ 𝔽    

 is undefined at  𝑋 = 𝑎     (not a problem when 𝑎 ∉ ℒ)

• Solution:  𝑄(X) ≔ 𝑓 𝑋 − 𝐼 𝑋 /(𝑋 − 𝑎)(𝑋 − 𝑟)   is a poly. in 𝔽5-)([𝑋].
    Honest prover defines  𝑞 𝑎 ≔ 𝑄(𝑎) and runs the RS-IOPP on 𝑞.



Towards an efficient RS-IOPP

Distance Preserving 
Transformations

One last topic before the break:



Distance Preserving Transformations
Let  ℒ, ℒ′ ⊆ 𝔽,  𝑑, 𝑑� some degree bounds,  and  𝛿 ∊ [0,1].

Def: A distance preserving transformation is a randomized map
𝑇 𝑢,, … , 𝑢7; 𝑟 ⇾ 𝑢

 that maps    𝑢,, … , 𝑢7: ℒ ⇾ 𝔽    to    𝑢: ℒ′ ⇾ 𝔽    such that:

 case 1:  (the honest case)
  if  𝑢,, … , 𝑢7∊ RS[𝔽, ℒ, 𝑑]   then   𝑢∊ RS[𝔽, ℒ′, 𝑑′]    for all 𝑟.

 case 2:  (the dishonest case)
 if  some 𝑢� is 𝛿-far from RS[𝔽, ℒ, 𝑑]  then 
  𝑢 is 𝛿-far from RS[𝔽, ℒ′, 𝑑′],  w.h.p over 𝑟.



Example 1:  batch RS-IOPP
Setting: Prover has 𝑢%, … , 𝑢.: ℒ ⇾ 𝔽,    Verifier has oracles for 𝑢%, … , 𝑢..

Goal: convince Verifier that all 𝑢', … , 𝑢7 are 𝛿-close to RS[𝔽, ℒ, 𝑑].

• Naively:  run 𝑘 RS-IOPP protocols    ⇒   expensive

• Better:  batch all 𝑘 into a single function  𝑢: ℒ ⇾ 𝔽

 step 1:  Verifier samples random 𝑟 in 𝔽;  sends to prover

 step 2:  Prover sets   𝑢 ≔ 𝑢' + 𝑟 � 𝑢, + 𝑟`𝑢` +⋯+ 𝑟7𝑢7: ℒ ⇾ 𝔽
 step 3:  Both run RS-IOPP on  𝑢: ℒ ⇾ 𝔽
    when Verifier wants 𝑢(a) for some 𝑎 ∊ ℒ, prover opens all  𝑢%(𝑎), … , 𝑢.(𝑎)



Why is this distance preserving?

Case 1:  (an honest prover)
 if  𝑢', … , 𝑢7∊ RS[𝔽, ℒ, 𝑑]  then  𝑢∊ RS 𝔽, ℒ, 𝑑   for all 𝑟 ∊ 𝔽

Case 2:  (a dishonest prover)
 if  some 𝑢� is 𝛿-far from RS 𝔽, ℒ, 𝑑 ,  we need to argue that
 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑], with high probability over 𝑟 ∊ 𝔽

When 𝛿 ∊ 0,1 − 𝜌 , Case 2 follows from the 
       celebrated BCIKS proximity gap theorem.

https://eprint.iacr.org/2020/654.pdf


The proximity gap theorem
Thm (BCIKS’20, Thm. 6.2): RS[𝔽, ℒ, 𝑑] an RS-code with const. rate 𝜌 ≔ 𝑑/𝑛 (say, 𝜌 = 0.5)

 Let 𝑢', … , 𝑢7: ℒ ⇾ 𝔽   and   0 < 𝛿 < 1 − 1.01 𝜌  .
 For 𝑟 ∊ 𝔽  define   𝑢(�) ≔ 𝑢' + 𝑟 � 𝑢, + 𝑟`𝑢` +⋯+ 𝑟7𝑢7 .

 Suppose that     Pr𝑟[ 𝑢(�)is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟
 then all  𝑢�  are 𝛿-close to RS 𝔽, ℒ, 𝑑 ,

 where 𝑒𝑟𝑟 = 𝑂 7"
𝔽  for  0 < 𝛿 < +)@

(
 

  𝑒𝑟𝑟 = 𝑂 7"1

𝔽
 for  +)@

(
< 𝛿 < 1 − 1.01 𝜌 

We will assume that
err is negligible, i.e.
err < ⁄1 2%&(

(if not, use multiple 𝑟)

𝑛 ≔ |ℒ|

https://eprint.iacr.org/2020/654.pdf


The proximity gap theorem

Suppose that     Pr𝑟[ 𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟
 then all  𝑢�  are 𝛿-close to RS 𝔽, ℒ, 𝑑

Contra-positive:  if some 𝑢� is 𝛿-far from RS 𝔽, ℒ, 𝑑   
   then 𝑢(�) is 𝛿-far with high probability, over 𝑟. 

Proximity gap error (𝑒𝑟𝑟) as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

unknown vacuous

(Johnson bound) (capacity bound)(uniqueness bound)

O �!)
|𝔽| O �!)!

|𝔽|

conjectured to 
be small

𝑛 ≔ |ℒ|



A stronger form:  correlated proximity
Thm (BCIKS’20, Thm. 6.2):

 Let 𝑢', … , 𝑢7: ℒ ⇾ 𝔽   and   0 < 𝛿 < 1 − 1.01 𝜌  .

 Suppose that     Pr𝑟[ 𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟

 then there is an  𝑆 ⊆ ℒ  such that  𝑆 ≥ (1 − 𝛿)� |ℒ|   and

 for all 𝑗:   ∃𝑓� ∊ RS[𝔽, ℒ, 𝑑]  s.t.   ∀𝑥 ∊ 𝑆:	𝑢� 𝑥 = 𝑓�(𝑥)  

⇒   𝑢', … , 𝑢7 are 𝛿-close to RS[𝔽, ℒ, 𝑑] on the same positions 𝑆 .

(recall   𝑢(-) ≔ 𝑢" + 𝑟 . 𝑢% + 𝑟&𝑢& +⋯+ 𝑟!𝑢!  )

https://eprint.iacr.org/2020/654.pdf


Why is this called a proximity gap??

Suppose that     Pr𝑟[ 𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ] > 𝑒𝑟𝑟   then
 all  𝑢�  are 𝛿-close to RS 𝔽, ℒ, 𝑑   on the same positions 𝑆 ⊆ ℒ 

But if all 𝑢', … , 𝑢7: ℒ ⇾ 𝔽 are 𝛿-close to RS 𝔽, ℒ, 𝑑  
on positions 𝑆 ⊆ ℒ,  then 𝑢(�) is 𝛿-close for all 𝑟 ∊ 𝔽.

So    Pr𝑟[ 𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑] ]   exhibits a gap:

0 1𝑒𝑟𝑟

not possible

𝑢(&) is 𝛿-close for all 𝑟 𝑢(&) is 𝛿-close for few 𝑟 



Proximity gaps for other linear codes?
A similar proximity gap holds for every linear code.

Thm: (Zeilberger’24)  Let 𝒞 ⊆	𝔽" be an 𝑛, 𝑑𝑖𝑚, 𝑙 !	linear code.
Then 𝒞 has a correlated proximity gap for 0 < 𝛿 < 1 − 2 𝜏	
and  err = O �7"

|𝔽|  , where  𝜏 ≔ 1 − (𝑙/𝑛).

min. distance

This can be used in a 𝒞-proximity IOPP    (e.g., Basefold, Blaze)

(For RS-code 𝜏 ≈ 𝜌, so this gap is much weaker than BCIKS’20) 

https://eprint.iacr.org/2024/1843


2nd Distance preserving example:  2-way folding

From now on set  ℒ = 1,ω,ω`, … , ω"2, ⊆ 𝔽,   where

• 𝑛 is a power of two, and   

• ω is an 𝑛-th primitive root of unity   (𝜔" = 1)
 (requires that 𝑛 divides 𝔽 − 1)

Then:
•    ω"/` = −1   so that if   𝑥 = ω( ∊ ℒ   then  −𝑥 = ω(4( ⁄" `) ∊ ℒ

• ℒ` = 𝑎`: 𝑎 ∊ ℒ = ℒ /2 = 𝑛/2            ( −𝑎, 𝑎 → 𝑎( )



2-way folding a polynomial

A folding transformation:  let’s start with an example.

 Let    𝑓 𝑋 = 1 + 2𝑋 + 3𝑋( + 4𝑋A + 5𝑋B + 6XC ∊ 𝔽5D[𝑋]

Then: 𝑓 𝑋 = 𝑓���� 𝑋` + X � 𝑓���(X`)

Define:   for 𝑟 ∊ 𝔽  define  𝑓����,� ≔ 𝑓����+ 𝑟 � 𝑓���   ∊ 𝔽C�[𝑋]

Define   𝑓EFEG(𝑋) ≔ 1 + 3𝑋 + 5𝑋(   and   𝑓HII X ≔ 2 + 4𝑋 + 6𝑋(



2-way folding a polynomial: more generally

For 𝑓 ∊ 𝔽CD[𝑋]  (with 𝑑 even)  define:

•  𝑓���� 𝑋` 	≔ 6 9 *6 )9

(
     and    𝑓HII X( ≔ 6 9 )6 )9

(9

•  𝑓����,�(𝑋) ≔ 𝑓���� 𝑋 	+ 𝑟 � 𝑓��� (𝑋)   ∊ 𝔽C ⁄D `[𝑋]

Then:      𝑓 𝑋 = 𝑓���� 𝑋` + X � 𝑓���(X`)

• for every 𝑎 ∊ 𝔽:   𝑓����,�(𝑎`)  can be eval given  𝑓 𝑎 , 𝑓 −𝑎

• ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]    ⇒ 𝑓����,� ∊ RS[𝔽, ℒ`, 𝑑/2] unchanged
rate = 𝑑/|ℒ|



Folding an arbitrary word  𝑢: ℒ ⇾ 𝔽  
For  𝑢: ℒ ⇾ 𝔽  and 𝑟 ∊ 𝔽 define   𝑢�, 𝑢�, 𝑢����,�: ℒ` ⇾ 𝔽   as

• for  𝑎 ∊ ℒ:	 𝑢�(𝑎`) 	≔
" < *" )<

(
     and    𝑢J 𝑎( ≔ " < )" )<

(<

• for  𝑏 ∊ ℒ`: 	 𝑢����,�(𝑏) 	≔ 𝑢� 𝑏 	+ 𝑟 � 𝑢� (𝑏)

Lemma (distance preservation):   for   0 < 𝛿 < 1 − 𝜌 

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑]    ⇒     𝑢����,� ∊ RS[𝔽, ℒ`, 𝑑/2]  for all 𝑟 ∊ 𝔽 

• 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑]   ⇒   

   Pr
�

[ 𝑢����,� is 𝛿-far from RS[𝔽, ℒ`, 𝑑/2] ] ≥ 1 − 𝑒𝑟𝑟

(recall ℒ( = ℒ /2)



Folding an arbitrary word  𝑢: ℒ ⇾ 𝔽  
For  𝑢: ℒ ⇾ 𝔽  and 𝑟 ∊ 𝔽 define   𝑢�, 𝑢�, 𝑢����,�: ℒ` ⇾ 𝔽   as

• for  𝑎 ∊ ℒ:	 𝑢�(𝑎`) 	≔
" < *" )<

(
     and    𝑢J 𝑎( ≔ " < )" )<

(<

• for  𝑏 ∊ ℒ`: 	 𝑢����,�(𝑏) 	≔ 𝑢� 𝑏 	+ 𝑟 � 𝑢� (𝑏)

Lemma (distance preservation):   for   0 < 𝛿 < 1 − 𝜌 

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑]    ⇒     𝑢����,� ∊ RS[𝔽, ℒ`, 𝑑/2]  for all 𝑟 ∊ 𝔽 

• Pr
�

[ 𝑢����,� is 𝛿-close to RS[𝔽, ℒ`, 𝑑/2] ] > 𝑒𝑟𝑟      ⇒

   𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑] 

(recall ℒ( = ℒ /2)

(contra-positive)



Why is this true?
The first part of the lemma is easy.  Let’s prove the second part.

• Suppose that Pr�[ 𝑢����,� is 𝛿-close to RS[𝔽, ℒ`, 𝑑/2] ] > 𝑒𝑟𝑟

• Then by the BCIKS’20 theorem, there are  𝑔�, 𝑔� ∊ RS[𝔽, ℒ`, 𝑑/2] 
 that match 𝑢�, 𝑢� on a set 𝑆 ⊆ ℒ` of size 𝑆 ≥ 1 − 𝛿 ( ⁄𝑛 2)

• Define  𝑔: ℒ ⇾ 𝔽 as  𝑔 𝑎  ≔ 𝑔� 𝑎` + 𝑎 � 𝑔�(𝑎`) ∊ RS[𝔽, ℒ, 𝑑] 

• Then:   𝑔 𝑎 = 𝑢(𝑎) for all 𝑎 ∊ ℒ  for which 𝑎` ∊ 𝑆   (2|𝑆| values in ℒ)

• But then  ∆ 𝑢, 𝑔 ≤ 1 − ` �
" = 1 − �

"/` ≤ 𝛿.    

  ⇒  𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑]



An important corollary

Let  𝒞 = RS[𝔽, ℒ, 𝑑]    and   𝒞′ = RS[𝔽, ℒ`, 𝑑/2]

Corollary:  For 𝑢: ℒ ⇾ 𝔽

• if ∆ 𝑢, 𝒞 < 1 − 𝜌  then     Pr
K
	∆ 𝑢LHMI,K, 𝒞N ≥ ∆ 𝑢, 𝒞 	 ≥ 1 − 𝑒𝑟𝑟

• if ∆ 𝑢, 𝒞 ≥ 1 − 𝜌  then     Pr
K
	∆ 𝑢LHMI,K, 𝒞N ≥ 1 − 𝜌	 ≥ 1 − 𝑒𝑟𝑟

(folding does not decrease distance, w.h.p)

Recall:      ∆ 𝑢, 𝒞 ≤ 𝛿     ⟺     𝑢 is 𝛿-close to 𝒞



4-way folding  𝑢: ℒ ⇾ 𝔽   (using 𝒊𝟐 = −𝟏) 

For  𝑢: ℒ ⇾ 𝔽  define   𝑢', 𝑢,, 𝑢`, 𝑢� ∶ ℒ� ⇾ 𝔽   for  𝑎 ∊ ℒ	 as

The 4-way fold of u:  for 𝑟 ∊ 𝔽 define 𝑢�����,�: ℒ� ⇾ 𝔽 as
    𝑢�����,�(𝑏) ≔ 𝑢' 𝑏 	+ 𝑟 � 𝑢, (𝑏) + 𝑟` � 𝑢` (𝑏) + 𝑟� � 𝑢� (𝑏)   for 𝑏 ∊ ℒB

(a degree-4 FFT) 

Evaluating  𝑢�����,�(𝑋)  at 𝑏 ∊ ℒ� requires four evals. of 𝑢(𝑋). 



4-way folding  𝑢: ℒ ⇾ 𝔽   (using 𝒊𝟐 = −𝟏) 

For  𝑢: ℒ ⇾ 𝔽  define   𝑢', 𝑢,, 𝑢`, 𝑢� ∶ ℒ� ⇾ 𝔽   for  𝑎 ∊ ℒ	 as

The 4-way fold of u:  for 𝑟 ∊ 𝔽 define 𝑢�����,�: ℒ� ⇾ 𝔽 as
    𝑢�����,�(𝑏) ≔ 𝑢' 𝑏 	+ 𝑟 � 𝑢, (𝑏) + 𝑟` � 𝑢` (𝑏) + 𝑟� � 𝑢� (𝑏)   for 𝑏 ∊ ℒB

(a degree-4 FFT) 

Fact:  the same distance preservation corollary holds for 𝑢�����,� 



8-way folding  𝑢: ℒ ⇾ 𝔽   (using an 8th root of unity) 

Can similarly define 8-way folding, or even 2� folding for 𝑤 ≥ 3.

 maps   𝑢: ℒ ⇾ 𝔽    to   𝑢`3����,�: ℒ`
3 ⇾ 𝔽            (  |ℒ&"| = |ℒ|/2/  )

 (1)    evaluating  𝑢`3����,�(𝑏)  requires 2� evals. of 𝑢(𝑋)
  ⇒    uses a degree-2� FFT    (degree-8 FFT for 8-way folding)

 (2)    the same distance preservation corollary holds for 𝑢`3����,� 



End of lecture:  Brief Summary
For a linear code 𝒞:    List 𝑢, 𝒞, 𝛿  is small up to 𝛿 < 1 − 1 − 𝜇

Poly-IOP ⇾ IOP compiler:
• Honest 𝑷 Commits to 𝑓 ∊ 𝔽CD[𝑋] by sending its encoding ̅𝑓 to 𝑽
• Prove evaluation of 𝑓 using RS-IOPP on quotient of sent word 𝑢
• Out-of-domain eval. commits 𝑃 to unique word	in List 𝑢, 𝒞, 𝛿  

Folding:
• (𝑢: ℒ ⇾ 𝔽)   ⇾   (𝑢����,�: ℒ` ⇾ 𝔽)  is a distance preserving map 
• Proof using the BCIKS’20 proximity gap theorem



Let’s put all this machinery to use

See you in the next lecture …



THE  END


