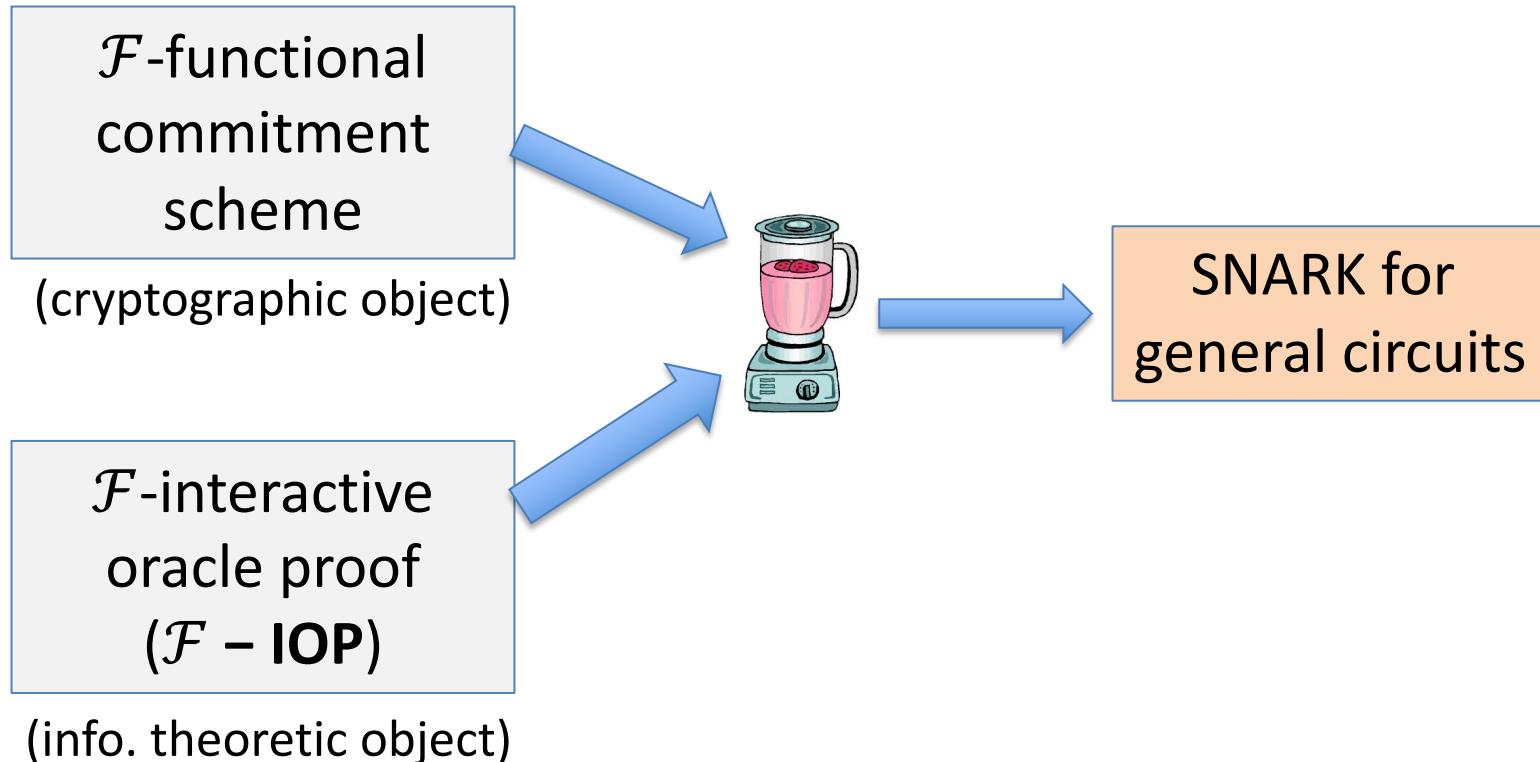


FRI and Proximity Proofs: What they are what they are for

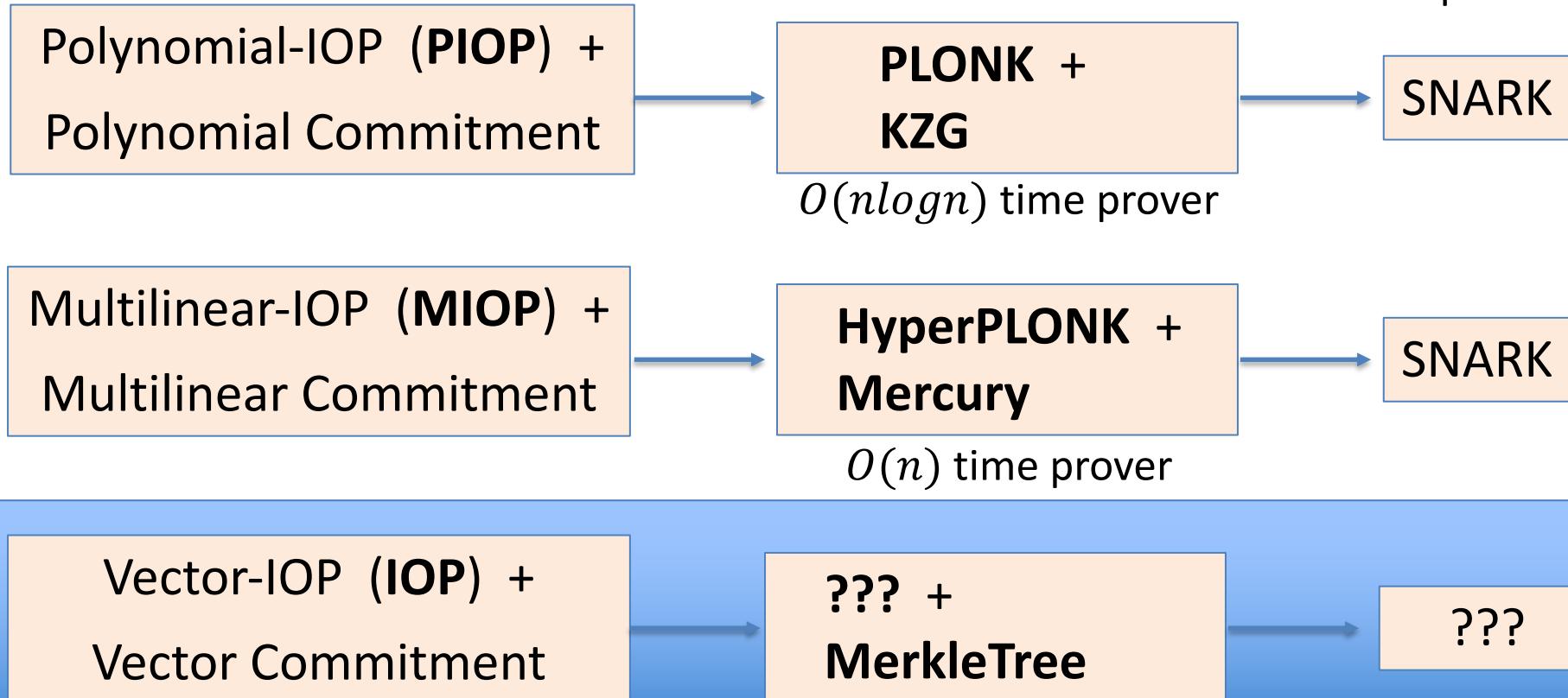
Dan Boneh
Stanford University

Recap: a General Paradigm for a Modern SNARK



Recap: three function families

n = size of comp. trace



Papers we discuss in this lecture and the next

- [FRI](#) (2018) and [analysis](#) (2018): Fast Reed–Solomon Interactive Oracle Proofs of Proximity
- [DEEP-FRI](#) (2019): Out of domain sampling improves soundness
- [BCIKS](#) (2020): Proximity Gaps for Reed–Solomon Codes
- [CircleSTARK](#) (2024): FRI using a Mersenne prime
- [STIR](#) (2024): Reed–Solomon proximity testing with fewer queries
- [WHIR](#) (2024): Proximity testing with a faster verifier

Beyond Reed-Solomon codes (a few recent results):

- [Breakdown](#) (2021), [Orion](#) (2022): Polynomial commitments with a fast prover
- [BaseFold](#) (2023): Polynomial commitments from foldable codes with shorter proofs
- [Blaze](#) (2024): Fast SNARKs from Interleaved RAA Codes

FRI: Fast Reed-Solomon IOPP

- Let \mathbb{F} be a finite field (say, $\mathbb{F} = \{0,1,2, \dots, p-1\}$) and $\mathcal{L} \subseteq \mathbb{F}$.
- Let $y: \mathcal{L} \rightarrow \mathbb{F}$ be a committed function (a vector of size $|\mathcal{L}|$)

FRI: a way to prove that y is “close” to a Reed-Solomon codeword

So what? Who cares? What does this even mean?

Let’s get started ... first some background

Background

- (1) Codes
- (2) IOP and IOPP
- (3) Poly-IOP

(1) Linear codes

Def: an $[n, k, l]_p$ **linear code** \mathcal{C} is a linear subspace $\mathcal{C} \subseteq \mathbb{F}^n$ of dimension k (so $|\mathcal{C}| = p^k$) where $|u|_0 \geq l$ for all $0 \neq u \in \mathcal{C}$

Recall: For u, v in \mathbb{F}^n

(sum as integers)

$$|u|_0 := (\text{Hamming weight of } u) = \sum_{i=0}^n (u_i)^0 \quad (\text{where } 0^0 = 0)$$

$$\Delta(u, v) := (\text{relative Hamming distance}) = \frac{1}{n} |u - v|_0 \in [0, 1]$$

$$\text{example: } \Delta((1, 5, 9, 4, 1), (1, 2, 9, 7, 4)) = 3/5$$

$$\mu = \mu(\mathcal{C}) := l/n = (\text{relative min weight of } \mathcal{C}) = \frac{1}{n} \cdot \min_{0 \neq u \in \mathcal{C}} |u|_0 \in [0, 1]$$

(1) Linear codes

Let $\mathcal{C} \subseteq \mathbb{F}^n$ be a $[n, k, l]_p$ linear code. Then:

Fact 1: For all distinct $u, v \in \mathcal{C}$ we have $\Delta(u, v) \geq \mu(\mathcal{C}) = l/n$
(otherwise $0 \neq |u - v|_0 < l$ and $u - v \in \mathcal{C}$)

Fact 2: $k \leq n - l + 1$ (i.e. $|\mathcal{C}| \leq p^{n-l+1}$) (the singleton bound)

Def: if $k = n - l + 1$ then \mathcal{C} is called an **MDS Code**

The classic MDS code: the Reed-Solomon code (more in a bit)

Encoding a message as a codeword

Let $\mathcal{C} \subseteq \mathbb{F}^n$ be a $[n, k, l]_p$ linear code.

Encoding: Let $\mathbf{c}_1, \dots, \mathbf{c}_k \in \mathbb{F}^n$ be a basis of \mathcal{C} .

A message $m = (m_1, \dots, m_k) \in \mathbb{F}^k$ can be encoded as a codeword

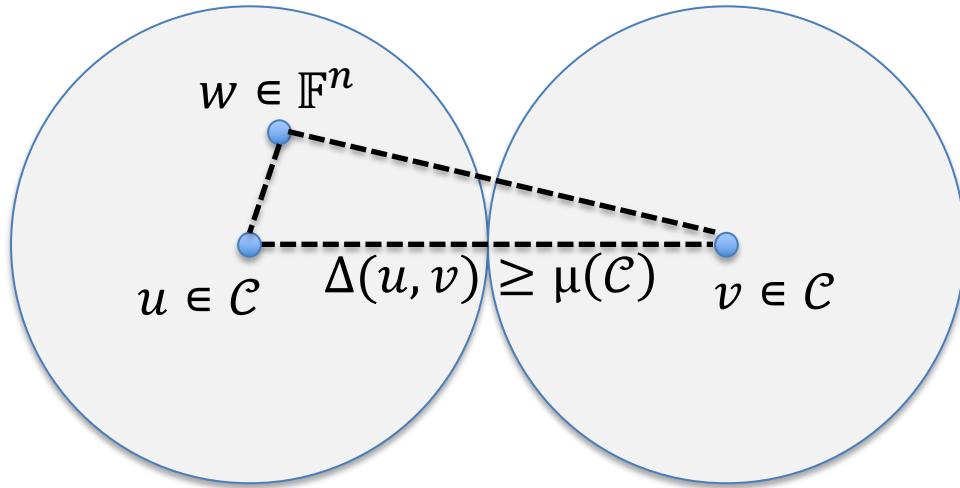
$$m \in \mathbb{F}^k \xrightarrow{\text{encode}} m_1\mathbf{c}_1 + \dots + m_k\mathbf{c}_k \in \mathbb{F}^n \quad (1/\rho \text{ expansion})$$

We can treat \mathcal{C} as a linear map $\mathcal{C}: \mathbb{F}^k \rightarrow \mathbb{F}^n$ that encodes messages in \mathbb{F}^k

Def: The **rate** of a code is $\rho := k/n \in [0,1]$ (e.g., $\rho = 0.5$)

In practice: for fast encoding, want ρ as large as possible ($\rho=0.5 \Rightarrow n=2k$)

Unique decoding distance $([n, k, l]_p$ linear code)



Fact 3: for every $w \in \mathbb{F}^n$
there is at most one codeword
 $u \in \mathcal{C}$ s.t. $\Delta(u, w) < \mu(\mathcal{C})/2$

(by triangular inequality)

Def: $\mu(\mathcal{C})/2$ in $[0, 0.5]$ is called the **unique decoding distance** of \mathcal{C}

Most $w \in \mathbb{F}^n$ are not uniquely decodable

$$\sum_{u \in \mathcal{C}} B_0(u, l/2) = \sum_{u \in \mathcal{C}} \binom{n}{l/2} p^{l/2} \leq p^{n-l+1} \cdot \binom{n}{l/2} p^{l/2} < n^{l/2} \cdot p^{n-l/2+1} \ll p^n$$

$n < p$

List decoding

Def: For a $[n, k, l]_p$ linear code \mathcal{C} , $w \in \mathbb{F}^n$, and $\delta \in [0,1]$, let

$$\text{List}[w, \mathcal{C}, \delta] := \{ c \in \mathcal{C} \text{ s.t. } \Delta(c, w) \leq \delta \}$$

Then $\delta < \mu(\mathcal{C})/2 \Rightarrow |\text{List}[w, \mathcal{C}, \delta]| \leq 1$

(unique decoding distance)

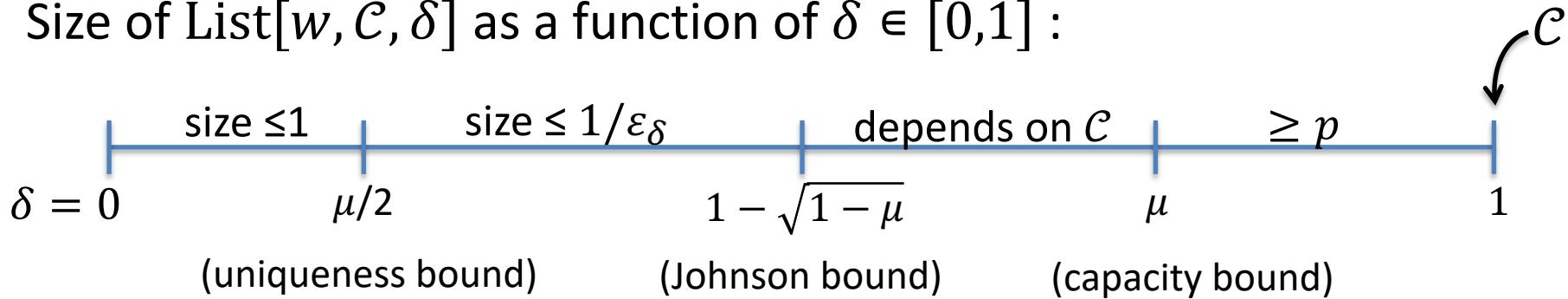
List decoding

The Johnson bound: For $\mathcal{C} \subseteq \mathbb{F}^n$, $w \in \mathbb{F}^n$, $0 < \delta < 1 - \sqrt{1 - \mu}$

$$|\text{List}[w, \mathcal{C}, \delta]| \leq 1/\varepsilon_\delta \text{ where } \varepsilon_\delta := 2\sqrt{1 - \mu} (1 - \sqrt{1 - \mu} - \delta)$$

(blows up as δ approaches $1 - \sqrt{1 - \mu}$)

Size of $\text{List}[w, \mathcal{C}, \delta]$ as a function of $\delta \in [0, 1]$:



Convenient terms: δ -close and δ -far

Def: We say that $w \in \mathbb{F}^n$ is **δ -close** to $\mathcal{C} \subseteq \mathbb{F}^n$
if there is some $c \in \mathcal{C}$ s.t. $\Delta(w, c) \leq \delta$
(i.e. $|\text{List}[w, \mathcal{C}, \delta]| \geq 1$). We write $\Delta(w, \mathcal{C}) \leq \delta$.

Def: We say that $w \in \mathbb{F}^n$ is **δ -far** from $\mathcal{C} \subseteq \mathbb{F}^n$
if for all $c \in \mathcal{C}$ we have $\Delta(w, c) > \delta$
(i.e. $|\text{List}[w, \mathcal{C}, \delta]| = 0$). We write $\Delta(w, \mathcal{C}) > \delta$.

The classic MDS code: Reed-Solomon

First, polynomials over a field \mathbb{F}

- $\mathbb{F}^{<d}[X]$: set of all univariate polynomials over \mathbb{F} of degree $< d$
- For a polynomial $f \in \mathbb{F}^{<d}[X]$ and $\mathcal{L} \subseteq \mathbb{F}$
write $\bar{f}: \mathcal{L} \rightarrow \mathbb{F}$ for the restriction of f to the domain \mathcal{L}

A function $w: \mathcal{L} \rightarrow \mathbb{F}$, where $n := |\mathcal{L}|$, can be treated as a vector

$$\text{vec}(w) := (w(a_1), \dots, w(a_n)) \in \mathbb{F}^n$$

where $\mathcal{L} = \{a_1, \dots, a_n\} \subseteq \mathbb{F}$ has a natural ordering

The classic MDS code: Reed-Solomon

Def: The **Reed-Solomon code** over the field \mathbb{F} , evaluation domain $\mathcal{L} \subseteq \mathbb{F}$, and degree d , is the linear code

$$\text{RS}[\mathbb{F}, \mathcal{L}, d] := \{ \bar{f}: \mathcal{L} \rightarrow \mathbb{F} \text{ where } f \in \mathbb{F}^{<d}[X] \}$$

Fact: Let $d < n := |\mathcal{L}|$.

$\text{RS}[\mathbb{F}, \mathcal{L}, d]$ is a $[n, d, l = (n - d + 1)]_p$ linear code

$\Rightarrow \text{RS}[\mathbb{F}, \mathcal{L}, d]$ is an MDS code (has p^d codewords)

Def: The **rate** of $\text{RS}[\mathbb{F}, \mathcal{L}, d]$ is $\rho := d/n \in [0, 1]$ (e.g., $\rho = 0.5$)

$$m \in \mathbb{F}^d$$

encode

$$\text{vec}(\bar{f}_m) \in \mathbb{F}^n$$

($1/\rho$ expansion)

Unique decoding and list decoding

Def: For $\text{RS}[\mathbb{F}, \mathcal{L}, d]$, $w: \mathcal{L} \rightarrow \mathbb{F}$, and $\delta \in [0,1]$, let

$$\text{List}[w, d, \delta] := \{ \bar{f} \in \text{RS}[\mathbb{F}, \mathcal{L}, d] \text{ s.t. } \Delta(\bar{f}, w) \leq \delta \}$$

So: $\delta < \frac{\mu}{2} = \frac{l}{2n} = \frac{n-d+1}{2n} \approx \frac{1-\rho}{2} \Rightarrow |\text{List}[w, d, \delta]| \leq 1$
(unique decoding distance)

Recall: $\rho := d/n \in [0,1]$ where $n := |\mathcal{L}|$. For MDS code: $\mu \approx 1 - \rho$.

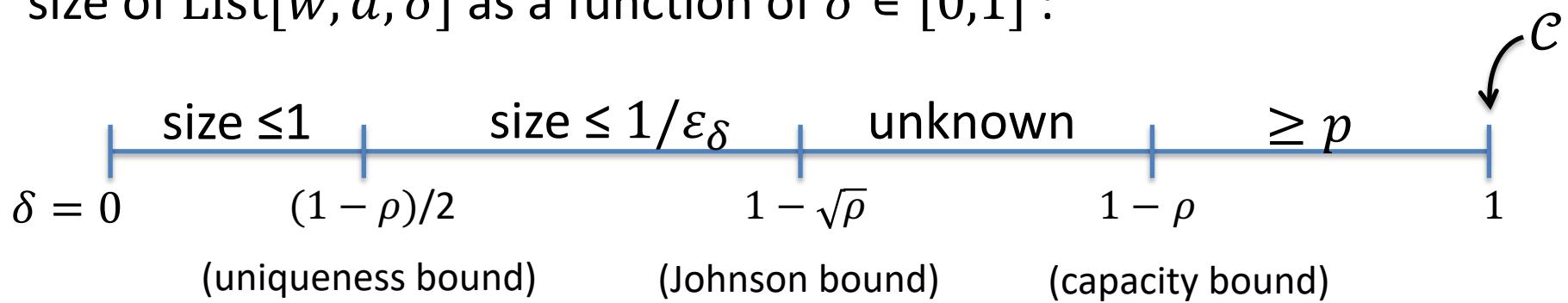
Unique decoding and list decoding

The Johnson bound: For $\text{RS}[\mathbb{F}, \mathcal{L}, d]$, $w: \mathcal{L} \rightarrow \mathbb{F}$, $\delta < 1 - \sqrt{\rho}$

$$|\text{List}[w, d, \delta]| \leq 1/\varepsilon_\delta \text{ where } \varepsilon_\delta := 2\sqrt{\rho}(1 - \sqrt{\rho} - \delta) \in (0, 1)$$

(blows up as δ approaches $1 - \sqrt{\rho}$)

size of $\text{List}[w, d, \delta]$ as a function of $\delta \in [0, 1]$:



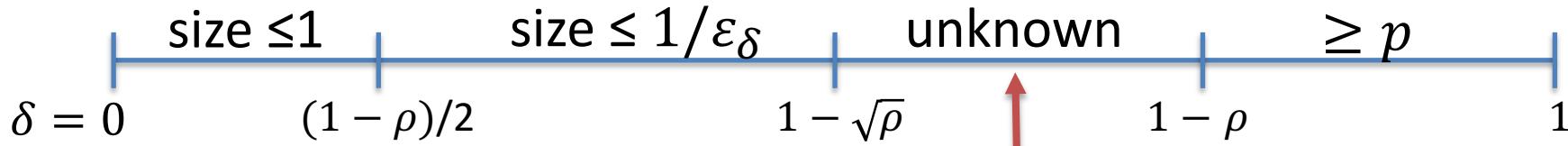
Unique decoding and list decoding

The Johnson bound: For $\text{RS}[\mathbb{F}, \mathcal{L}, d]$, $w: \mathcal{L} \rightarrow \mathbb{F}$, $\delta < 1 - \sqrt{\rho}$

$$|\text{List}[w, d, \delta]| \leq 1/\varepsilon_\delta \text{ where } \varepsilon_\delta := 2\sqrt{\rho}(1 - \sqrt{\rho} - \delta) \in (0, 1)$$

(blows up as δ approaches $1 - \sqrt{\rho}$)

size of $\text{List}[w, d, \delta]$ as a function of $\delta \in [0, 1]$:



Conjectured to be $\text{poly}(n)$ size (true for random $\mathcal{L} \subseteq \mathbb{F}$ [[BGM'24](#)])

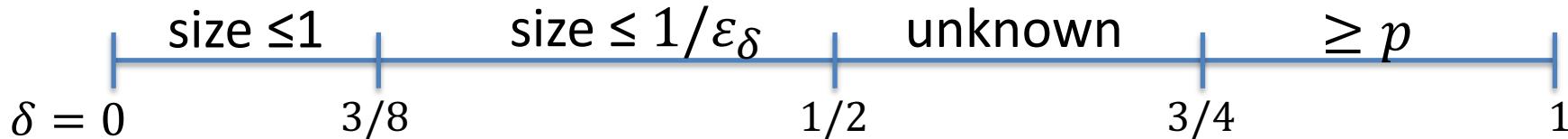
Unique decoding and list decoding

The Johnson bound: For $\text{RS}[\mathbb{F}, \mathcal{L}, d]$, $w: \mathcal{L} \rightarrow \mathbb{F}$, $\delta < 1 - \sqrt{\rho}$

$$|\text{List}[w, d, \delta]| \leq 1/\varepsilon_\delta \text{ where } \varepsilon_\delta := 2\sqrt{\rho}(1 - \sqrt{\rho} - \delta) \in (0, 1)$$

(blows up as δ approaches $1 - \sqrt{\rho}$)

size of $\text{List}[w, d, \delta]$ as a function of $\delta \in [0, 1]$:



An example: $\rho = 1/4$

Background on IOPs

Review (1) IOP and IOPP

(2) Poly-IOP

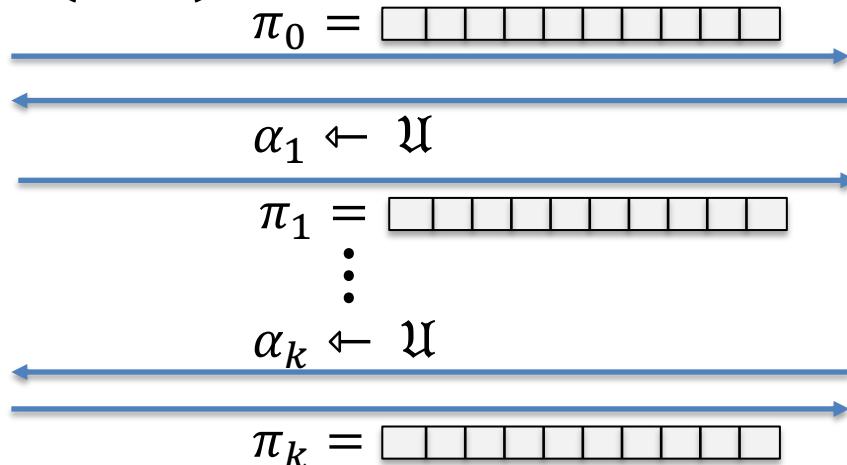
Interactive Oracle Proofs (IOP)

[BCS'16, RRR'16]

Let $R = \{(\mathbf{x}, \mathbf{w})\}$ be a poly-time relation (e.g., $\mathbf{x} = \text{sha3}(\mathbf{w})$)

Def: an IOP for R is a pair of algorithms (P, V) s.t.:

Prover $P(\mathbf{x}, \mathbf{w})$



Verifier(\mathbf{x})

α_i : short random challenges

π_i : poly-size strings (oracles)

V can query for cells of π_i

$V^{\pi_0, \dots, \pi_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) \rightarrow \text{yes/no}$

Interactive Oracle Proofs (IOP) [BCS'16, RRR'16]

Let $R = \{(\mathbb{x}, \mathbb{w})\}$ be a poly-time relation (e.g., $\mathbb{x} = \text{sha3}(\mathbb{w})$)

Def: an IOP (P, V) for R

is **complete** if for all $(\mathbb{x}, \mathbb{w}) \in R$, when V interacts with P

$$\Pr[V^{\pi_0, \dots, \pi_k}(\mathbb{x}, \alpha_1, \dots, \alpha_k) = \text{yes}] = 1$$

is **sound** if for all P^* and $\mathbb{x} \notin L(R) := \{\mathbb{x} \mid \exists \mathbb{w} : (\mathbb{x}, \mathbb{w}) \in R\}$

$$\Pr[V^{\pi_0, \dots, \pi_k}(\mathbb{x}, \alpha_1, \dots, \alpha_k) = \text{yes}] < \text{err} \quad (\approx 2^{-128})$$

is **knowledge sound** (informally) if for all P^* ,

V accepts $\mathbb{x} \Rightarrow$ prover “knows” \mathbb{w} s.t. $(\mathbb{x}, \mathbb{w}) \in R$

Interactive Oracle Proofs (IOP) [BCS'16, RRR'16]

Let $R = \{(\mathbf{x}, \mathbf{w})\}$ be a poly-time relation (e.g., $\mathbf{x} = \text{sha3}(\mathbf{w})$)

Def: an IOP (P, V) for R

is **complete** if for all $(\mathbf{x}, \mathbf{w}) \in R$, when V interacts with P

$$\Pr[V^{\pi_0, \dots, \pi_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) = \text{yes}] = 1$$

is **sound** if for all P^* and $\mathbf{x} \notin L(R) := \{\mathbf{x} \mid \exists \mathbf{w} : (\mathbf{x}, \mathbf{w}) \in R\}$

$$\Pr[V^{\pi_0, \dots, \pi_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) = \text{yes}] < \text{err} \quad (\approx 2^{-128})$$

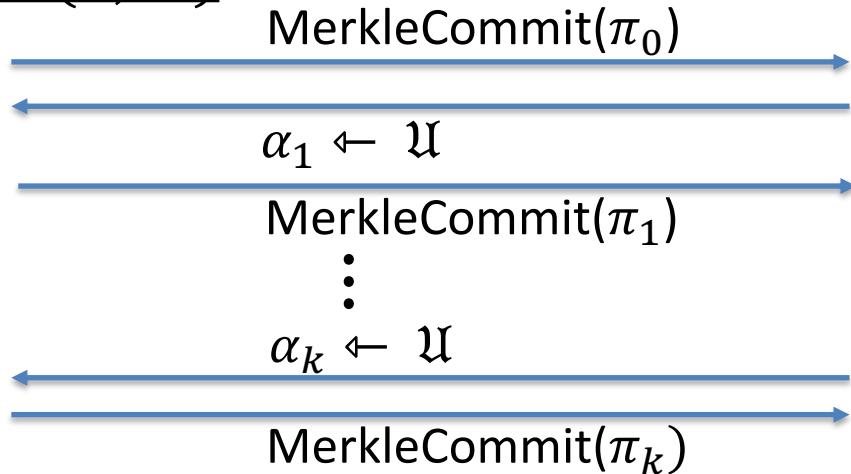
is **succinct** if $\text{time}(V)$ is at most $\text{polylog}(\text{time}(R))$ and $O(|\mathbf{x}|, \log(1/\text{err}))$
 $\Rightarrow k$ is small and V makes few queries to the oracles π_0, \dots, π_k

IOP for $R \Rightarrow$ SNARK for R (the BCS'16 compiler)

Step 1: replace π_0, \dots, π_k by Merkle commitments

We obtain an interactive proof (IP)

Prover $P(\mathbf{x}, \mathbf{w})$



Verifier(\mathbf{x})

Security now depends on collision resistance of Merkle hash function

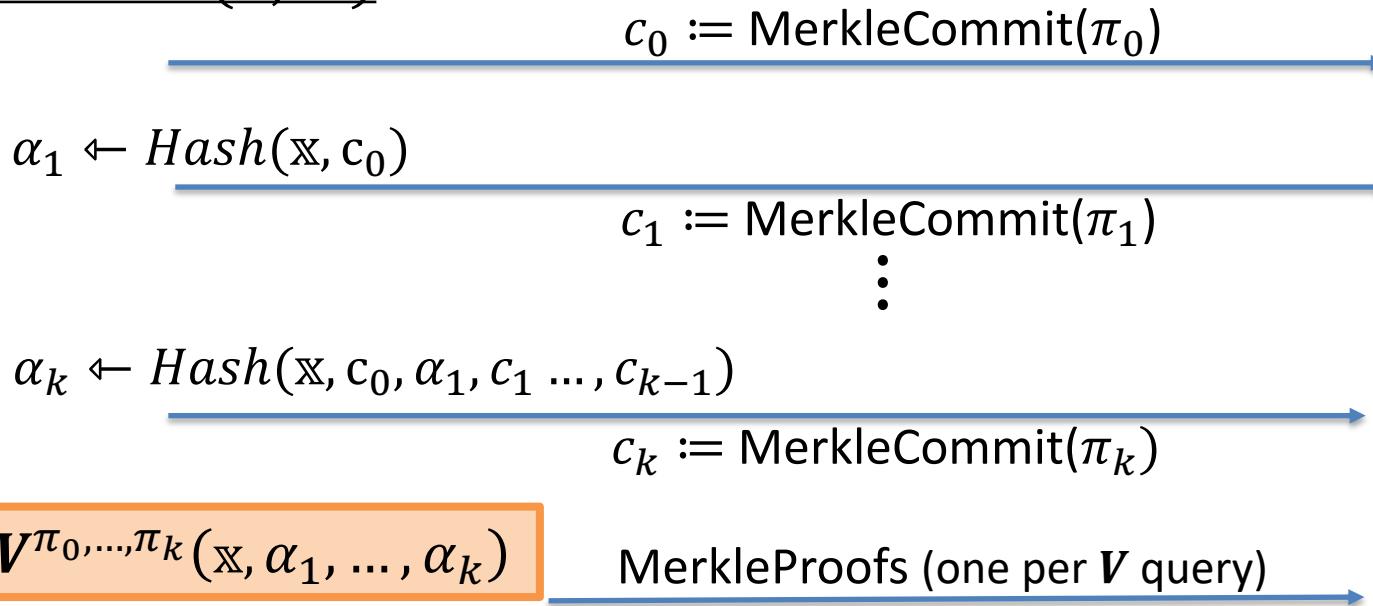
$V^{\pi_0, \dots, \pi_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) \rightarrow \text{yes/no}$

V queries π_i at cell $j \Rightarrow P$ responds with a Merkle proof for cell j

IOP for $R \Rightarrow$ SNARK for R (the BCS'16 compiler)

Step 2: Make non-interactive using the Fiat-Shamir transform

Prover $P(\mathbb{x}, \mathbb{w})$



SNARK
Proof

IOP for $R \Rightarrow$ SNARK for R (the BCS'16 compiler)

“Thm” (BCS'16, CCH+'19, [Hol'19](#)):

the IOP has round-by-round soundness

\Rightarrow

the derived SNARG is secure in the random oracle model

(see also Chiesa-Yogev [SNARK book](#))

Efficiency:

- To reduce prover work: minimize $|\pi_0| + \dots + |\pi_k|$
- To reduce proof size: minimize $\underbrace{k}_{\Rightarrow \text{Merkle Commitments}}$ and number of $\underbrace{\text{verifier queries}}_{\Rightarrow \text{Merkle Proofs } O_\lambda(\log |\pi_i|) \text{ size}}$

A generalization: IOP of Proximity (IOPP)

Def: an IOPP for R is a pair of algorithms (P, V) s.t.:

Prover $P(\mathbf{x}, \mathbf{y}, \mathbf{w})$

$$\pi_0 = \boxed{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad}$$

$\alpha_1 \leftarrow \mathfrak{U}$

$$\pi_1 = \boxed{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad}$$

Verifier^y(x)

\mathbf{y}, π_i : poly-size strings (oracles)

V can query for cells of y, π_i

The IOPP proves properties of \mathbf{x} and a committed \mathbf{y}

$V^{\mathbf{y}, \pi_0, \dots, \pi_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) \rightarrow \text{yes/no}$

Completeness and proximity soundness

Let $R = \{(x, y, w)\}$ be a poly-time relation ($y = \square \square$)

Def: (x, y) is **δ -far from R** , if $(x, y', w) \notin R$ for all y', w with $\Delta(y, y') \leq \delta$

Def: an IOPP (P, V) for R

is **complete** if for all $(x, y, w) \in R$ the Verifier V always accepts P

is **δ -sound** if for all (x, y) that are δ -far from R :

$$\forall P^*: \Pr[V^{y, \pi_0, \dots, \pi_k}(x, \alpha_1, \dots, \alpha_k) = \text{yes}] < \text{err} \quad (\approx 2^{-128})$$

if (x, y) is neither, then no guarantee on the output of V

An important example: a Reed-Solomon IOPP

Let $\mathcal{C} = \text{RS}[\mathbb{F}, \mathcal{L}, d]$, $u: \mathcal{L} \rightarrow \mathbb{F}$, and $\delta \in [0, 1]$

Def: an IOPP for RS, a **δ -RS-IOPP**, is an IOPP (P, V) such that

$P(\mathbb{x} = \mathcal{C}, \mathbb{y} = u, \mathbb{w} = \perp)$

Verifier $\mathbb{y}(\mathbb{x} = \mathcal{C})$

complete: $u \in \mathcal{C} \Rightarrow \Pr[P: V^{u, \pi_0, \dots, \pi_k}(\mathbb{x}, \alpha_1, \dots, \alpha_k) = \text{yes}] = 1$

δ -sound: $\Delta(u, \mathcal{C}) > \delta \Rightarrow \forall P^*: \Pr[V^{u, \pi_0, \dots, \pi_k}(\mathbb{x}, \alpha_1, \dots, \alpha_k) = \text{yes}] < \text{err}$

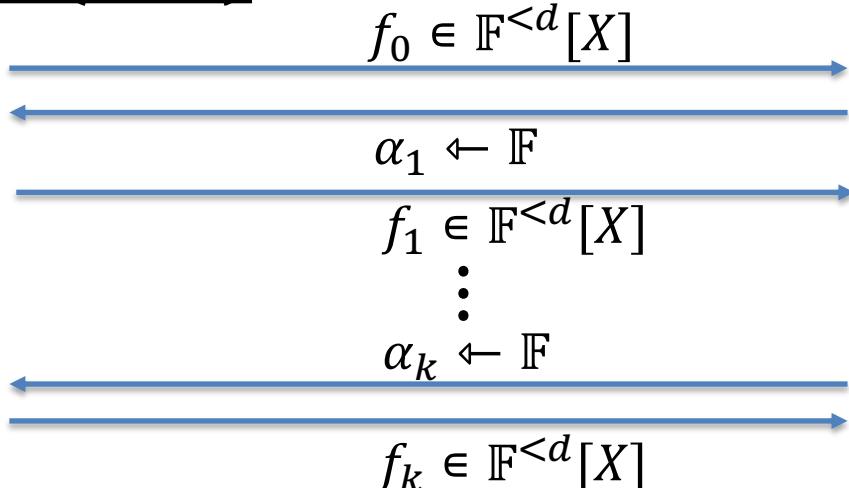
FRI is an efficient RS-IOPP. But why is this useful?

A special type of IOP: Poly-IOP

Let $R = \{(\mathbf{x}, \mathbf{w})\}$ be a poly-time relation

Def: a Poly-IOP for R is a pair of algorithms (P, V) s.t.:

Prover $P(\mathbf{x}, \mathbf{w})$



Verifier (\mathbf{x})

f_0, \dots, f_k : must be oracles
for functions in $\mathbb{F}^{<d}[X]$
 V can eval f_i at any $x \in \mathbb{F}$

$V^{f_0, \dots, f_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) \rightarrow \text{yes/no}$

A special type of IOP: Poly-IOP

Let $R = \{(\mathbf{x}, \mathbf{w})\}$ be a poly-time relation

Def: a Poly-IOP for R is a pair of algorithms (P, V) s.t.:

Prover $P(\mathbf{x}, \mathbf{w})$

Verifier (\mathbf{x})

Completeness and soundness as for an IOP

$$\alpha_k \leftarrow \mathcal{U}$$

$$f_k \in \mathbb{F}^{<d}[X]$$

$$V^{\mathbf{f}_0, \dots, f_k}(\mathbf{x}, \alpha_1, \dots, \alpha_k) \rightarrow \text{yes/no}$$

Compiling a Poly-IOP to a SNARK

Method 1: use an algebraic polynomial commitment

- univariate IOP: use KZG
- multilinear IOP: use Zeromorph or Mercury

Method 2: use an IOPP

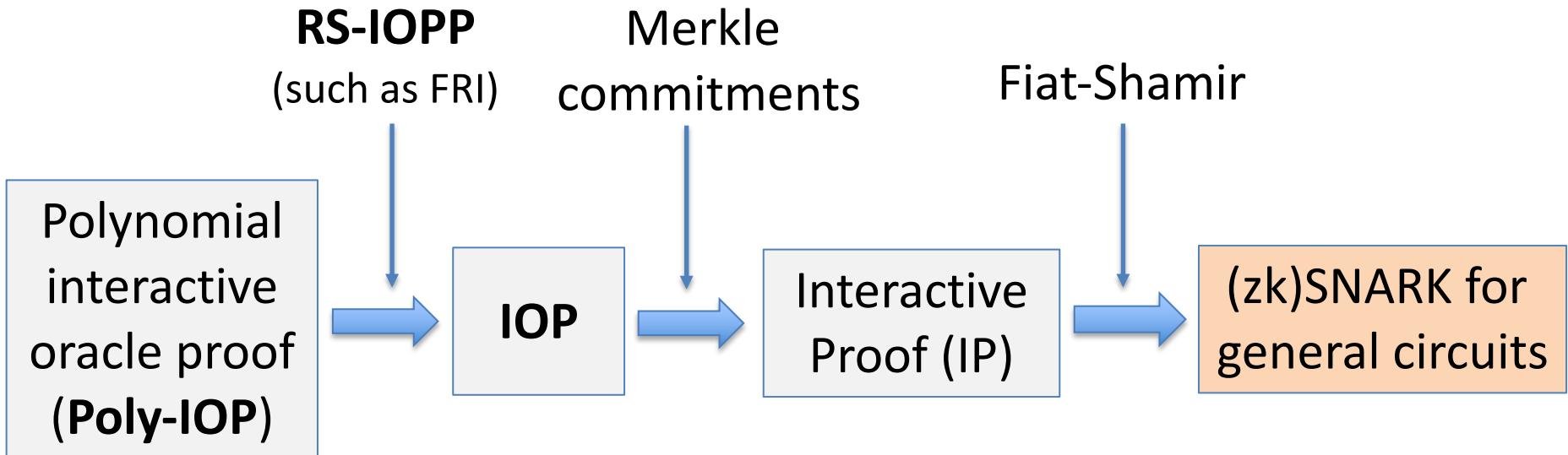
- Fast: using only a Merkle tree

Compiling a Poly-IOP to a SNARK Using a Reed-Solomon IOP of Proximity

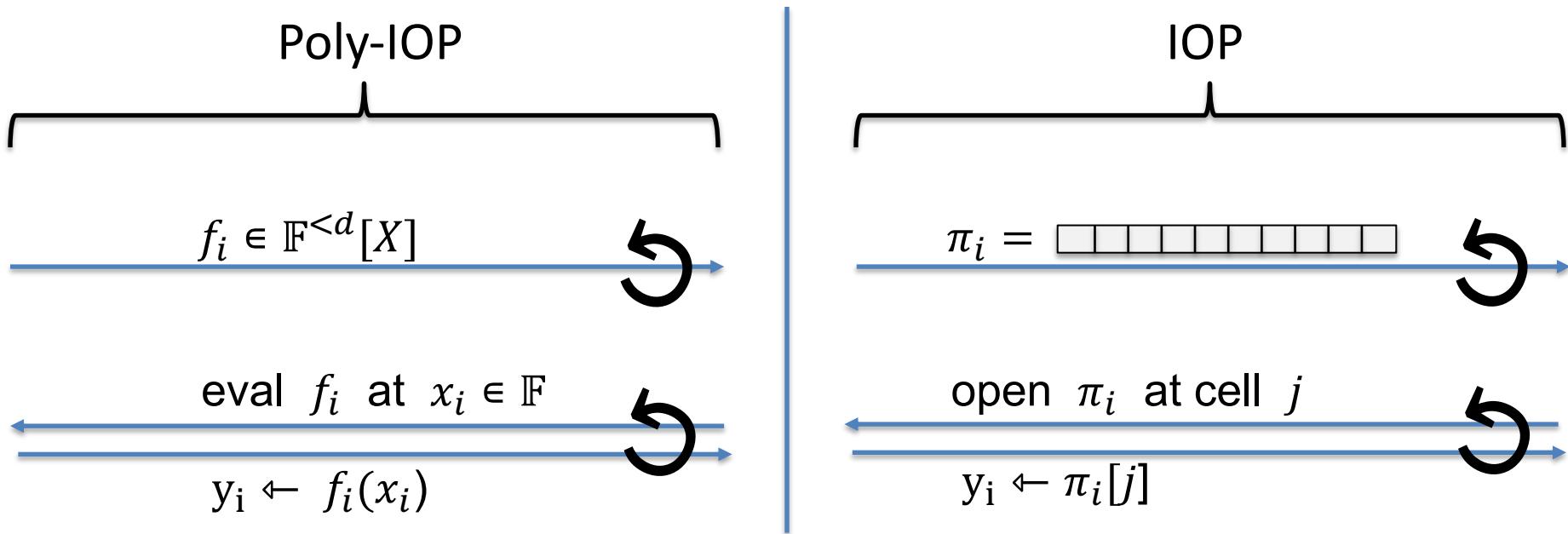
An important application of an RS-IOPP

Poly-IOP \Rightarrow IOP \Rightarrow SNARK

A direct SNARK construction:



The interesting step: Poly-IOP \Rightarrow IOP



Challenge: how to build a polynomial eval oracle from a list lookup oracle??

Representing a polynomial as an IOP oracle

The problem: $f \in \mathbb{F}^{<d}[X] \rightarrow$ string $\pi: \square \square \square \square \square \square \square \square \in \mathbb{F}^n$

Let $\mathcal{C} = \text{RS}[\mathbb{F}, \mathcal{L}, d]$ with $\mathcal{L} = \{a_1, \dots, a_n\}$ ($d < n$)

- The honest prover represents $f \in \mathbb{F}^{<d}[X]$ by its encoding

$$f \rightarrow \pi = (f(a_1), f(a_2), \dots, f(a_n)) = \bar{f} \in \mathcal{C} \subseteq \mathbb{F}^n$$

We will treat π as a function $\pi: \mathcal{L} \rightarrow \mathbb{F}$

New problem: in a Poly-IOP the prover can only send $f \in \mathbb{F}^{<d}[X]$, but now the prover can send any $\pi: \mathcal{L} \rightarrow \mathbb{F}$, possibly not in \mathcal{C}

Representing a polynomial as an IOP oracle

The new problem: prover sends an oracle $\pi: \mathcal{L} \rightarrow \mathbb{F}$

- Can Verifier confirm that π is a codeword in \mathcal{C} by only opening a few cells in π ??
 - Can't be done (what if π is wrong in only one cell?)
 - But Verifier can confirm that π is δ -close to some codeword, for $\delta < (\text{unique decoding distance})$ $\Rightarrow \pi$ represents a unique poly.
How to check? Reed-Solomon IOPP (e.g., FRI)

But this is not yet a PCS. First, let's develop some tools ...

Quotienting

Let $a \in \mathbb{F}$ s.t. $a \notin \mathcal{L}$ and let $b \in \mathbb{F}$. Let $f \in \mathbb{F}^{<d}[X]$ and $\delta \in [0,1]$.

Define the quotient map: $u: \mathcal{L} \rightarrow \mathbb{F} \rightarrow q(X) := \frac{u(X)-b}{X-a}: \mathcal{L} \rightarrow \mathbb{F}$

Fact 1: if $u = \bar{f} \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ and $b = f(a)$ then $q \in \text{RS}[\mathbb{F}, \mathcal{L}, d-1]$

Fact 2: Suppose that for all $\bar{g} \in \text{List}[u, d, \delta]$ we have $b \neq g(a)$.
Then q is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d-1]$.

Proof: Suppose $\Delta(q, \bar{h}) \leq \delta$ for some $h \in \mathbb{F}^{<d-1}[X]$ (i.e. $\bar{h} \in \text{RS}[\mathbb{F}, \mathcal{L}, d-1]$).

Set $g(X) := h(X) \cdot (X - a) + b$. Then $\bar{g} \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ and $\Delta(u, \bar{g}) \leq \delta$.

But then $\bar{g} \in \text{List}[u, d, \delta]$ and $g(a) = b$. Contradiction!

Visualizing Quotienting

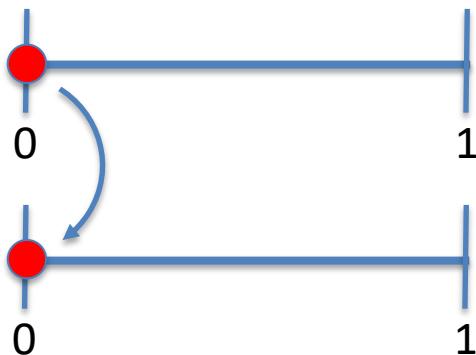
The quotient map for $a \in \mathbb{F} \setminus \mathcal{L}$: $u: \mathcal{L} \rightarrow \mathbb{F}$ \rightarrow $q(X) := \frac{u(X)-b}{X-a} : \mathcal{L} \rightarrow \mathbb{F}$

Honest prover

$u = \bar{f} \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$

and $b = f(a)$

distance u to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$:



distance q to $\text{RS}[\mathbb{F}, \mathcal{L}, d-1]$:

Dishonest prover

$\Delta(u, \text{RS}[\mathbb{F}, \mathcal{L}, d]) = \eta$ and

$\forall \bar{g} \in \text{List}[u, d, \delta]: b \neq g(a)$



Quotienting by more values

Let $\{a_1, \dots, a_k\} \subseteq \mathbb{F} \setminus \mathcal{L}$ and $\{b_1, \dots, b_k\} \subseteq \mathbb{F}$. Let $f: \mathcal{L} \rightarrow \mathbb{F}$.

Define polynomials $V(X), I(X) \in \mathbb{F}^{\leq k}[X]$ as

$$V(X) := \prod_{i \in [k]} (X - a_i) \quad \text{and} \quad I(a_i) = b_i \quad \text{for all } i \in [k].$$

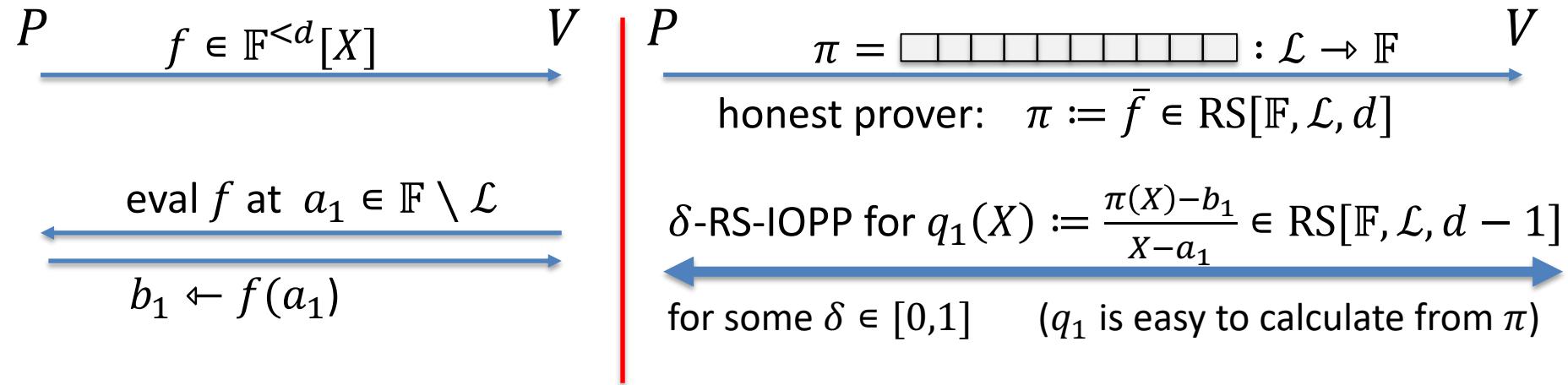
Define the map: $u: \mathcal{L} \rightarrow \mathbb{F} \quad \rightarrow \quad q(X) := \frac{u(X) - I(X)}{V(X)}: \mathcal{L} \rightarrow \mathbb{F}$

Fact 1: if $u = \bar{f}$ and $b_i = f(a_i)$ for $i \in [k]$ then $q \in \text{RS}[\mathbb{F}, \mathcal{L}, d - k]$

Fact 2: (STIR, Lemma 4.4) Suppose that for every $\bar{g} \in \text{List}[u, d, \delta]$
we have that $b_i \neq g(a_i)$ for some $i \in [k]$.

Then $q(X)$ is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d - k]$.

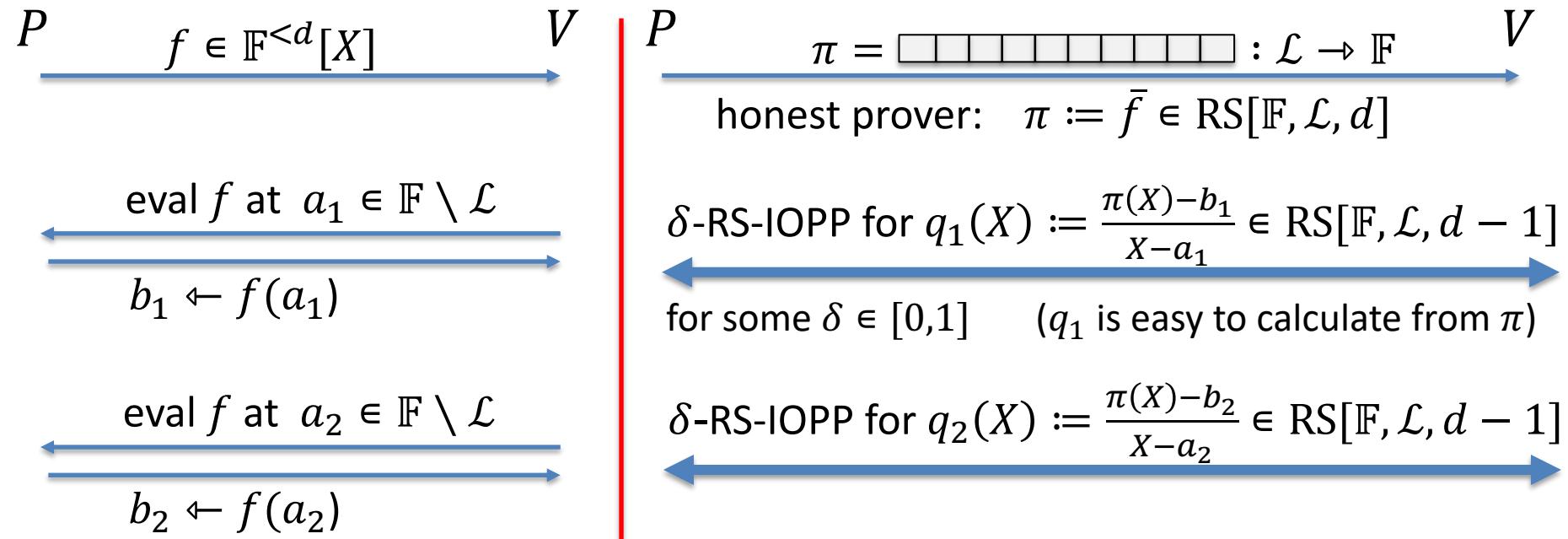
Poly-IOP \Rightarrow IOP: first attempt



$\delta\text{-RS-IOPP accepts} \Rightarrow \Delta(q_1, \text{RS}[\mathbb{F}, \mathcal{L}, d]) < \delta \Rightarrow$

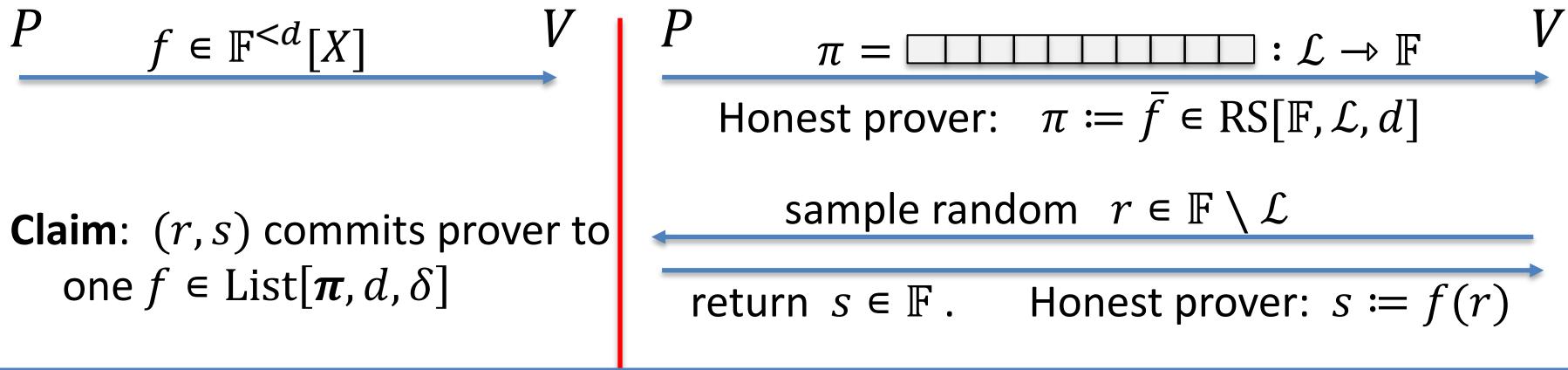
there is a codeword $\bar{f}_1 \in \text{List}[\pi, d, \delta]$ s.t. $f_1(a_1) = b_1$

Poly-IOP \Rightarrow IOP: first attempt



Verifier can conclude: there are $\bar{f}_1, \bar{f}_2 \in \text{List}[\pi, d, \delta]$ s.t. $\begin{cases} f_1(a_1) = b_1 \\ f_2(a_2) = b_2 \end{cases}$
 Insufficient! What if $f_1 \neq f_2$? (can happen if $\delta >$ unique decoding distance)

A simple observation (DEEP)



Fact: Let BAD be the event that $\exists \bar{f}_1 \neq \bar{f}_2 \in \text{List}[\pi, d, \delta]$ s.t. $f_1(r) = f_2(r) = s$

$$\Pr_r[\text{BAD}] \leq \binom{|\text{List}[\pi, d, \delta]|}{2} \cdot \frac{d}{|\mathbb{F}| - |\mathcal{L}|}$$

union bound
over all pairs Pr[BAD] for a fixed f_1, f_2

A simple observation

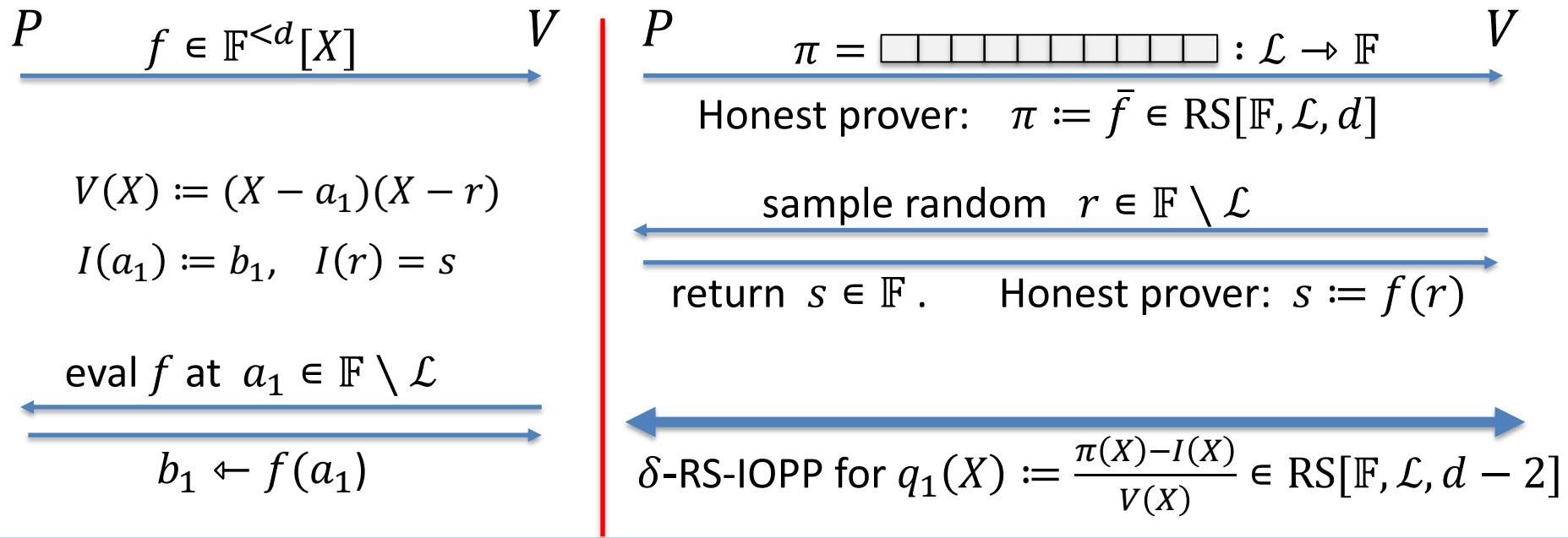
Fact: Let BAD be the event that $\exists \bar{f}_1 \neq \bar{f}_2 \in \text{List}[\pi, d, \delta]$ s.t. $f_1(r) = f_2(r) = s$

$$\Pr_r[\text{BAD}] \leq \binom{|\text{List}[\pi, d, \delta]|}{2} \cdot \frac{d}{|\mathbb{F}| - |\mathcal{L}|}$$

When $\delta < 1 - \sqrt{p}$ (Johnson bound) then $|\text{List}[\pi, d, \delta]| < \text{const}_\delta$

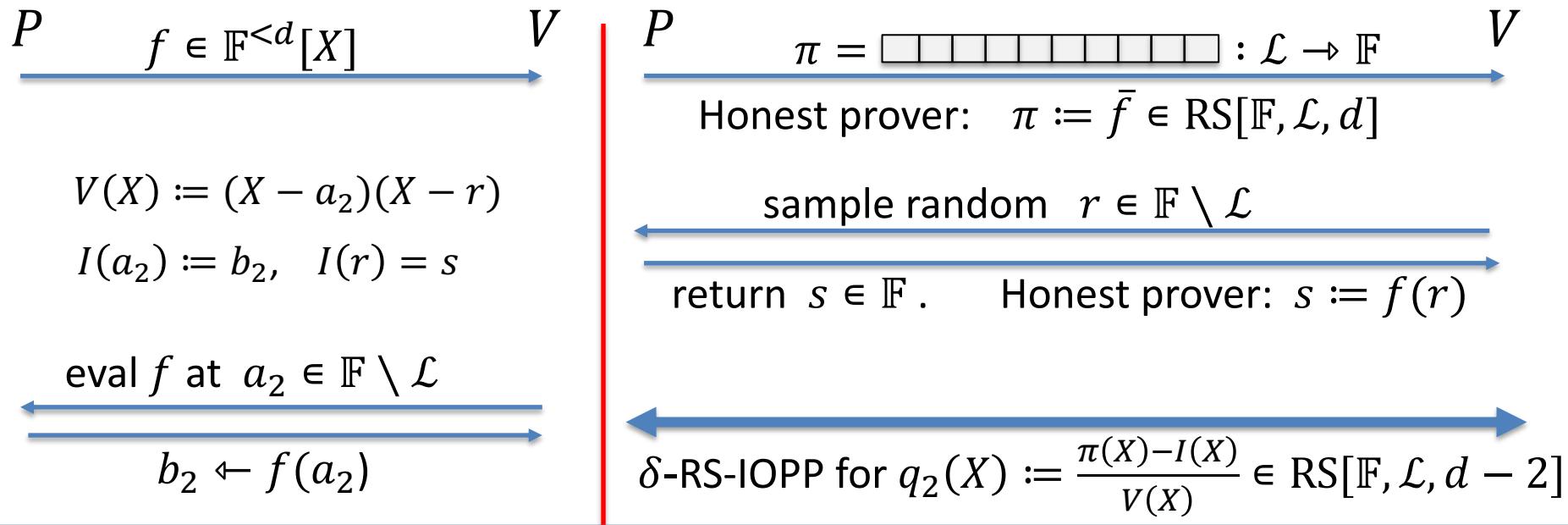
- ⇒ If \mathbb{F} is sufficiently large then $\Pr[\text{BAD}] < 2^{-128}$ (negligible)
(otherwise, repeat with multiple random $r_1, \dots, r_t \in \mathbb{F} \setminus \mathcal{L}$)
- ⇒ Only one $f \in \text{List}[\pi, d, \delta]$ satisfies $f(r) = s$, with high probability

Poly-IOP \Rightarrow IOP: second attempt



Verifier can conclude: there is $\bar{f}_1 \in \text{List}[\pi, d, \delta]$ s.t. $\begin{cases} f_1(a_1) = b_1 \\ f_1(r) = s \end{cases}$

Poly-IOP \Rightarrow IOP: second attempt



Verifier can conclude: there is $\bar{f}_2 \in \text{List}[\pi, d, \delta]$ s.t. $f_2(a_2) = b_2, f_2(r) = s$

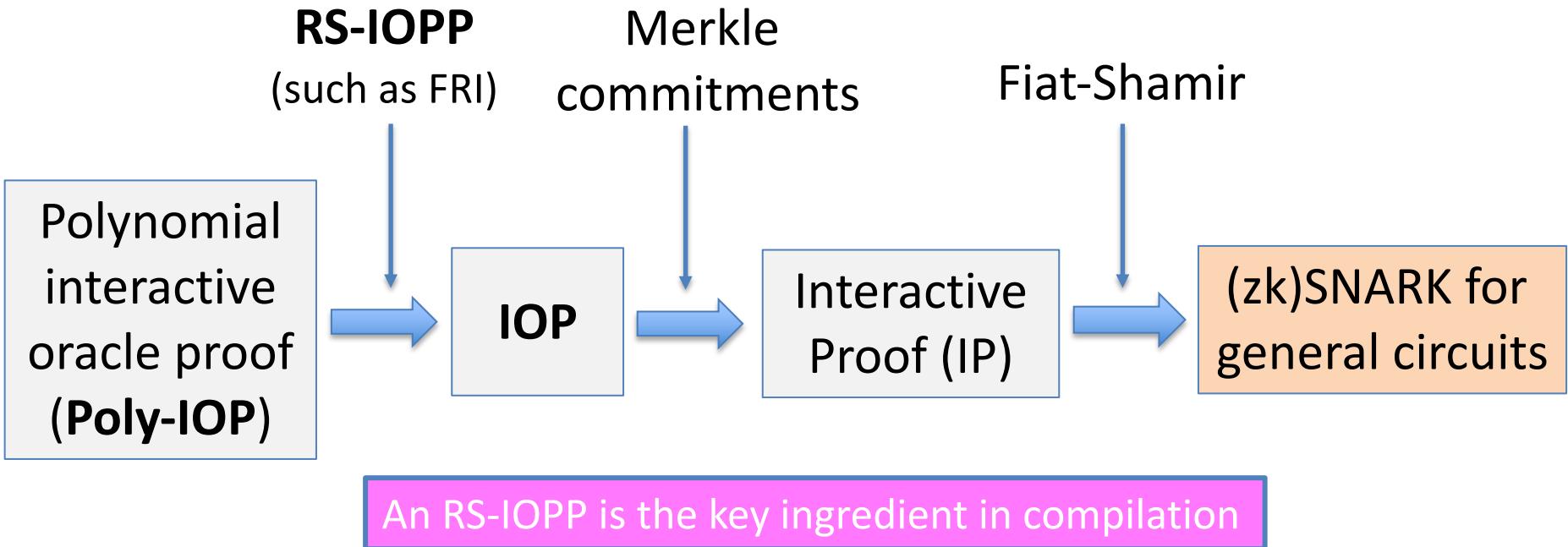
Now: $\delta < 1 - \sqrt{\rho}$ and $f_1(r) = f_2(r) = s \Rightarrow f_1 = f_2$ w.h.p, as required

Poly-IOP \Rightarrow IOP: summary

- The IOP prover encodes $f \in \mathbb{F}^{<d}[X]$ using a linear code (RS)
(other linear codes can be used, possibly with a faster encoding than RS)
- δ -RS-IOPP applied to a quotient $q(X) := \frac{\pi(X) - I(X)}{V(X)}$
proves evaluations of the encoded polynomial to the Verifier.
- For $\delta < 1 - \sqrt{p}$: an out of domain query (r, s) ensures that
the prover is bound to a unique polynomial, w.h.p

Poly-IOP \Rightarrow IOP \Rightarrow SNARK

A direct SNARK construction:



Poly-IOP \Rightarrow IOP: remarks

Remark 1: what if Poly-IOP Verifier wants to query f at $a \in \mathcal{L}$??

- The problem: $q(X) := \frac{\pi(X) - I(X)}{(X-a)(X-r)} : \mathcal{L} \rightarrow \mathbb{F}$
is undefined at $X = a$ (not a problem when $a \notin \mathcal{L}$)
- Solution: $Q(X) := (f(X) - I(X))/(X - a)(X - r)$ is a poly. in $\mathbb{F}^{<d-2}[X]$.
Honest prover defines $q(a) := Q(a)$ and runs the RS-IOPP on q .

Remark 2: naively, the IOP uses one RS-IOPP per query to f

- In practice, we can batch many RS-IOPPs into one RS-IOPP
- Let's see how ... first we need some tools

One last topic before the break:

Distance Preserving Transformations

Towards an efficient RS-IOPP

Distance Preserving Transformations

Let $\mathcal{L}, \mathcal{L}' \subseteq \mathbb{F}$, d, d' some degree bounds, and $\delta \in [0,1]$.

Def: A **distance preserving transformation** is a randomized map

$$T(u_1, \dots, u_k; r) \rightarrow u$$

that maps $u_1, \dots, u_k: \mathcal{L} \rightarrow \mathbb{F}$ to $u: \mathcal{L}' \rightarrow \mathbb{F}$ such that:

case 1: (the honest case)

if $u_1, \dots, u_k \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ then $u \in \text{RS}[\mathbb{F}, \mathcal{L}', d']$ for all r .

case 2: (the dishonest case)

if some u_j is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d]$ then

u is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}', d']$, w.h.p over r .

Example 1: batch RS-IOPP

Setting: Prover has $u_0, \dots, u_k: \mathcal{L} \rightarrow \mathbb{F}$, Verifier has oracles for u_0, \dots, u_k .

Goal: convince Verifier that all u_0, \dots, u_k are δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$.

- **Naively:** run k RS-IOPP protocols \Rightarrow expensive
- **Better:** batch all k into a single function $u: \mathcal{L} \rightarrow \mathbb{F}$

step 1: Verifier samples random r in \mathbb{F} ; sends to prover

step 2: Prover sets $u := u_0 + r \cdot u_1 + r^2 u_2 + \dots + r^k u_k: \mathcal{L} \rightarrow \mathbb{F}$

step 3: Both run RS-IOPP on $u: \mathcal{L} \rightarrow \mathbb{F}$

when Verifier wants $u(a)$ for some $a \in \mathcal{L}$, prover opens all $u_0(a), \dots, u_k(a)$

Why is this distance preserving?

Case 1: (an honest prover)

if $u_0, \dots, u_k \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ then $u \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ for all $r \in \mathbb{F}$

Case 2: (a dishonest prover)

if some u_j is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d]$, we need to argue that u is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d]$, with high probability over $r \in \mathbb{F}$

When $\delta \in [0, 1 - \sqrt{\rho})$, Case 2 follows from the
celebrated [BCIKS](#) proximity gap theorem.

The proximity gap theorem

Thm ([BCIKS'20](#), Thm. 6.2): RS $[\mathbb{F}, \mathcal{L}, d]$ an RS-code with const. rate $\rho := d/n$ (say, $\rho = 0.5$)

Let $u_0, \dots, u_k: \mathcal{L} \rightarrow \mathbb{F}$ and $0 < \delta < 1 - 1.01\sqrt{\rho}$. $n := |\mathcal{L}|$

For $r \in \mathbb{F}$ define $u^{(r)} := u_0 + r \cdot u_1 + r^2 u_2 + \dots + r^k u_k$.

Suppose that $\Pr_r [u^{(r)} \text{ is } \delta\text{-close to RS}[\mathbb{F}, \mathcal{L}, d]] > \text{err}$

then all u_j are δ -close to RS $[\mathbb{F}, \mathcal{L}, d]$,

where
$$\begin{cases} \text{err} = O\left(\frac{kn}{|\mathbb{F}|}\right) & \text{for } 0 < \delta < \frac{1-\rho}{2} \\ \text{err} = O\left(\frac{kn^2}{|\mathbb{F}|}\right) & \text{for } \frac{1-\rho}{2} < \delta < 1 - 1.01\sqrt{\rho} \end{cases}$$

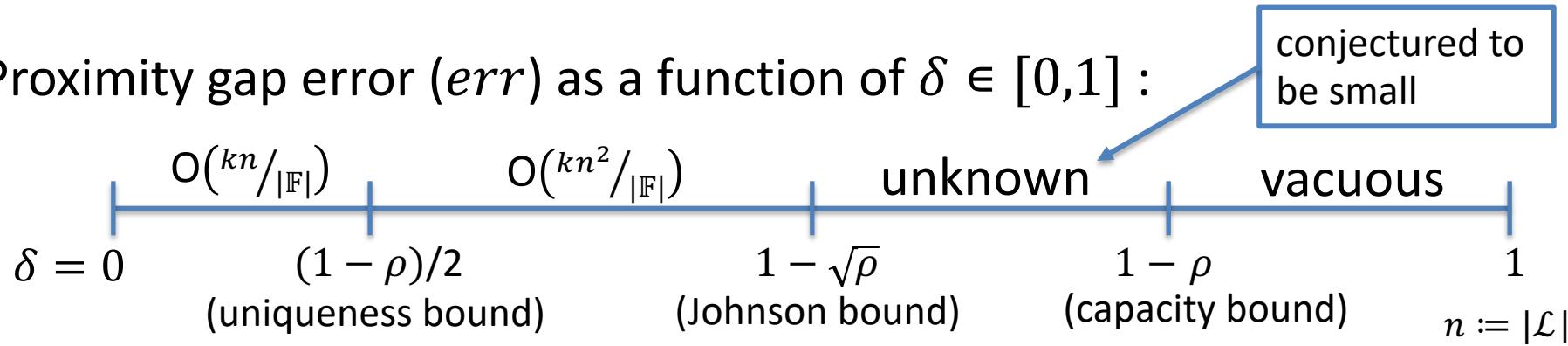
We will assume that
err is negligible, i.e.
 $\text{err} < 1/2^{128}$
(if not, use multiple r)

The proximity gap theorem

Suppose that $\Pr_r[u^{(r)} \text{ is } \delta\text{-close to } \text{RS}[\mathbb{F}, \mathcal{L}, d]] > \text{err}$
then all u_j are δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$

Contra-positive: if some u_j is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d]$
then $u^{(r)}$ is δ -far with high probability, over r .

Proximity gap error (err) as a function of $\delta \in [0,1]$:



A stronger form: correlated proximity

Thm ([BCIKS'20](#), Thm. 6.2):

Let $u_0, \dots, u_k: \mathcal{L} \rightarrow \mathbb{F}$ and $0 < \delta < 1 - 1.01\sqrt{\rho}$.

Suppose that $\Pr_r [u^{(r)} \text{ is } \delta\text{-close to } \text{RS}[\mathbb{F}, \mathcal{L}, d]] > err$

then there is an $S \subseteq \mathcal{L}$ such that $|S| \geq (1 - \delta) \cdot |\mathcal{L}|$ and

for all j : $\exists f_j \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$ s.t. $\forall x \in S: u_j(x) = f_j(x)$

$\Rightarrow u_0, \dots, u_k$ are δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$ on the same positions S .

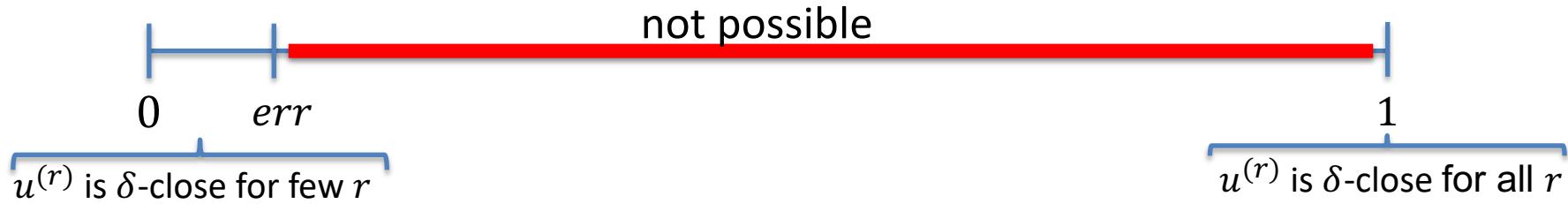
(recall $u^{(r)} := u_0 + r \cdot u_1 + r^2 u_2 + \dots + r^k u_k$)

Why is this called a proximity gap??

Suppose that $\Pr_r[u^{(r)} \text{ is } \delta\text{-close to } \text{RS}[\mathbb{F}, \mathcal{L}, d]] > \text{err}$ then all u_j are δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$ on the same positions $S \subseteq \mathcal{L}$

But if all $u_0, \dots, u_k: \mathcal{L} \rightarrow \mathbb{F}$ are δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$ on positions $S \subseteq \mathcal{L}$, then $u^{(r)}$ is δ -close for all $r \in \mathbb{F}$.

So $\Pr_r[u^{(r)} \text{ is } \delta\text{-close to } \text{RS}[\mathbb{F}, \mathcal{L}, d]]$ exhibits a gap:



Proximity gaps for other linear codes?

A similar proximity gap holds for every linear code.

Thm: (Zeilberger'24) Let $\mathcal{C} \subseteq \mathbb{F}^n$ be an $[n, \dim, l]_p$ linear code.
Then \mathcal{C} has a correlated proximity gap for $0 < \delta < 1 - \sqrt[4]{\tau}$
and $\text{err} = O\left(\frac{kn}{|\mathbb{F}|}\right)$, where $\tau := 1 - (l/n)$.

min. distance

(For RS-code $\tau \approx \rho$, so this gap is much weaker than BCIKS'20)

This can be used in a \mathcal{C} -proximity IOPP (e.g., Basefold, Blaze)

2nd Distance preserving example: 2-way folding

From now on set $\mathcal{L} = \{1, \omega, \omega^2, \dots, \omega^{n-1}\} \subseteq \mathbb{F}$, where

- n is a power of two, and
- ω is an n -th primitive root of unity $(\omega^n = 1)$
(requires that n divides $|\mathbb{F}| - 1$)

Then:

- $\omega^{n/2} = -1$ so that if $x = \omega^i \in \mathcal{L}$ then $-x = \omega^{i+(n/2)} \in \mathcal{L}$
- $|\mathcal{L}^2| = |\{a^2 : a \in \mathcal{L}\}| = |\mathcal{L}|/2 = n/2$ $(-a, a \rightarrow a^2)$

2-way folding a polynomial

A folding transformation: let's start with an example.

Let $f(X) = 1 + 2X + 3X^2 + 4X^3 + 5X^4 + 6X^5 \in \mathbb{F}^{<6}[X]$

Define $f_{\text{even}}(X) := 1 + 3X + 5X^2$ and $f_{\text{odd}}(X) := 2 + 4X + 6X^2$

Then: $f(X) = f_{\text{even}}(X^2) + X \cdot f_{\text{odd}}(X^2)$

Define: for $r \in \mathbb{F}$ define $f_{\text{fold},r} := f_{\text{even}} + r \cdot f_{\text{odd}} \in \mathbb{F}^{<3}[X]$

2-way folding a polynomial: more generally

For $f \in \mathbb{F}^{ $d}$ [X]$ (with d even) define:

- $f_{\text{even}}(X^2) := \frac{f(X) + f(-X)}{2}$ and $f_{\text{odd}}(X^2) := \frac{f(X) - f(-X)}{2X}$
- $f_{\text{fold},r}(X) := f_{\text{even}}(X) + r \cdot f_{\text{odd}}(X) \in \mathbb{F}^{ $d/2}$ [X]$

Then: $f(X) = f_{\text{even}}(X^2) + X \cdot f_{\text{odd}}(X^2)$

- for every $a \in \mathbb{F}$: $f_{\text{fold},r}(a^2)$ can be eval given $f(a), f(-a)$
- $\bar{f} \in \text{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow \overline{f_{\text{fold},r}} \in \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2] \xleftarrow[\text{rate} = d/|\mathcal{L}|]{\text{unchanged}}$

Folding an arbitrary word $u: \mathcal{L} \rightarrow \mathbb{F}$

For $u: \mathcal{L} \rightarrow \mathbb{F}$ and $r \in \mathbb{F}$ define $u_e, u_o, u_{\text{fold},r}: \mathcal{L}^2 \rightarrow \mathbb{F}$ as

- for $a \in \mathcal{L}$: $u_e(a^2) := \frac{u(a) + u(-a)}{2}$ and $u_o(a^2) := \frac{u(a) - u(-a)}{2a}$
- for $b \in \mathcal{L}^2$: $u_{\text{fold},r}(b) := u_e(b) + r \cdot u_o(b)$ (recall $|\mathcal{L}^2| = |\mathcal{L}|/2$)

Lemma (distance preservation): for $0 < \delta < 1 - \sqrt{\rho}$

- $u \in \text{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow u_{\text{fold},r} \in \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$ for all $r \in \mathbb{F}$
- u is δ -far from $\text{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow$

$$\Pr_r[u_{\text{fold},r} \text{ is } \delta\text{-far from } \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]] \geq 1 - \text{err}$$

Folding an arbitrary word $u: \mathcal{L} \rightarrow \mathbb{F}$

For $u: \mathcal{L} \rightarrow \mathbb{F}$ and $r \in \mathbb{F}$ define $u_e, u_o, u_{\text{fold},r}: \mathcal{L}^2 \rightarrow \mathbb{F}$ as

- for $a \in \mathcal{L}$: $u_e(a^2) := \frac{u(a) + u(-a)}{2}$ and $u_o(a^2) := \frac{u(a) - u(-a)}{2a}$
- for $b \in \mathcal{L}^2$: $u_{\text{fold},r}(b) := u_e(b) + r \cdot u_o(b)$ (recall $|\mathcal{L}^2| = |\mathcal{L}|/2$)

Lemma (distance preservation): for $0 < \delta < 1 - \sqrt{\rho}$

- $u \in \text{RS}[\mathbb{F}, \mathcal{L}, d] \Rightarrow u_{\text{fold},r} \in \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$ for all $r \in \mathbb{F}$
- $\Pr_r[u_{\text{fold},r} \text{ is } \delta\text{-close to } \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]] > \text{err} \Rightarrow$

u is δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$

(contra-positive)

Why is this true?

The first part of the lemma is easy. Let's prove the second part.

- Suppose that $\Pr_r [u_{\text{fold},r} \text{ is } \delta\text{-close to } \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]] > \text{err}$
- Then by the BCIKS'20 theorem, there are $g_e, g_o \in \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$ that match u_e, u_o on a set $S \subseteq \mathcal{L}^2$ of size $|S| \geq (1 - \delta)(n/2)$
- Define $g: \mathcal{L} \rightarrow \mathbb{F}$ as $g(a) := g_e(a^2) + a \cdot g_o(a^2) \in \text{RS}[\mathbb{F}, \mathcal{L}, d]$
- Then: $g(a) = u(a)$ for all $a \in \mathcal{L}$ for which $a^2 \in S$ ($2|S|$ values in \mathcal{L})
- But then $\Delta(u, g) \leq 1 - \frac{2|S|}{n} = 1 - \frac{|S|}{n/2} \leq \delta$.
 $\Rightarrow u$ is δ -close to $\text{RS}[\mathbb{F}, \mathcal{L}, d]$

An important corollary

Let $\mathcal{C} = \text{RS}[\mathbb{F}, \mathcal{L}, d]$ and $\mathcal{C}' = \text{RS}[\mathbb{F}, \mathcal{L}^2, d/2]$

Corollary: For $u: \mathcal{L} \rightarrow \mathbb{F}$ (folding does not decrease distance, w.h.p)

- if $\Delta(u, \mathcal{C}) < 1 - \sqrt{\rho}$ then $\Pr_r[\Delta(u_{\text{fold},r}, \mathcal{C}') \geq \Delta(u, \mathcal{C})] \geq 1 - \text{err}$
- if $\Delta(u, \mathcal{C}) \geq 1 - \sqrt{\rho}$ then $\Pr_r[\Delta(u_{\text{fold},r}, \mathcal{C}') \geq 1 - \sqrt{\rho}] \geq 1 - \text{err}$

Recall: $\Delta(u, \mathcal{C}) \leq \delta \iff u \text{ is } \delta\text{-close to } \mathcal{C}$

4-way folding $u: \mathcal{L} \rightarrow \mathbb{F}$ (using $i^2 = -1$)

For $u: \mathcal{L} \rightarrow \mathbb{F}$ define $u_0, u_1, u_2, u_3: \mathcal{L}^4 \rightarrow \mathbb{F}$ for $a \in \mathcal{L}$ as

$$\begin{pmatrix} 4 \cdot u_0(a^4) \\ 4a \cdot u_1(a^4) \\ 4a^2 \cdot u_2(a^4) \\ 4a^3 \cdot u_3(a^4) \end{pmatrix} := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & (-i)^2 & (-i)^3 \\ 1 & -1 & 1 & -1 \\ 1 & i & i^2 & i^3 \end{pmatrix} \cdot \begin{pmatrix} u(a) \\ u(ia) \\ u(i^2a) \\ u(i^3a) \end{pmatrix} \quad (\text{a degree-4 FFT})$$

The **4-way fold of u** : for $r \in \mathbb{F}$ define $u_{4\text{fold},r}: \mathcal{L}^4 \rightarrow \mathbb{F}$ as

$$u_{4\text{fold},r}(b) := u_0(b) + r \cdot u_1(b) + r^2 \cdot u_2(b) + r^3 \cdot u_3(b) \quad \text{for } b \in \mathcal{L}^4$$

Evaluating $u_{4\text{fold},r}(X)$ at $b \in \mathcal{L}^4$ requires four evals. of $u(X)$.

4-way folding $u: \mathcal{L} \rightarrow \mathbb{F}$ (using $i^2 = -1$)

For $u: \mathcal{L} \rightarrow \mathbb{F}$ define $u_0, u_1, u_2, u_3: \mathcal{L}^4 \rightarrow \mathbb{F}$ for $a \in \mathcal{L}$ as

$$\begin{pmatrix} 4 \cdot u_0(a^4) \\ 4a \cdot u_1(a^4) \\ 4a^2 \cdot u_2(a^4) \\ 4a^3 \cdot u_3(a^4) \end{pmatrix} := \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & (-i)^2 & (-i)^3 \\ 1 & -1 & 1 & -1 \\ 1 & i & i^2 & i^3 \end{pmatrix} \cdot \begin{pmatrix} u(a) \\ u(ia) \\ u(i^2a) \\ u(i^3a) \end{pmatrix} \quad (\text{a degree-4 FFT})$$

The **4-way fold of u** : for $r \in \mathbb{F}$ define $u_{4\text{fold},r}: \mathcal{L}^4 \rightarrow \mathbb{F}$ as

$$u_{4\text{fold},r}(b) := u_0(b) + r \cdot u_1(b) + r^2 \cdot u_2(b) + r^3 \cdot u_3(b) \quad \text{for } b \in \mathcal{L}^4$$

Fact: the same distance preservation corollary holds for $u_{4\text{fold},r}$

8-way folding $u: \mathcal{L} \rightarrow \mathbb{F}$ (using an 8th root of unity)

Can similarly define 8-way folding, or even 2^w folding for $w \geq 3$.

maps $u: \mathcal{L} \rightarrow \mathbb{F}$ to $u_{2^w \text{fold},r}: \mathcal{L}^{2^w} \rightarrow \mathbb{F}$ $(|\mathcal{L}^{2^w}| = |\mathcal{L}|/2^w)$

- (1) evaluating $u_{2^w \text{fold},r}(b)$ requires 2^w evals. of $u(X)$
⇒ uses a degree- 2^w FFT (degree-8 FFT for 8-way folding)
- (2) the same distance preservation corollary holds for $u_{2^w \text{fold},r}$

End of lecture: Brief Summary

For a linear code \mathcal{C} : $\text{List}[u, \mathcal{C}, \delta]$ is small up to $\delta < 1 - \sqrt{1 - \mu}$

Poly-IOP \rightarrow IOP compiler:

- Honest P Commits to $f \in \mathbb{F}^{<d}[X]$ by sending its encoding \bar{f} to V
- Prove evaluation of f using RS-IOPP on quotient of sent word u
- Out-of-domain eval. commits P to unique word in $\text{List}[u, \mathcal{C}, \delta]$

Folding:

- $(u: \mathcal{L} \rightarrow \mathbb{F}) \rightarrow (u_{\text{fold}, r}: \mathcal{L}^2 \rightarrow \mathbb{F})$ is a distance preserving map
- Proof using the BCIKS'20 proximity gap theorem

Let's put all this machinery to use

See you in the next lecture ...

THE END