FRI and Proximity Proofs:

What they are what they are for

Dan Boneh
Stanford University

Recap: a General Paradigm for a Modern SNARK

F-functional

commitment |
scheme \g

(cryptographic object)

F-interactive %

oracle proof
(F - 10P)

(info. theoretic object)

SNARK for
general circuits

Recap: three function families

n = size of comp. trace

Polynomial-IOP (PIOP) +
. . —.| PLONK=+ ———| SNARK
Polynomial Commitment KZG
O(nlogn) time prover
Multilinear-IOP (MIOP) +
N | . HyperPLONK + — . [<NARK
Multilinear Commitment Mercury
O(n) time prover
Vector-IOP (IOP) + 297 4
e P77
Vector Commitment MerkleTree

Papers we discuss in this lecture and the next

 FRI(2018) and analysis (2018): Fast Reed—Solomon Interactive Oracle Proofs of Proximity
e DEEP-FRI (2019): Out of domain sampling improves soundness

* BCIKS (2020): Proximity Gaps for Reed—Solomon Codes

e CircleSTARK (2024): FRI using a Mersenne prime

* STIR (2024): Reed-Solomon proximity testing with fewer queries

* WHIR (2024): Proximity testing with a faster verifier
Beyond Reed-Solomon codes (a few recent results):

 Breakdown (2021), Orion (2022): Polynomial commitments with a fast prover

* BaseFold (2023): Polynomial commitments from foldable codes with shorter proofs

* Blaze (2024): Fast SNARKs from Interleaved RAA Codes

https://drops.dagstuhl.de/storage/00lipics/lipics-vol107-icalp2018/LIPIcs.ICALP.2018.14/LIPIcs.ICALP.2018.14.pdf
https://www.math.toronto.edu/swastik/fri.pdf
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654.pdf
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/390
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2023/1705.pdf
https://eprint.iacr.org/2024/1609

FRI: Fast Reed-Solomon IOPP

* Let F be afinite field (say, F={0,1,2,..,p—1}) and L CF.
* Let y: L — IF be a committed function (a vector of size |£])

FRI: a way to prove that y is “close” to a Reed-Solomon codeword

So what? Who cares? What does this even mean?

Let’s get started ... first some background

Background

(1) Codes
(2) IOP and IOPP

(3) Poly-IOP

(1) Linear codes

Def: an [n, k,], linear code C is a linear subspace C € " of
dimension k (so|¢| = p¥) where |u|g =1 forall 0 #ueC

Recall: For u,vin F" ‘(;Jmasintegers)
luly == (Hamming weight of u) = X1v o(1;)° (where 0° = 0)

A(u, v) = (relative Hamming distance) = % lu—v|y €[0,1]
example: A((1,5,9,4,1), (1,2,9,7,4)) = 3/5

U= u(C) =1/n = (relative min weight of C) = =. mi n |u|0 e [0,1]

1
no0xu

(1) Linear codes

Let C € F" bea[n, k,l], linear code. Then:

Fact 1: For all distinct u,v € C we have A(u,v) = nu(C) =1/n

(otherwise 0# |lu—v|y <!l and u—v eQC)

Fact2: k<n—1+1 (i.e. || <p™ 1) (thesingleton bound)

Def: if k=n—[01+4+1 thenCiscalled an MDS Code

The classic MDS code: the Reed-Solomon code (more in a bit)

Encoding a message as a codeword

Let C € F" bea [n, k, 1], linear code.

Encoding: Let c¢q,...,c; € F* be a basis of C.

A message m = (my, ..., my) € F¥ can be encoded as a codeword

encode, (1/p expansion)

We can treat C as alinear map C:[F* — F" that encodes messages in F*

Def: Therate ofacodeis p:=k/ne€[0,1] (eg,p=0.5)

In practice: for fast encoding, want p as large as possible (p=0.5 = n=2k)

Unique decoding distance ([n, k1], linear code)

Fact 3: foreveryw € F"
there is at most one codeword
ueclC st. A(u,w) <u(C)/2

(by triangular inequality)

Def: n(C)/2in[0,0.5] is called the unique decoding distance of C

Most w € F" are not uniquely decodable n <\p
n n
z Bo(u, l/Z) = Z (l/Z) pl/z < pn_l+1 . (1/2) pl/z < Tll/z . pTl—l/2+1 K pn

ueC ueC

List decoding

Def: Fora[n,k,l], linearcode C, w € F", and § € [0,1], let

Listjw,C, 8] :={ceC st. A(c,w) <4}

Then 6 <u(C)/2 — |List[w, C, 0] | <1

(unique decoding distance)

List decoding

The Johnsonbound: For CS ", welF" 0<d6d<1—,/1—u
| List[w, G, 81| < 1/e5 where e5:=2/T—p(1-1—pu-9)

(blows up as 6 approaches 1 — /1 —u)

Size of List|w, C, 6] as a function of 6 € [0,1] :

size <1 ! size<1/es ! depends on C | >p

I
I
5=0 /2 1-J1-pu u

(unigueness bound) (Johnson bound) (capacity bound)

C
[
1'
1

Convenient terms: o-close and J-far

Def: We say that w € F" is 6-closeto C S F"

if thereissome c € C s.t. A(w,c) <6

(i.e. |List[w, C, 6] | >1). We write A(w,C) < 6.

Def: We say that w € F" is §-far from C € "
if for all c € C we have A(w,c) > 6

(i.e. |List[w, C, 6] | =0). We write A(w, C) > 6.

The classic MDS code: Reed-Solomon

First, polynomials over a field F
« F<4[X]: set of all univariate polynomials over F of degree < d

* For apolynomial f € F<¢[X] and LCF
write f: L — F for the restriction of f to the domain £

A function w: L — [F, where n := | L], can be treated as a vector

vec(w) := (W(al), ...,W(an)) e F"

where L = {a4, ...,a,} € F has a natural ordering

The classic MDS code: Reed-Solomon

Def: The Reed-Solomon code over the field F,
evaluation domain £ € F, and degree d, is the linear code

RS[F,L,d]:={ f:£L +F where feF<¢[Xx] }
Fact: Letd < n = |L|.

RS[F, L,d]isa [n, d, | = (n—d + 1)], linear code

= RS, L,d] is an MDS code (has p% codewords)

Def: The rate of RS|F, L,d]is p:=d/n € [0,1] (e.g., p = 0.5)

encode' (1/p expansion)

Unique decoding and list decoding

Def: ForRS|F,L,d], w:L—TF, and 6 €[0,1], let
Listjw,d, 8] :={ f € RS[F, £,d] st. A(f,w) <6}

So: §<b="L="0 1P = |Listiw,d,8]] <1
2 2n 2n 2

(unique decoding distance)

Recal: p:=d/ne€[0,1] wheren:=|L|. ForMDScode:u=1-—p.

Unique decoding and list decoding

The Johnson bound: For RS[F, £,d], w:L—F, 6<1—./p

| List{w, d, 8]| < 1/e5 where &5:=2\p(1—p —6) € (0,1)

(blows up as § approaches 1 —./p)

size of List|w, d, 6] as a function of § € [0,1] :

, size<l size<1/es |, unknown > 7 ,
[1 1 1 1
§=0 (1-p)/2 1—+/p 1—p 1

(unigueness bound) (Johnson bound) (capacity bound)

Unique decoding and list decoding

The Johnson bound: For RS[F, £,d], w:L—F, 6<1—./p

| List{w, d, 8]| < 1/e5 where &5:=2\p(1—p —6) € (0,1)

(blows up as § approaches 1 —./p)

size of List|w, d, 6] as a function of § € [0,1] :

size <1 | size<1/es , unknown | > D
T T

l |
[1 |
56 =0 (1—-p)/2 1—+/p I 1—p 1

Conjectured to be poly(n) size (true for random £ € F [BGM’'24])

https://arxiv.org/abs/2206.05256

Unique decoding and list decoding

The Johnson bound: For RS[F, £,d], w:L—F, 6<1—./p

| List{w, d, 8]| < 1/e5 where &5:=2\p(1—p —6) € (0,1)

(blows up as § approaches 1 —./p)

size of List|w, d, 6] as a function of § € [0,1] :

, size<l size<1/es |, unknown > 7
r T T T
5§=0 3/8 1/2 3/4 1

[E—

An example: p =1/4

Background on IOPs

Review (1) IOP and IOPP

(2) Poly-IOP

Interactive Oracle Proofs (IOP) (ecsis, rerissl

Let R = {(X, W)} be a poly-time relation (e.g., x = sha3(w))

Def: an IOP for R is a pair of algorithms (P, V) s.t.:

Prover P(X, W) Verifier(x)

Mo=0L1L 11T T T 1T T7T]

a;: short random challenges

<
«

a, U . .
;. poly-size strings (oracles)
mqp=0CL I 1T I TTITT1]
. V can query for cells of m;
ay — U

M =CLLIIITITT11] | VTo-Tk(x ay,..,) —> yes/no

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652

Interactive Oracle Proofs (IOP) (ecsis, rerissl

Let R = {(X, W)} be a poly-time relation (e.g., x = sha3(w))
Def: an IOP (P, V) for R

is complete if for all (X, w) € R, when V interacts with P
Pr[V™o Tk (X, atq, ...,) =yes] =1

is sound if for all P* and x ¢ L(R) := {x | 3w:(x, w) € R}
Pr[Vo Tk (X; CEVELLY, ak) = VesS] <err (22_128)

is knowledge sound (informally) if for all P,
V accepts x = prover “knows” ws.t. (x,w) € R

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652

Interactive Oracle Proofs (IOP) (ecsis, rerissl

Let R = {(X, W)} be a poly-time relation (e.g., x = sha3(w))
Def: an IOP (P, V) for R

is complete if for all (X, w) € R, when V interacts with P
Pr[V™o Tk (X, atq, ...,) =yes] =1

is sound if for all P* and x ¢ L(R) := {x | 3w:(x, w) € R}
Pr[Vo Tk (X; CEVELLY, ak) = VesS] <err (22_128)

is succinct if time(V) is at most polylog(time(R)) and 0(|x|,log(1/err))
= k is small and V makes few queries to the oracles my, ..., T

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652

IOP for R = SNARK for R (the BCS’16 compiler)

: We obtain an
Step 1: replace my,..., T, by Merkle commitments interactive proof (IP)

Prover P(X, W) Verifier(x)

MerkleCommit(mg)

i Security now depends
ay — U on collision resistance
of Merkle hash function

MerkleCommit(m4)

ak<1—11

MerkleCommit(rm,) VorTk(x, &y, ..., Ay) —> yes/no

V queriesm; atcellj = P responds with a Merkle proof for cell j

IOP for R = SNARK for R (the BCS’16 compiler)

Step 2: Make non-interactive using the Fiat-Shamir transform

Prover P(X, W)
Co ‘= MerkleCommit(m,)

a; +— Hash(x, cp)

Cq = MerkI?Commit(nl)

a — Hash(x,cy, aq,Cq oon)Cr—1)
cy = MerkleCommit(m;,)

Y7ok (X, 01, o) Ay) MerkleProofs (one per V query)

IOP for R = SNARK for R (the BCS’16 compiler)

“Thm” (BCS’16, CCH+'19, Hol’19):
the IOP has round-by-round soundness
—

the derived SNARG is secure in the random oracle model
(see also Chiesa-Yogev SNARK book)

Efficiency:
* To reduce prover work: minimize |my| + -+ + |my]

* To reduce proof size: minimize k and number of verifier queries
(| J i T |

= Merkle Commitments = Merkle Proofs (0, (log |m;]) size)

https://eprint.iacr.org/2019/1261.pdf
https://snargsbook.org/

A generalization: 10P of Proximity (IOPP)

let R = {(X, Y, \W)} be a poly-time relation (y=CIITITTTTTTT1])

Def: an IOPP for R is a pair of algorithms (P, V) s.t.:

Prover P(X,V, W) VerifierY(X)
Mo=0L1L 11T T T1TT7T] : :
v, T;: poly-size strings (oracles)
a; — U R V can query for cells of y, ;
mp=0L1 11T T TITT]
. The IOPP proves properties

C(k<1.—u /

of X and a committed v

M =CLIIIITTIT] VYTo-Tk(x ay,..,qQ;) —> yes/no

Completeness and proximity soundness

let R = {(X, Y, \W)} be a poly-time relation (y=CIITITTTTTTT1])

Def: (x,V) is 8-far from R, if (x,v',w) € R forall y', w with A(y,y') < 6

Def: an IOPP (P,V) for R

is complete if for all (X, y, w) € R the Verifier V always accepts P

is 0-sound if for all (x,v) that are -far from R:
VP*: Pr{ VYo (X, ay, ..., ay) = yes] < err (=27128)

if (X, V) is neither, then no guarantee on the output of V

An important example: a Reed-Solomon IOPP

let C = RS[F,£,d], w:£L—TF, and & €[0,1]

Def: an IOPP for RS, a 0-RS-IOPP, is an IOPP (P,V) such that

Px=Cv=uw=1) VerifierY(X = C)

complete: ue C = for P: Pr[V¥™oTk(X,aq,..,a;) =yes] =1

d-sound: A(u,C) > 68 = VP*:Pr[V¥To-Tk(X, aq,..,ar) = yes | < err

FRI is an efficient RS-IOPP. But why is this useful?

A special type of IOP: Poly-IOP

Let R = {(X, W)} be a poly-time relation
Def: a Poly-IOP for R is a pair of algorithms (P, V) s.t.:

Prover P(X, W) Verifier(X)
fo € F<4[X]

. fo, -+, fr: must be oracles

C]¥r1 Q_Ip[id T for functions in F<¢[X]
1 €

V caneval f; atany x € F
ap + F

fr € F<4[X] - VoTk(x,ayq, ..., ay) = yes/no

A special type of IOP: Poly-IOP

Let R = {(X, W)} be a poly-time relation
Def: a Poly-IOP for R is a pair of algorithms (P, V) s.t.:

Prover P(X, W) Verifier(X)

akd—ll

fr € F<4[X] - VoJk(x,aq, ..., a) = yes/no

Compiling a Poly-IOP to a SNARK

Method 1: use an algebraic polynomial commitment
* univariate IOP: use KZG
 multilinear IOP: use Zeromorph or Mercury

Method 2: use an IOPP
e Fast: using only a Merkle tree

Compiling a Poly-10OP to a SNARK

Using a Reed-Solomon IOP of Proximity

An important application of an RS-IOPP

Poly-IOP = IOP = SNARK

A direct SNARK construction:

RS-IOPP Merkle
(suchas FRI) commitments Fiat-Shamir

Polynomial

interactive ’ ’ Interactive | °* (zk)SNARK for
— — —

oracle proof 0P Proof (IP) general circuits
(Poly-10P)

The interesting step: Poly-IOP = I0P

Poly-IOP IOP

A A
| |

|
& ni=|||||||||||&
eval f; at x; e F 2 4 open m; atcell j g:

f, € F[X]

yi = fi(xq) yi + 1;[J]

Challenge: how to build a polynomial eval oracle from a list lookup oracle??

Representing a polynomial as an IOP oracle

The problem: f e F<¢[X] — stringm: (L1111 €F"

Let C = RS[F, £,d] with £L={aq,..,a,} ({d<n)

* The honest prover represents f € F<¢[X] by its encoding
f — T = (f(al);f(aZ); ---;f(an)) = f— €eCC]Fn

We will treat T as a function m: L =& [F

New problem: in a Poly-IOP the prover can only send f € F<%[X],
but now the prover can send any : L — [F, possibly notin C

Representing a polynomial as an IOP oracle

The new problem: prover sends anoracle m: L = F

* Can Verifier confirm that m is a codeword in C by only opening
afewcellsinm?? [COIITITTTTTTT1]

e Can’t be done (whatif 7 is wrong in only one cell?)

e But Verifier can confirm that T is -close to some codeword,
for d<(unique decoding distance) = 1 represents a unique poly.

How to check? Reed-Solomon IOPP (e.g., FRI)

But this is not yet a PCS. First, let’s develop some tools ...

Quotienting

let aeF st. a¢ L andlet beF. Let f e F<¢[X] and & € [0,1].

Define the quotient map: | w: L » F — q(X) =

Fact1: if u=f eRS[F £,d] and b = f(a) then q €RS[F, £,d — 1]

Fact 2: Suppose that for all g € List|u,d, 8] we have b # g(a).
Then q is 6-far from RS|FF, L, d — 1].
Proof: Suppose A(q, l_z) < § forsome h e F<%71[X] (i.e. h e RS[F, L, d — 1]).
Set g(X) =h(X)-(X—a)+b. Then g eRS[F, L,d] and A(u,g) <6.
But then g € List[u,d, 8] and g(a) = b. Contradiction!

Visualizing Quotienting

The quotient mapfora e F\ L: wl—-F —= qgX):= X_; : L — [F
Honest prover Dishonest prover
u = f € RS[F, £,d] A(u, RS[F, £,d]) = n and
and b = f(a) Vg € List[u,d,8]: b # g(a)
distance u to RS[F, £, d]: + , I “ ,
0 1 0 Y 1
distance g to RS[FF, £,d — 1]: + ! I 1. !
0 1 0 0 1

Quotienting by more values

Let {aq,...,ax} €S F\ L and{bq,.., b} S F. Let f:L —F.
Define polynomials V(X), 1(X) € F<¥[X] as
V(X) = [liecggX —a;) and I(a;) = b; foralli e [k].

u(X)-I1(X) | L=
vx)

Definethemap: | w:L—+>F —= q(X):=

Fact1l:if u=f and b; = f(a;) fori € [k] then qe RS[F, L,d — k]

Fact 2: (sTIR, Lemma 4.4) Suppose that for every g € List|u, d, §]
we have that b; # g(a;) forsomei € [k].
Then q(X) is 6-far from RS[F, £, d — k].

Poly-IOP = I0OP: first attempt

P f e F<X] V P T=[ITIIIIIITI1:L—>F V
honest prover: m := f € RS[F, £, d]

eval fat a; € F\ L 5-RS-10PP for g1 (X) = ”;X_);bl € RS[F, £,d — 1]
& 1 ﬁ
b1 + f(aq) for some 6 € [0,1] (g, is easy to calculate from)

5-RS-IOPP accepts = A(qq,RS[F,L,d])) <8 =

there is a codeword f; € List[mr,d, 8] s.t. fi(ay) = by

Poly-IOP = I0OP: first attempt

P fEIF<d[X] :I/ P m=[IITTTITTITI]:L—=I E/

honest prover: m := f € RS[F, £, d]

eval fat a; e F\ L

5-RS-I0PP for q; (X) = "% ¢ RS[F, £,d — 1]

. X—a1

e >
b1 — f(aq)

for some § € [0,1] (g, is easy to calculate from m)

eval fat az € F\ L 5-RS-I0PP for q,(X) == 222 € RS[F, £,d — 1]
R G— —a; |
by « f(ay)
Verifier can conclude: there are fi, f, € List[m, d, §] s.t. {fl(al) =b

f2(az) = b,
What if fl == fz ? (can happen if >unique decoding distance)

Insufficient!

A simple observation (DEEP)

P fep<ap Vo p T=CIIIIITII1]:L—TF 4
Honest prover: m == f € RS[F, £, d]

Claim: (7,s) commits prover to sample random_r € F A\ L

one f € List[m, d, §]

return s € F. Honest prover: s := f(r)

Fact: Let BAD be the eventthat 3 f; # f, € List[m,d, 8] st. fi(r) = L) =s

Pr{BAD] < \(lLiSt[g'd'S]l),' TED

_Y_I
Pr[BAD] for a fixed f3, f5

|
union bound
over all pairs

A simple observation

Fact: Let BAD be the eventthat 3 f; # f, € List[m, d, 6] st. f1(r) = L) =s

Prr[BAD] < (lList[12't,d,5]|)) |[F|f|1;|

When 6 <1 —./p (Johnson bound) then |List[n', d, 5]' < constg

= If Fis sufficiently large then Pr[BAD] < 27128 (negligible)

(otherwise, repeat with multiple random ry, ..., 7. € F \ £)

= Only one feList|m, d,] satisfies f (r) = s, with high probability

Poly-IOP = IOP: second attempt

P fep<ap Vo p T=CIIIIITII1]:L—TF 4
Honest prover: m == f € RS[F, £, d]

V(X)=X—-a)X—r) : sample random 7 € F\ £
I(a;) =by, I(r)=s

return s € F. Honest prover: s := f(r)

~evalfata; e F\L

—
m(X)—-1(X)

b, + f(ay) . 5-RS-I0OPP for g, (X) = o € RS[F, £, d — 2]
Verifier can conclude: thereis f; € Li filay) = by
: 1 € List[m, d, 6] s.t.) = s
(r) =

Poly-IOP = IOP: second attempt

P fep<ap Vo p T=CIIIIITII1]:L—TF 4
Honest prover: m == f € RS[F, £, d]

VX)) =X —-a))(X —1) : sample random 7 € F\ £
I(az) =by, I(r)=s

return s € F. Honest prover: s := f(r)

eval fat a, e F\ L
¢ —

(X)—1(X)
o € RSIF, £,d — 2]

b, + f(az) | 8-RS-IOPP for g, (X) :=

Verifier can conclude: thereis f, € List[mr,d, 8] st. f,(ay) =b,, fo(r) =s

Now: § <1—4/p and fi(r)=fo(r)=s = fi=/f, wh.p, asrequired

Poly-IOP = I0OP: summary

* The IOP prover encodes f € F<?[X] using a linear code (RS)
(other linear codes can be used, possibly with a faster encoding than RS)
(X)—1(X)

V(X)
proves evaluations of the encoded polynomial to the Verifier.

* 0-RS-IOPP applied to a quotient q(X) =

* For 6 <1—./p : anoutofdomain query (r,s) ensures that
the prover is bound to a unique polynomial, w.h.p

Poly-IOP = IOP = SNARK

A direct SNARK construction:

RS-IOPP Merkle
(such as FRl) commitments Fiat-Shamir
Polynomial
interactive ": ’ : Interactive | °* : (zk)SNARK for
oracle proof 0P Proof (IP) general circuits
(Poly-10P)

Poly-IOP = I0OP: remarks

Remark 1: what if Poly-IOP Verifier wants to query f ata € L ??
n(X)—-1(X) |

(X—a)(X-1) L—=F
isundefinedat X = a (notaproblem whena & £)

e The problem: q(X) :=

* Solution: Q) = (F(X) —1(X))/(X — a)(X —7) is a poly. in F<4~2[X].
Honest prover defines g(a) := Q(a) and runs the RS-IOPP on q.

Remark 2: naively, the IOP uses one RS-IOPP per query to f

* In practice, we can batch many RS-IOPPs into one RS-IOPP
e Let’s see how ... first we need some tools

One last topic before the break:

Distance Preserving

Transformations

Towards an efficient RS-IOPP

Distance Preserving Transformations

Let £,L' € TF, d,d’ some degree bounds, and § € [0,1].

Def: A distance preserving transformation is a randomized map
T(uUq, ..., uy;r) > u
that maps uq,.,up: L —=>F to wu:L — F such that:
case 1: (the honest case)
if uq,...,u,€RS[F, L,d] then ueRS[F, L, d'] forallr.

case 2: (the dishonest case)

if some u; is §-far from RS[F, L,d] then
u is 8-far from RS[IF, L', d'], w.h.p overr.

Example 1: batch RS-IOPP

Setting: Prover has u,, ...,u;: L = F, Verifier has oracles for uy, ..., u.

Goal: convince Verifier that all uy, ..., uy are 6-close to RS[F, £, d].
* Naively: run k RS-IOPP protocols = expensive

e Better: batch all k into a single function u: L —» F

step 1: Verifier samples random r in [F; sends to prover
step 2: Proversets u:=1ug+71r-u; +r?uy; + - +rfu: L - F
step 3: Both run RS-IOPPon u: L = F

when Verifier wants u(a) for some a € L, prover opens all ug(a), ..., ux(a)

Why is this distance preserving?

Case 1: (an honest prover)
if ug, ..., ur€ RS[IF, L,d] then ue RS[F, £,d] forallr € F

Case 2: (a dishonest prover)

if some u; is 6-far from RS[F, £,d]|, we need to argue that
u is 6-far from RS|[F, £, d], with high probability over r € [F

When § € [0,1 — \/p), Case 2 follows from the
celebrated BCIKS proximity gap theorem.

https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem

Thm (sciks'20, Thm. 6.2): RS[F, £, d] an RS-code with const. rate p := d/n (say, p = 0.5)
Let ug, .., up: L= F and 0<§<1-1.01,p . n=|L]

Forr € F define u(:= Ug + 7 uy +7%uU, + -

k
+rtuy .

then all u; are §-close to RSIF, L, d],

Suppose that Pr,[u™is §-close to RS[F, £,d] | > err

o

k _
where err=0(|ﬁ) for O<6<1—2p

q

knz 1-p
err =0 (W) for —=<6<1-1.01yp

We will assume that
err is negligible, i.e.
err < 1/2128

(if not, use multiple r)

https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem

Suppose that Pr,[u(is §-close to RS[F, £, d] | > err
then all u; are §-close to RS[F, £, d]

Contra-positive: if some u; is §-far from RS|F, £, d |
then u(is §-far with high probability, over r.

conjectured to

Proximity gap error (err) as a function of § € [0,1‘]:/ be small

2

- O("/ig) | O(*™ /i) . unknown” |, vacuous
| 1 1 1 1
6=0 (1-p)/2 1—+p 1—p 1

(uniqueness bound) (Johnson bound) (capacity bound) n=|L|

A stronger form: correlated proximity

Thm (Bciks'20, Thm. 6.2):

Let ug, ..., up: L > F and 0<06<1-1.01,/p .

Suppose that Pr,[u(™ is §-close to RS[F, £, d] | > err
then thereisan S € L suchthat |S| = (1 —§)- |£| and
forall j: 3f; € RS[F, £,d] s.t. Vx €S: ui(x) = f;(x)

= U, ..., U are d-close to RS|[IF, £, d]| on the same positions S .

(recall u(:=wuy+71-uy +r2uy + -+ r*uy)

https://eprint.iacr.org/2020/654.pdf

Why is this called a proximity gap??

Suppose that Pr.[u(™ is §-close to RS[F, £,d] | > err then

all u; are §-close to RS[FF, £, d]| on the same positions S € L

But if all ug, ..., uy: L — IF are §-close to RS[FF, £, d]
on positions S € L, then u™ is §-close for all r € F.

So Pr.[u(™ is §-close to RS[F, £,d]] exhibits a gap:

| | not Eossible |

0 err 1

il f 1
'u(") is &-close for few r ' u™ is 6-close for all r

Proximity gaps for other linear codes?

A similar proximity gap holds for every linear code.

min. distance

/

Thm: (zeilberger'24) Let C € F™ be an [n, dim, l],, linear code.
Then C has a correlated proximity gapfor0 < § < 1 — 3/t
and err = O(kn/|IF|) , Where 7:=1— (I/n).

(For RS-code T = p, so this gap is much weaker than BCIKS'20)

This can be used in a C-proximity IOPP (e.g., Basefold, Blaze)

https://eprint.iacr.org/2024/1843

2"d Distance preserving example: 2-way folding

Fromnowon set £ = {1, w, ®w?, ..., " 1} C F, where
* nisa power of two, and

* w is an n-th primitive root of unity (w™ = 1)

(requires that n divides |F| — 1)

Then:
e "2 =—-1 sothatif x=w! e L then —x = T2 e ¢

+ L% = {a*:a e L} = |L]|/2 = n/2 (—a, a—>a®)

2-way folding a polynomial

A folding transformation: let’s start with an example.

Let f(X) =14 2X+3X%2+4X3+5X*+ 6X° e FO[X]

Define fiyen(X)=1+3X+5X? and f,34(X) =2 +4X + 6X?

Then: f(X) = feven(XZ) + X fodd(XZ)

Define: forr € F define froiar *= fevent 7 * foaa € FS[X]

2-way folding a polynomial: more generally

For f € F<[X] (with d even) define:

_ fOO+f(=Xx) X)-f(=X)
° feven(XZ) = 5 and f,qq(X?) = ! 2;

* froldrX) = foyen(X) +7 - fogq (X) € F<¥/2[X]

Then: f(X) =feven(X2) +X'fodd(X2)
 foreverya € F: fpq,-(a®) can be eval given f(a), f(—a)

* feRS[F.Ld] = froar€RS[F,L%d/2] =

Folding an arbitrary word u: L — [F

For u: L = F and r € F define u,, Uy, Ugo1gr: L* = F as

u(a)+u(-a)

2y . ula)—u(-a)
- and u,(a®) = >

» for b e L ugiqr(b) = ue(b) +71-u, (b)

e« forael: u,(a®) =

(recall |£2| = |£|/2)

Lemma (distance preservation): for 0 <o <1—./p
 ueRS[F L, d] = ugqr€ RS[F, L%d/2] forallr € F

* uiso-far from RS[F, £, d] =
Pr[ugoq,r is 6-far from RS[F, £%,d/2]] =1 —err
r

Folding an arbitrary word u: L — [F

For u: L = F and r € F define u,, Uy, Ugo1gr: L* = F as

u(a)+u(-a) —u(—
2) = - and u,(a?) = “(“)ZZ(a)

» for b€ L ugiqr(b) = ue(b) +71-u, (b)

e forael: u,(a

(recall |£2| = |£|/2)

Lemma (distance preservation): for 0 <o <1—./p
 ueRS[F L, d] = ugqr€ RS[F, L%d/2] forallr € F

* Pr[ugoq, is 6-close to RS[F, £L%,d/2]] > err =
r

u is 6-close to RS[FF, £, d] (contra-positive)

Why is this true?

The first part of the lemma is easy. Let’s prove the second part.

Suppose that Prr[Usold.r IS 0-close to RS[F, £?,d /2]] > err

Then by the BCIKS’20 theorem, there are g,, g, € RS[F, L%, d /2]
that match u,, u, on asetS € L of size |S| = (1 — §)(n/2)

Define g: L - Fas g(a) :==g.(a?) + a- g,(a?) € RS[F, L, d]

Then: g(a) = u(a) foralla € L for which a? € S (2|S| values in £)

2lsl _ 4 _ 181
Butthen A(u,g) <1 -— —=1 n/2S6'

= uis 6-close to RS[F, £, d]

An important corollary

Llet C =RS[F,£,d] and ¢’ =RS[F, L2 d/2]

Corollary: Foru: L = F (folding does not decrease distance, w.h.p)

« ifA(u,C) <1—/p then Pr|A(upigrC') =AW C)|=1—err

r

« ifA(u,C) 21—,/p then Pr[A(usg,C)=1—p|=1—err

r

Recall A(u,C)<6 < uisd-closetoC

4-way folding u: L = [F (usingi?2 = -1)

For u: L = F define ug,uq, Uy, ug : L* = F for ae L as

4 - ug(a*) 1 1 1 1 u(a)
(4a- \ /1 —i (—1)? (—i)3\ | /u(.ia)\

ui(a®) | _
4a° -ux(a®) | 7 [1 -1 1 —1 u(i’a)
\4&3 C U3 (a4)) \1 0 72 i3) \u(z’?’a))

(a degree-4 FFT)

The 4-way fold of u: for r € F define uyfo1q,: L* — F as
Ustoldr (D) = ug(b) +7 - ug (b) +7% - uy (b) +7° - uz (b) forb e L*

Evaluating usgo1q - (X) at b € L* requires four evals. of u(X).

4-way folding u: L = [F (usingi?2 = -1)

For u: L = F define ug,uq, Uy, ug : L* = F for ae L as

4 - ug(a*) 1 1 1 1 u(a)
(4a- \ /1 —i (—1)? (—i)3\ | /u(.ia)\

ui(a®) | _
4a° -ux(a®) | 7 [1 -1 1 —1 u(i’a)
\4&3 C U3 (a4)) \1 0 72 i3) \u(z’?’a))

(a degree-4 FFT)

The 4-way fold of u: for r € F define uyfo1q,: L* — F as
Ustoldr (D) = ug(b) +7 - ug (b) +7% - uy (b) +7° - uz (b) forb e L*

Fact: the same distance preservation corollary holds for u4¢4)q r

8-way foldlng u. L » F (using an 8t root of unity)

Can similarly define 8-way folding, or even 2% folding for w > 3.
maps w:L = F to Upweog,: L2 — F (1£2°] = 1£]/2%)

(1) evaluating upweoiq (D) requires 2% evals. of u(X)

= uses a degree-2" FFT (degree-8 FFT for 8-way folding)

(2) the same distance preservation corollary holds for u,wegq r

End of lecture: Brief Summary

For a linear code C: List|u,C,é] issmalluptod <1 —.,/1—u

Poly-IOP — IOP compiler:

* Honest P Commits to f € F<¢[X] by sending its encoding f to V
* Prove evaluation of f using RS-IOPP on quotient of sent word u
e Qut-of-domain eval. commits P to unique word in List[u, C, 6]

Folding:
 (wL—-F) = (uglq,r: £L* — F) is adistance preserving map
* Proof using the BCIKS’20 proximity gap theorem

Let’s put all this machinery to use

See you in the next lecture ...

THE END

