
Dan Boneh
Stanford University

FRI and Proximity Proofs:
What they are what they are for

Recap: a General Paradigm for a Modern SNARK

ℱ-interactive
oracle proof

(ℱ	− IOP)

ℱ-functional
commitment

scheme
SNARK for

general circuits
(cryptographic object)

(info. theoretic object)

Recap: three function families

Polynomial-IOP (PIOP) +
Polynomial Commitment

PLONK +
KZG SNARK

𝑂(𝑛𝑙𝑜𝑔𝑛) time prover

Multilinear-IOP (MIOP) +
Multilinear Commitment

HyperPLONK +
Mercury SNARK

𝑂(𝑛) time prover

𝑛 = size of comp. trace

Vector-IOP (IOP) +
Vector Commitment

??? +
MerkleTree ???

Papers we discuss in this lecture and the next
• FRI (2018) and analysis (2018): Fast Reed–Solomon Interactive Oracle Proofs of Proximity

• DEEP-FRI (2019): Out of domain sampling improves soundness

• BCIKS (2020): Proximity Gaps for Reed–Solomon Codes

• CircleSTARK (2024): FRI using a Mersenne prime

• STIR (2024): Reed–Solomon proximity testing with fewer queries

• WHIR (2024): Proximity testing with a faster verifier

Beyond Reed-Solomon codes (a few recent results):

• Breakdown (2021), Orion (2022): Polynomial commitments with a fast prover

• BaseFold (2023): Polynomial commitments from foldable codes with shorter proofs

• Blaze (2024): Fast SNARKs from Interleaved RAA Codes

https://drops.dagstuhl.de/storage/00lipics/lipics-vol107-icalp2018/LIPIcs.ICALP.2018.14/LIPIcs.ICALP.2018.14.pdf
https://www.math.toronto.edu/swastik/fri.pdf
https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2020/654.pdf
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2024/390
https://eprint.iacr.org/2024/1586
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2023/1705.pdf
https://eprint.iacr.org/2024/1609

FRI: Fast Reed-Solomon IOPP

• Let 𝔽 be a finite field (say, 𝔽 = {0,1,2, … , 𝑝 − 1}) and ℒ ⊆ 𝔽.
• Let 𝕪: ℒ ⇾ 𝔽 be a committed function (a vector of size |ℒ|)

FRI: a way to prove that 𝕪 is “close” to a Reed-Solomon codeword

So what? Who cares? What does this even mean?

Let’s get started … first some background

(1) Codes

(2) IOP and IOPP

(3) Poly-IOP

Background

(1) Linear codes
Def: an 𝑛, 𝑘, 𝑙 ! linear code 𝒞	is a linear subspace 𝒞 ⊆	𝔽" of

dimension 𝑘 (so |𝒞| = 𝑝!) where 𝑢 ' ≥ 𝑙 for all 0 ≠ 𝑢 ∊ 𝒞

Recall: For 𝑢, 𝑣 in 𝔽"

𝑢 ' ≔	(Hamming weight of 𝑢) = ∑()'" 𝑢(' (where 0" = 0)

∆(𝑢, 𝑣) ≔ (relative Hamming distance) = ," 𝑢 − 𝑣 ' ∊ [0,1]

 example: ∆ 1, 𝟓, 9, 𝟒, 𝟏 , 1, 𝟐, 9, 𝟕, 𝟒 = 3/5

µ = µ 𝒞 	≔	𝑙/𝑛 = (relative min weight of 𝒞) = !
"	. min'/0∊𝒞

𝑢 ' ∊ [0,1]

(sum as integers)

(1) Linear codes

Let 𝒞 ⊆	𝔽" be a 𝑛, 𝑘, 𝑙 ! linear code. Then:

Fact 1: For all distinct 𝑢, 𝑣 ∊ 𝒞 we have ∆ 𝑢, 𝑣 ≥ µ 𝒞 = 𝑙/𝑛
 (otherwise 0 ≠ 𝑢 − 𝑣 ' < 𝑙 and 𝑢 − 𝑣 ∊ 𝒞)

Fact 2: 𝑘 ≤ 𝑛 − 𝑙 + 1 (i.e. |𝒞| ≤ 𝑝"234,) (the singleton bound)

Def: if 𝑘 = 𝑛 − 𝑙 + 1 then 𝒞	is called an MDS Code

 The classic MDS code: the Reed-Solomon code (more in a bit)

Encoding a message as a codeword

Let 𝒞 ⊆	𝔽" be a 𝑛, 𝑘, 𝑙 ! linear code.

Encoding: Let 𝒄𝟏, … , 𝒄𝒌 ∊	𝔽" be a basis of 𝒞.
 A message 𝑚 = 𝑚,, … ,𝑚7 ∊	𝔽7 can be encoded as a codeword

Def: The rate of a code is 𝜌 ≔ 𝑘/𝑛 ∊ [0,1] (e.g., 𝜌 = 0.5)

𝑚 ∊ 𝔽7 m,𝒄𝟏 +⋯+𝑚7𝒄𝒌 ∊ 𝔽" (1/𝜌 expansion)encode

In practice: for fast encoding, want 𝜌 as large as possible (𝜌=0.5 ⇒ 𝑛=2𝑘)

We can treat 𝒞 as a linear map 𝒞: 𝔽! ⇾ 𝔽" that encodes messages in 𝔽!

Unique decoding distance (𝑛, 𝑘, 𝑙 ! linear code)

𝑢 ∊ 𝒞 𝑣 ∊ 𝒞∆(𝑢, 𝑣) ≥ µ 𝒞

𝑤 ∊	𝔽! Fact 3: for every 𝑤 ∊	𝔽"
there is at most one codeword
𝑢 ∊ 𝒞 s.t. ∆(𝑢,𝑤) < µ 𝒞 /2

(by triangular inequality)

Def: µ 𝒞 /2 in [0,0.5] is called the unique decoding distance of 𝒞

D
"∊𝒞

𝐵% 𝑢, 𝑙/2 = D
"∊𝒞

𝑛
𝑙/2 𝑝&/(≤	𝑝!)&*+ G

𝑛
𝑙/2 𝑝&/(< 𝑛&/(G p!)&/(*+ ≪ 𝑝!

Most 𝑤 ∊	𝔽" are not uniquely decodable 𝑛 < 𝑝

List decoding

Def: For a 𝑛, 𝑘, 𝑙 ! linear code 𝒞, 𝑤 ∊ 𝔽", and 𝛿 ∊ [0,1], let

 List[𝑤, 𝒞, 𝛿] ≔ { 𝑐 ∊ 𝒞 s.t. ∆(𝑐, 𝑤) ≤ 𝛿 }

Then 𝛿 < µ 𝒞 /2 ⇒ |List[𝑤, 𝒞, 𝛿]|≤ 1
(unique decoding distance)

List decoding

The Johnson bound: For 𝒞 ⊆	𝔽", 𝑤 ∊ 𝔽", 0 < 𝛿 < 1 − 1 − 𝜇

|List[𝑤, 𝒞, 𝛿]|	≤ 1/𝜀? where 𝜀, ≔ 2 1 − 𝜇 1 − 1 − 𝜇 − 𝛿

(blows up as 𝛿 approaches	 1 − 1 − 𝜇)

Size of List[𝑤, 𝒞, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 𝜇/2 1 − 1 − 𝜇 𝜇 1

size ≤1 size ≤ 1/𝜀, depends on 𝒞 ≥ 𝑝

(Johnson bound) (capacity bound)(uniqueness bound)

𝒞

Convenient terms: 𝛿-close and 𝛿-far

Def: We say that 𝑤 ∊ 𝔽" is 𝜹-close to 𝒞 ⊆	𝔽"

 if there is some 𝑐 ∊ 𝒞 s.t. ∆(𝑤, 𝑐) ≤ 𝛿

 (i.e. |List[𝑤, 𝒞, 𝛿]|≥ 1). We write ∆(𝑤, 𝒞) ≤ 𝛿.

Def: We say that 𝑤 ∊ 𝔽" is 𝜹-far from 𝒞 ⊆	𝔽"

 if for all 𝑐 ∊ 𝒞 we have ∆ 𝑤, 𝑐 > 𝛿

 (i.e. |List[𝑤, 𝒞, 𝛿]|= 0). We write ∆(𝑤, 𝒞) > 𝛿.

The classic MDS code: Reed-Solomon
First, polynomials over a field 𝔽

• 𝔽CD[𝑋]: set of all univariate polynomials over 𝔽 of degree < 𝑑

• For a polynomial 𝑓 ∊ 𝔽CD[𝑋] and ℒ ⊆ 𝔽
 write ̅𝑓: ℒ ⇾ 𝔽 for the restriction of 𝑓 to the domain ℒ

A function 𝑤: ℒ ⇾ 𝔽, where 𝑛 ≔ ℒ , can be treated as a vector

 vec 𝑤 ≔ 𝑤 𝑎, , … , 𝑤 𝑎" ∊	𝔽"
where ℒ = {𝑎,, … , 𝑎"} ⊆ 𝔽 has a natural ordering

The classic MDS code: Reed-Solomon
Def: The Reed-Solomon code over the field 𝔽,
 evaluation domain ℒ ⊆ 𝔽, and degree 𝑑, is the linear code

 RS[𝔽, ℒ, 𝑑] ≔ { ̅𝑓: ℒ ⇾ 𝔽 where 𝑓 ∊ 𝔽CD[𝑋] }
Fact: Let 𝑑 < 𝑛 ≔ ℒ .
 RS[𝔽, ℒ, 𝑑] is a 𝑛, 𝑑, 𝑙 = (𝑛 − 𝑑 + 1) ! linear code

 ⇒ RS[𝔽, ℒ, 𝑑] is an MDS code (has 𝑝- codewords)

Def: The rate of RS[𝔽, ℒ, 𝑑] is 𝜌 ≔ 𝑑/𝑛 ∊ [0,1] (e.g., 𝜌 = 0.5)

𝑚 ∊ 𝔽D vec(̅𝑓E) ∊ 𝔽" (1/𝜌 expansion)encode

Unique decoding and list decoding

Recall: 𝜌 ≔ 𝑑/𝑛 ∊ [0,1] where 𝑛 ≔ ℒ . For MDS code: 𝜇 ≈ 1 − 𝜌.

Def: For RS[𝔽, ℒ, 𝑑] , 𝑤: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1], let

 List[𝑤, 𝑑, 𝛿] ≔ { ̅𝑓 ∊ RS[𝔽, ℒ, d] s.t. ∆(̅𝑓, 𝑤) ≤ 𝛿 }

So: 𝛿 < #
$
= %

$"
= "&'()

$"
≈)&*

$
 ⇒ |List[𝑤, 𝑑, 𝛿]|	≤ 1

(unique decoding distance)

Unique decoding and list decoding

The Johnson bound: For RS[𝔽, ℒ, 𝑑], 𝑤: ℒ ⇾ 𝔽, 𝛿 < 1 − 𝜌

|List[𝑤, 𝑑, 𝛿]|	≤ 1/𝜀? where 𝜀, ≔ 2 𝜌(1 − 𝜌 − 𝛿) ∊ 	 (0,1)

(blows up as 𝛿 approaches	 1 − 𝜌)

size of List[𝑤, 𝑑, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

size ≤1 size ≤ 1/𝜀? unknown ≥ 𝑝

(Johnson bound) (capacity bound)(uniqueness bound)

𝒞

Unique decoding and list decoding

The Johnson bound: For RS[𝔽, ℒ, 𝑑], 𝑤: ℒ ⇾ 𝔽, 𝛿 < 1 − 𝜌

|List[𝑤, 𝑑, 𝛿]|	≤ 1/𝜀? where 𝜀, ≔ 2 𝜌(1 − 𝜌 − 𝛿) ∊ 	 (0,1)

(blows up as 𝛿 approaches	 1 − 𝜌)

size of List[𝑤, 𝑑, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

size ≤1 size ≤ 1/𝜀? unknown

Conjectured to be poly(𝑛) size (true for random ℒ ⊆ 𝔽 [BGM’24])

≥ 𝑝

https://arxiv.org/abs/2206.05256

Unique decoding and list decoding

The Johnson bound: For RS[𝔽, ℒ, 𝑑], 𝑤: ℒ ⇾ 𝔽, 𝛿 < 1 − 𝜌

|List[𝑤, 𝑑, 𝛿]|	≤ 1/𝜀? where 𝜀, ≔ 2 𝜌(1 − 𝜌 − 𝛿) ∊ 	 (0,1)

(blows up as 𝛿 approaches	 1 − 𝜌)

size of List[𝑤, 𝑑, 𝛿] as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 3/8 1/2 3/4 1

size ≤1 size ≤ 1/𝜀? unknown

An example: 𝜌 = 1/4

≥ 𝑝

Review (1) IOP and IOPP

 (2) Poly-IOP

Background on IOPs

Interactive Oracle Proofs (IOP) [BCS’16, RRR’16]

Let 𝑅 = 𝕩,𝕨 be a poly-time relation (e.g., 𝕩 = sha3(𝕨))

Def: an IOP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩,𝕨 Verifier 𝕩
𝜋% =

𝛼+ ⇽ 	𝔘

𝛼. ⇽ 	𝔘

𝜋. = 𝑽+#,…,+$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
𝜋+ =

𝛼/: short random challenges

𝜋/: poly-size strings (oracles)

𝑽 can query for cells of 𝜋/

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652

Interactive Oracle Proofs (IOP) [BCS’16, RRR’16]

Let 𝑅 = 𝕩,𝕨 be a poly-time relation (e.g., 𝕩 = sha3(𝕨))

Def: an IOP (𝑷, 𝑽) for 𝑅

is complete if for all 𝕩,𝕨 ∊ 𝑅, when 𝑽 interacts with 𝑷
 Pr[𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes]	= 1

is sound if for all 𝑷∗ and 𝕩	 ∉ 𝐿 𝑅 ≔ 𝕩	 ∃𝕨: 𝕩,𝕨 ∊ 𝑅}

 Pr[𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes] < 𝑒𝑟𝑟 (≈2%&'()

is knowledge sound (informally) if for all 𝑷∗,
 𝑽 accepts 𝕩 ⇒ prover “knows” 𝕨	s.t. 𝕩,𝕨 ∊ 𝑅

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652

Interactive Oracle Proofs (IOP) [BCS’16, RRR’16]

Let 𝑅 = 𝕩,𝕨 be a poly-time relation (e.g., 𝕩 = sha3(𝕨))

Def: an IOP (𝑷, 𝑽) for 𝑅

is complete if for all 𝕩,𝕨 ∊ 𝑅, when 𝑽 interacts with 𝑷
 Pr[𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes]	= 1

is sound if for all 𝑷∗ and 𝕩	 ∉ 𝐿 𝑅 ≔ 𝕩	 ∃𝕨: 𝕩,𝕨 ∊ 𝑅}

 Pr[𝑽M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes] < 𝑒𝑟𝑟 (≈2%&'()

is succinct if time(𝑽) is at most polylog(time(𝑅)) and O(𝕩 , log(1/𝑒𝑟𝑟))
 ⇒ 𝑘	is small and 𝑽	makes few queries to the oracles 𝜋., … , 𝜋! 	

https://www.iacr.org/archive/tcc2016b/99850156/99850156.pdf
https://dl.acm.org/doi/10.1145/2897518.2897652

IOP for 𝑅 ⇒ SNARK for 𝑅 (the BCS’16 compiler)

Step 1: replace 𝜋.,…, 𝜋! 	 by Merkle commitments

Prover 𝑷 𝕩,𝕨 Verifier 𝕩
MerkleCommit(𝜋%)

𝛼+ ⇽ 	𝔘

𝛼. ⇽ 	𝔘

MerkleCommit(𝜋.) 𝑽+#,…,+$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
MerkleCommit(𝜋+)

𝑽 queries 𝜋(at cell 𝑗 ⇒ 𝑷 responds with a Merkle proof for cell 𝑗

Security now depends
on collision resistance
of Merkle hash function

We obtain an
interactive proof (IP)

IOP for 𝑅 ⇒ SNARK for 𝑅 (the BCS’16 compiler)

Step 2: Make non-interactive using the Fiat-Shamir transform

Prover 𝑷 𝕩,𝕨
𝑐% ≔	MerkleCommit(𝜋%)

𝛼+ ⇽ 𝐻𝑎𝑠ℎ(𝕩, c%)

𝛼. ⇽ 𝐻𝑎𝑠ℎ(𝕩, c%, 𝛼+, 𝑐+… , 𝑐.)+)
𝑐. ≔	MerkleCommit(𝜋.)

𝑽+#,…,+$ 𝕩,𝛼), … , 𝛼!

⋮
𝑐+ ≔	MerkleCommit(𝜋+)

MerkleProofs (one per 𝑽	query)

SNARK
Proof

IOP for 𝑅 ⇒ SNARK for 𝑅 (the BCS’16 compiler)

“Thm” (BCS’16, CCH+’19, Hol’19):

 the IOP has round-by-round soundness
 ⇒
 the derived SNARG is secure in the random oracle model

Efficiency:
• To reduce prover work: minimize 𝜋' +⋯+ |𝜋7|

• To reduce proof size: minimize 𝑘 and number of verifier queries

(see also Chiesa-Yogev SNARK book)

⇒ Merkle Commitments ⇒ Merkle Proofs (𝑂!(log |𝜋"|) size)

https://eprint.iacr.org/2019/1261.pdf
https://snargsbook.org/

A generalization: IOP of Proximity (IOPP)

Let 𝑅 = 𝕩, 𝕪,𝕨 be a poly-time relation

Def: an IOPP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩, 𝕪,𝕨 Verifier𝕪 𝕩
𝜋% =

𝛼+ ⇽ 	𝔘

𝛼. ⇽ 	𝔘

𝜋. = 𝑽𝕪,+#,…,+$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
𝜋+ =

𝕪, 𝜋/: poly-size strings (oracles)

𝑽 can query for cells of 𝕪, 𝜋/
The IOPP proves properties
of 𝕩	and a committed 𝕪

(𝕪 =)

Completeness and proximity soundness
Let 𝑅 = 𝕩, 𝕪,𝕨 be a poly-time relation (𝕪 =)

if 𝕩, 𝕪 is neither, then no guarantee on the output of 𝑽

Def: (𝕩, 𝕪) is 𝜹-far from 𝑹, if (𝕩, 𝕪′,𝕨) ∉ 𝑅	for all 𝕪′,𝕨 with ∆(𝕪, 𝕪′) ≤ 𝛿

Def: an IOPP (𝑷, 𝑽) for 𝑅
is complete if for all 𝕩, 𝕪,𝕨 ∊ 𝑅 the Verifier 𝑽 always accepts 𝑷

is 𝛿-sound if for all (𝕩, 𝕪) that are 𝛿-far from 𝑅:
 ∀𝑷∗:	 Pr[𝑽𝕪,M#,…,M$ 𝕩, 𝛼,, … , 𝛼7 = yes] < 𝑒𝑟𝑟 (≈2%&'()

An important example: a Reed-Solomon IOPP

Let 𝒞 = RS[𝔽, ℒ, 𝑑] , 𝑢: ℒ ⇾ 𝔽, and 𝛿 ∊ [0,1]

Def: an IOPP for RS, a 𝛿-RS-IOPP, is an IOPP (𝑷, 𝑽) such that

FRI is an efficient RS-IOPP. But why is this useful?

𝑷 𝕩 = 𝒞, 𝕪 = 𝑢,𝕨 =⊥ Verifier𝕪 𝕩 = 𝒞
complete: 𝑢 ∊ 𝒞 ⇒ for 𝑷: 	 Pr[𝑽",2!,…,2" 𝕩, 𝛼+, … , 𝛼. = yes]	 = 1

𝛿-sound: ∆ 𝑢, 𝒞 > 𝛿 ⇒ ∀𝑷∗: Pr[𝑽",2!,…,2" 𝕩, 𝛼+, … , 𝛼. = yes] < 𝑒𝑟𝑟

A special type of IOP: Poly-IOP
Let 𝑅 = 𝕩,𝕨 be a poly-time relation

Def: a Poly-IOP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩,𝕨
𝑓% ∊ 𝔽5-[𝑋]

𝛼+ ⇽ 𝔽

𝛼. ⇽ 𝔽

𝑓. ∊ 𝔽5-[𝑋] 𝑽6#,…,0$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

⋮
𝑓+ ∊ 𝔽5-[𝑋]

𝑓%, … , 𝑓.: must be oracles
 for functions in 𝔽5-[𝑋]

𝑽 can eval 𝑓/ at any 𝑥 ∊ 𝔽

Verifier 𝕩

A special type of IOP: Poly-IOP
Let 𝑅 = 𝕩,𝕨 be a poly-time relation

Def: a Poly-IOP for 𝑅 is a pair of algorithms (𝑷, 𝑽) s.t.:

Prover 𝑷 𝕩,𝕨

𝛼. ⇽ 	𝔘

𝑓. ∊ 𝔽5-[𝑋] 𝑽6#,…,0$ 𝕩,𝛼), … , 𝛼! ⇾	yes/no

Verifier 𝕩

Completeness and soundness as for an IOP

Compiling a Poly-IOP to a SNARK

Method 1: use an algebraic polynomial commitment
• univariate IOP: use KZG
• multilinear IOP: use Zeromorph or Mercury

Method 2: use an IOPP
• Fast: using only a Merkle tree

An important application of an RS-IOPP

Compiling a Poly-IOP to a SNARK
Using a Reed-Solomon IOP of Proximity

Poly-IOP ⇒ IOP ⇒ SNARK

Polynomial
interactive

oracle proof
(Poly-IOP)

Interactive
Proof (IP)

(zk)SNARK for
general circuits

Fiat-Shamir
RS-IOPP

(such as FRI)

IOP

Merkle
commitments

A direct SNARK construction:

The interesting step: Poly-IOP ⇒ IOP

Poly-IOP IOP

eval 𝑓/ at 𝑥/ ∊ 𝔽

y7 ⇽	𝑓/(𝑥/) ↺

𝑓/ ∊ 𝔽5-[𝑋] ↺ 𝜋/ = ↺

open 𝜋/ at cell 𝑗

y7 ⇽ 𝜋/[𝑗] ↺

Challenge: how to build a polynomial eval oracle from a list lookup oracle??

Representing a polynomial as an IOP oracle

The problem: 𝑓 ∊ 𝔽CD[𝑋] ⇾ string 𝜋: ∊ 𝔽"

Let 𝒞 = RS[𝔽, ℒ, 𝑑] with ℒ = {𝑎,, … , 𝑎"} (𝑑 < 𝑛)

• The honest prover represents 𝑓 ∊ 𝔽CD[𝑋] by its encoding

 𝑓 ⇾ 𝜋 = 𝑓 𝑎, , 𝑓 𝑎` , … , 𝑓 𝑎" = ̅𝑓 ∊ 𝒞 ⊆ 𝔽"

New problem: in a Poly-IOP the prover can only send 𝑓 ∊ 𝔽CD[𝑋],
 but now the prover can send any 𝜋: ℒ ⇾ 𝔽, possibly not in 𝒞

We will treat 𝜋 as a function 𝜋: ℒ ⇾ 𝔽

• Can Verifier confirm that 𝜋 is a codeword in 𝒞	by only opening
a few cells in 𝜋 ??

• Can’t be done (what if 𝜋 is wrong in only one cell?)

• But Verifier can confirm that 𝜋 is 𝛿-close to some codeword,
for 𝛿<(unique decoding distance) ⇒ 𝜋 represents a unique poly.

 How to check? Reed-Solomon IOPP (e.g., FRI)

The new problem: prover sends an oracle 𝜋: ℒ ⇾ 𝔽

Representing a polynomial as an IOP oracle

But this is not yet a PCS. First, let’s develop some tools …

Quotienting
Let 𝑎 ∊ 𝔽 s.t. 𝑎 ∉ ℒ and let 𝑏 ∊ 𝔽 . Let 𝑓 ∊ 𝔽CD 𝑋 and 𝛿 ∊ [0,1].

Define the quotient map: 𝑢: ℒ ⇾ 𝔽	 ⇾ 	 𝑞(𝑋) ≔ 0(a)2b
a2c ∶ ℒ ⇾ 𝔽

Fact 1: if 𝑢 = ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑] and 𝑏 = 𝑓 𝑎 then 𝑞 ∊ RS[𝔽, ℒ, 𝑑 − 1]

Fact 2: Suppose that for all 𝑔̅ ∊ List 𝑢, 𝑑, 𝜹 we have 𝑏 ≠ 𝑔(𝑎).
 Then 𝑞 is 𝜹-far from RS 𝔽, ℒ, 𝑑 − 1 .
Proof: Suppose ∆ 𝑞, zℎ ≤ 𝛿 for some ℎ ∊ 𝔽5-)+ 𝑋 (i.e. zℎ ∊ RS[𝔽, ℒ, 𝑑 − 1]).
 Set 𝑔(𝑋) ≔ ℎ(𝑋) G 𝑋 − 𝑎 + 𝑏. Then 𝑔̅ ∊ RS[𝔽, ℒ, 𝑑] and ∆ 𝑢, 𝑔̅ ≤ 𝛿.
 But then 𝑔̅ ∊ List 𝑢, 𝑑, 𝜹 and g 𝑎 = 𝑏. Contradiction!

Visualizing Quotienting

distance 𝑢 to RS 𝔽, ℒ, 𝑑 :

distance 𝑞 to RS 𝔽, ℒ, 𝑑 − 1 :

Honest prover Dishonest prover

0 1

0 10 1

0 1𝜂

The quotient map for 𝑎 ∊ 𝔽 ∖ ℒ	: 𝑢: ℒ ⇾ 𝔽	 ⇾ 	 𝑞(𝑋) ≔ "(9));
9)<

 ∶ ℒ ⇾ 𝔽

𝑢 = ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]
 and 𝑏 = 𝑓 𝑎

∆ 𝑢, RS 𝔽, ℒ, 𝑑 = 𝜂 and

∀𝑔̅ ∊ List 𝑢, 𝑑, 𝜹 : 𝑏 ≠ 𝑔(𝑎)

𝛿

Quotienting by more values
Let {𝑎,, … , 𝑎7} ⊆ 𝔽 ∖ ℒ and {𝑏,, … , 𝑏7} ⊆ 𝔽. Let 𝑓: ℒ ⇾ 𝔽.

Define polynomials 𝑉 𝑋 , 𝐼 𝑋 ∊ 𝔽k7[𝑋] as
 𝑉(𝑋) ≔ ∏(∊[7](𝑋 − 𝑎() and 𝐼 𝑎(= 𝑏(for all 𝑖 ∊ [𝑘] .

Define the map: 𝑢: ℒ ⇾ 𝔽	 ⇾ 	 𝑞(𝑋) ≔ 0(a)2l(a)
m(a)

 ∶ ℒ ⇾ 𝔽

Fact 1: if 𝑢 = ̅𝑓 and 𝑏(= 𝑓(𝑎() for 𝑖 ∊ [𝑘] then 𝑞∊ RS[𝔽, ℒ, 𝑑 − 𝑘]

Fact 2: (STIR, Lemma 4.4) Suppose that for every 𝑔̅ ∊ List 𝑢, 𝑑, 𝜹
 we have that 𝑏(≠ 𝑔(𝑎() for some 𝑖 ∊ [𝑘].
 Then 𝑞(𝑋) is 𝜹-far from RS 𝔽, ℒ, 𝑑 − 𝑘 .

Poly-IOP ⇒ IOP: first attempt

eval 𝑓 at 𝑎+ ∊ 𝔽 ∖ ℒ

𝑏+ ⇽ 𝑓(𝑎+)

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞+ 𝑋 ≔ 2 9);#
9)<#

∊ RS[𝔽, ℒ, 𝑑 − 1]

for some 𝛿 ∊ [0,1] (𝑞% is easy to calculate from 𝜋)

𝜋 = ∶ ℒ ⇾ 𝔽
honest prover: 𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

𝛿-RS-IOPP accepts ⇒ ∆ 𝑞1, RS 𝔽, ℒ, 𝑑 < 𝛿 ⇒
 there is a codeword ̅𝑓1 ∊ List 𝝅, 𝑑, 𝛿 s.t. 𝑓1 𝑎1 = 𝑏1

Poly-IOP ⇒ IOP: first attempt

eval 𝑓 at 𝑎+ ∊ 𝔽 ∖ ℒ

𝑏+ ⇽ 𝑓(𝑎+)

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞+ 𝑋 ≔ 2 9);#
9)<#

∊ RS[𝔽, ℒ, 𝑑 − 1]

for some 𝛿 ∊ [0,1] (𝑞% is easy to calculate from 𝜋)

𝜋 = ∶ ℒ ⇾ 𝔽
honest prover: 𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

eval 𝑓 at 𝑎(∊ 𝔽 ∖ ℒ

𝑏(⇽ 𝑓(𝑎()

𝑃 𝑃𝑉 𝑉

𝛿-RS-IOPP for 𝑞(𝑋 ≔ 2 9);$
9)<$

∊ RS[𝔽, ℒ, 𝑑 − 1]

Verifier can conclude: there are ̅𝑓,, �𝑓 ∊ List 𝝅, 𝑑, 𝛿 s.t. �𝑓+ 𝑎+ = 𝑏+
𝑓(𝑎(= 𝑏(

Insufficient! What if 𝑓, ≠ 𝑓 	? (can happen if 𝜹>unique decoding distance)

A simple observation (DEEP)

𝑓 ∊ 𝔽5-[𝑋] 𝜋 = ∶ ℒ ⇾ 𝔽
Honest prover: 𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

sample random 𝑟 ∊ 𝔽 ∖ ℒ

return 𝑠 ∊ 𝔽 . Honest prover: 𝑠 ≔ 𝑓(𝑟)
Claim: (𝑟, 𝑠) commits prover to
 one 𝑓 ∊ List 𝝅, 𝑑, 𝛿

union bound
over all pairs Pr[BAD] for a fixed 𝑓%, 𝑓&

Fact: Let BAD be the event that ∃	 ̅𝑓+ ≠ �𝑓(∊ List 𝝅, 𝑑, 𝛿 s.t. 𝑓+ 𝑟 = 𝑓(𝑟 = 𝑠

Pr[BAD] ≤ |rstu 𝝅,D,? |
` 	 � D

𝔽 2|ℒ|𝑟

A simple observation
Fact: Let BAD be the event that ∃	 ̅𝑓+ ≠ �𝑓(∊ List 𝝅, 𝑑, 𝛿 s.t. 𝑓+ 𝑟 = 𝑓(𝑟 = 𝑠

Pr[BAD] ≤ |rstu 𝝅,D,? |
` 	 � D

𝔽 2|ℒ|𝑟

When 𝛿 < 1 − 𝜌 (Johnson bound) then |List 𝝅, 𝑑, 𝛿 | < const𝛿

⇒ If 𝔽	is sufficiently large then Pr BAD < 22,`w	 (negligible)

⇒ Only one 𝑓∊List 𝝅, 𝑑, 𝛿 satisfies 𝑓 𝑟 = 𝑠, with high probability

(otherwise, repeat with multiple random 𝑟%, … , 𝑟' ∊ 𝔽 ∖ ℒ)

Poly-IOP ⇒ IOP: second attempt

eval 𝑓 at 𝑎+ ∊ 𝔽 ∖ ℒ

𝑏+ ⇽ 𝑓(𝑎+)

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞+ 𝑋 ≔ 2 9)> 9
? 9

∊ RS[𝔽, ℒ, 𝑑 − 2]

𝜋 = ∶ ℒ ⇾ 𝔽
Honest prover: 𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

sample random 𝑟 ∊ 𝔽 ∖ ℒ

return 𝑠 ∊ 𝔽 . Honest prover: 𝑠 ≔ 𝑓(𝑟)

𝑉 𝑋 ≔ (𝑋 − 𝑎%)(𝑋 − 𝑟)

𝐼 𝑎% ≔ 𝑏%, 𝐼 𝑟 = 𝑠

Verifier can conclude: there is ̅𝑓, ∊ List 𝝅, 𝑑, 𝛿 s.t. �𝑓+ 𝑎+ = 𝑏+
𝑓+ 𝑟 = 𝑠

Poly-IOP ⇒ IOP: second attempt

eval 𝑓 at 𝑎(∊ 𝔽 ∖ ℒ

𝑏(⇽ 𝑓(𝑎()

𝑓 ∊ 𝔽5-[𝑋]

𝛿-RS-IOPP for 𝑞(𝑋 ≔ 2 9)> 9
? 9

∊ RS[𝔽, ℒ, 𝑑 − 2]

𝜋 = ∶ ℒ ⇾ 𝔽
Honest prover: 𝜋 ≔ ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑]

𝑃 𝑃𝑉 𝑉

sample random 𝑟 ∊ 𝔽 ∖ ℒ

return 𝑠 ∊ 𝔽 . Honest prover: 𝑠 ≔ 𝑓(𝑟)

𝑉 𝑋 ≔ (𝑋 − 𝑎&)(𝑋 − 𝑟)

𝐼 𝑎& ≔ 𝑏&, 𝐼 𝑟 = 𝑠

Verifier can conclude: there is ̅𝑓(∊ List 𝝅, 𝑑, 𝛿 s.t. 𝑓(𝑎(= 𝑏(, 𝑓(𝑟 = 𝑠

Now: 𝛿 < 1 − 𝜌 and 𝑓+ 𝑟 = 𝑓(𝑟 = 𝑠 ⇒ 𝑓+ = 𝑓(w.h.p, as required

Poly-IOP ⇒ IOP: summary

• The IOP prover encodes 𝑓 ∊ 𝔽CD[𝑋] using a linear code (RS)
(other linear codes can be used, possibly with a faster encoding than RS)

• 𝛿-RS-IOPP applied to a quotient 𝑞(𝑋) ≔ M a 2l a
m a

proves evaluations of the encoded polynomial to the Verifier.

• For 𝛿 < 1 − 𝜌 : an out of domain query (𝑟, 𝑠) ensures that
the prover is bound to a unique polynomial, w.h.p

Poly-IOP ⇒ IOP ⇒ SNARK

Polynomial
interactive

oracle proof
(Poly-IOP)

Interactive
Proof (IP)

(zk)SNARK for
general circuits

Fiat-Shamir
RS-IOPP

(such as FRI)

IOP

Merkle
commitments

A direct SNARK construction:

An RS-IOPP is the key ingredient in compilation

Poly-IOP ⇒ IOP: remarks

Remark 2: naively, the IOP uses one RS-IOPP per query to 𝑓
• In practice, we can batch many RS-IOPPs into one RS-IOPP
• Let’s see how … first we need some tools

Remark 1: what if Poly-IOP Verifier wants to query 𝑓 at 𝑎 ∈ ℒ ??

• The problem: 𝑞 𝑋 ≔ M a 2l(a)
(a2c)(a2�) ∶ ℒ ⇾ 𝔽

 is undefined at 𝑋 = 𝑎 (not a problem when 𝑎 ∉ ℒ)

• Solution: 𝑄(X) ≔ 𝑓 𝑋 − 𝐼 𝑋 /(𝑋 − 𝑎)(𝑋 − 𝑟) is a poly. in 𝔽5-)([𝑋].
 Honest prover defines 𝑞 𝑎 ≔ 𝑄(𝑎) and runs the RS-IOPP on 𝑞.

Towards an efficient RS-IOPP

Distance Preserving
Transformations

One last topic before the break:

Distance Preserving Transformations
Let ℒ, ℒ′ ⊆ 𝔽, 𝑑, 𝑑� some degree bounds, and 𝛿 ∊ [0,1].

Def: A distance preserving transformation is a randomized map
𝑇 𝑢,, … , 𝑢7; 𝑟 ⇾ 𝑢

 that maps 𝑢,, … , 𝑢7: ℒ ⇾ 𝔽 to 𝑢: ℒ′ ⇾ 𝔽 such that:

 case 1: (the honest case)
 if 𝑢,, … , 𝑢7∊ RS[𝔽, ℒ, 𝑑] then 𝑢∊ RS[𝔽, ℒ′, 𝑑′] for all 𝑟.

 case 2: (the dishonest case)
 if some 𝑢� is 𝛿-far from RS[𝔽, ℒ, 𝑑] then
 𝑢 is 𝛿-far from RS[𝔽, ℒ′, 𝑑′], w.h.p over 𝑟.

Example 1: batch RS-IOPP
Setting: Prover has 𝑢%, … , 𝑢.: ℒ ⇾ 𝔽, Verifier has oracles for 𝑢%, … , 𝑢..

Goal: convince Verifier that all 𝑢', … , 𝑢7 are 𝛿-close to RS[𝔽, ℒ, 𝑑].

• Naively: run 𝑘 RS-IOPP protocols ⇒ expensive

• Better: batch all 𝑘 into a single function 𝑢: ℒ ⇾ 𝔽

 step 1: Verifier samples random 𝑟 in 𝔽; sends to prover

 step 2: Prover sets 𝑢 ≔ 𝑢' + 𝑟 � 𝑢, + 𝑟`𝑢` +⋯+ 𝑟7𝑢7: ℒ ⇾ 𝔽
 step 3: Both run RS-IOPP on 𝑢: ℒ ⇾ 𝔽
 when Verifier wants 𝑢(a) for some 𝑎 ∊ ℒ, prover opens all 𝑢%(𝑎), … , 𝑢.(𝑎)

Why is this distance preserving?

Case 1: (an honest prover)
 if 𝑢', … , 𝑢7∊ RS[𝔽, ℒ, 𝑑] then 𝑢∊ RS 𝔽, ℒ, 𝑑 for all 𝑟 ∊ 𝔽

Case 2: (a dishonest prover)
 if some 𝑢� is 𝛿-far from RS 𝔽, ℒ, 𝑑 , we need to argue that
 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑], with high probability over 𝑟 ∊ 𝔽

When 𝛿 ∊ 0,1 − 𝜌 , Case 2 follows from the
 celebrated BCIKS proximity gap theorem.

https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem
Thm (BCIKS’20, Thm. 6.2): RS[𝔽, ℒ, 𝑑] an RS-code with const. rate 𝜌 ≔ 𝑑/𝑛 (say, 𝜌 = 0.5)

 Let 𝑢', … , 𝑢7: ℒ ⇾ 𝔽 and 0 < 𝛿 < 1 − 1.01 𝜌 .
 For 𝑟 ∊ 𝔽 define 𝑢(�) ≔ 𝑢' + 𝑟 � 𝑢, + 𝑟`𝑢` +⋯+ 𝑟7𝑢7 .

 Suppose that Pr𝑟[𝑢(�)is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟
 then all 𝑢� are 𝛿-close to RS 𝔽, ℒ, 𝑑 ,

 where 𝑒𝑟𝑟 = 𝑂 7"
𝔽 for 0 < 𝛿 < +)@

(

 𝑒𝑟𝑟 = 𝑂 7"1

𝔽
 for +)@

(
< 𝛿 < 1 − 1.01 𝜌

We will assume that
err is negligible, i.e.
err < ⁄1 2%&(

(if not, use multiple 𝑟)

𝑛 ≔ |ℒ|

https://eprint.iacr.org/2020/654.pdf

The proximity gap theorem

Suppose that Pr𝑟[𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟
 then all 𝑢� are 𝛿-close to RS 𝔽, ℒ, 𝑑

Contra-positive: if some 𝑢� is 𝛿-far from RS 𝔽, ℒ, 𝑑
 then 𝑢(�) is 𝛿-far with high probability, over 𝑟.

Proximity gap error (𝑒𝑟𝑟) as a function of 𝛿 ∊ [0,1] :

𝛿 = 0 (1 − 𝜌)/2 1 − 𝜌 1 − 𝜌 1

unknown vacuous

(Johnson bound) (capacity bound)(uniqueness bound)

O �!)
|𝔽| O �!)!

|𝔽|

conjectured to
be small

𝑛 ≔ |ℒ|

A stronger form: correlated proximity
Thm (BCIKS’20, Thm. 6.2):

 Let 𝑢', … , 𝑢7: ℒ ⇾ 𝔽 and 0 < 𝛿 < 1 − 1.01 𝜌 .

 Suppose that Pr𝑟[𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟

 then there is an 𝑆 ⊆ ℒ such that 𝑆 ≥ (1 − 𝛿)� |ℒ| and

 for all 𝑗: ∃𝑓� ∊ RS[𝔽, ℒ, 𝑑] s.t. ∀𝑥 ∊ 𝑆:	𝑢� 𝑥 = 𝑓�(𝑥)

⇒ 𝑢', … , 𝑢7 are 𝛿-close to RS[𝔽, ℒ, 𝑑] on the same positions 𝑆 .

(recall 𝑢(-) ≔ 𝑢" + 𝑟 . 𝑢% + 𝑟&𝑢& +⋯+ 𝑟!𝑢!)

https://eprint.iacr.org/2020/654.pdf

Why is this called a proximity gap??

Suppose that Pr𝑟[𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] > 𝑒𝑟𝑟 then
 all 𝑢� are 𝛿-close to RS 𝔽, ℒ, 𝑑 on the same positions 𝑆 ⊆ ℒ

But if all 𝑢', … , 𝑢7: ℒ ⇾ 𝔽 are 𝛿-close to RS 𝔽, ℒ, 𝑑
on positions 𝑆 ⊆ ℒ, then 𝑢(�) is 𝛿-close for all 𝑟 ∊ 𝔽.

So Pr𝑟[𝑢(�) is 𝛿-close to RS[𝔽, ℒ, 𝑑]] exhibits a gap:

0 1𝑒𝑟𝑟

not possible

𝑢(&) is 𝛿-close for all 𝑟 𝑢(&) is 𝛿-close for few 𝑟

Proximity gaps for other linear codes?
A similar proximity gap holds for every linear code.

Thm: (Zeilberger’24) Let 𝒞 ⊆	𝔽" be an 𝑛, 𝑑𝑖𝑚, 𝑙 !	linear code.
Then 𝒞 has a correlated proximity gap for 0 < 𝛿 < 1 − 2 𝜏	
and err = O �7"

|𝔽| , where 𝜏 ≔ 1 − (𝑙/𝑛).

min. distance

This can be used in a 𝒞-proximity IOPP (e.g., Basefold, Blaze)

(For RS-code 𝜏 ≈ 𝜌, so this gap is much weaker than BCIKS’20)

https://eprint.iacr.org/2024/1843

2nd Distance preserving example: 2-way folding

From now on set ℒ = 1,ω,ω`, … , ω"2, ⊆ 𝔽, where

• 𝑛 is a power of two, and

• ω is an 𝑛-th primitive root of unity (𝜔" = 1)
 (requires that 𝑛 divides 𝔽 − 1)

Then:
• ω"/` = −1 so that if 𝑥 = ω(∊ ℒ then −𝑥 = ω(4(⁄" `) ∊ ℒ

• ℒ` = 𝑎`: 𝑎 ∊ ℒ = ℒ /2 = 𝑛/2 (−𝑎, 𝑎 → 𝑎()

2-way folding a polynomial

A folding transformation: let’s start with an example.

 Let 𝑓 𝑋 = 1 + 2𝑋 + 3𝑋(+ 4𝑋A + 5𝑋B + 6XC ∊ 𝔽5D[𝑋]

Then: 𝑓 𝑋 = 𝑓���� 𝑋` + X � 𝑓���(X`)

Define: for 𝑟 ∊ 𝔽 define 𝑓����,� ≔ 𝑓����+ 𝑟 � 𝑓��� ∊ 𝔽C�[𝑋]

Define 𝑓EFEG(𝑋) ≔ 1 + 3𝑋 + 5𝑋(and 𝑓HII X ≔ 2 + 4𝑋 + 6𝑋(

2-way folding a polynomial: more generally

For 𝑓 ∊ 𝔽CD[𝑋] (with 𝑑 even) define:

• 𝑓���� 𝑋` 	≔ 6 9 *6)9

(
 and 𝑓HII X(≔ 6 9)6)9

(9

• 𝑓����,�(𝑋) ≔ 𝑓���� 𝑋 	+ 𝑟 � 𝑓��� (𝑋) ∊ 𝔽C ⁄D `[𝑋]

Then: 𝑓 𝑋 = 𝑓���� 𝑋` + X � 𝑓���(X`)

• for every 𝑎 ∊ 𝔽: 𝑓����,�(𝑎`) can be eval given 𝑓 𝑎 , 𝑓 −𝑎

• ̅𝑓 ∊ RS[𝔽, ℒ, 𝑑] ⇒ 𝑓����,� ∊ RS[𝔽, ℒ`, 𝑑/2] unchanged
rate = 𝑑/|ℒ|

Folding an arbitrary word 𝑢: ℒ ⇾ 𝔽
For 𝑢: ℒ ⇾ 𝔽 and 𝑟 ∊ 𝔽 define 𝑢�, 𝑢�, 𝑢����,�: ℒ` ⇾ 𝔽 as

• for 𝑎 ∊ ℒ:	 𝑢�(𝑎`) 	≔
" < *")<

(
 and 𝑢J 𝑎(≔ " <)")<

(<

• for 𝑏 ∊ ℒ`: 	 𝑢����,�(𝑏) 	≔ 𝑢� 𝑏 	+ 𝑟 � 𝑢� (𝑏)

Lemma (distance preservation): for 0 < 𝛿 < 1 − 𝜌

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑] ⇒ 𝑢����,� ∊ RS[𝔽, ℒ`, 𝑑/2] for all 𝑟 ∊ 𝔽

• 𝑢 is 𝛿-far from RS[𝔽, ℒ, 𝑑] ⇒

 Pr
�

[𝑢����,� is 𝛿-far from RS[𝔽, ℒ`, 𝑑/2]] ≥ 1 − 𝑒𝑟𝑟

(recall ℒ(= ℒ /2)

Folding an arbitrary word 𝑢: ℒ ⇾ 𝔽
For 𝑢: ℒ ⇾ 𝔽 and 𝑟 ∊ 𝔽 define 𝑢�, 𝑢�, 𝑢����,�: ℒ` ⇾ 𝔽 as

• for 𝑎 ∊ ℒ:	 𝑢�(𝑎`) 	≔
" < *")<

(
 and 𝑢J 𝑎(≔ " <)")<

(<

• for 𝑏 ∊ ℒ`: 	 𝑢����,�(𝑏) 	≔ 𝑢� 𝑏 	+ 𝑟 � 𝑢� (𝑏)

Lemma (distance preservation): for 0 < 𝛿 < 1 − 𝜌

• 𝑢 ∊ RS[𝔽, ℒ, 𝑑] ⇒ 𝑢����,� ∊ RS[𝔽, ℒ`, 𝑑/2] for all 𝑟 ∊ 𝔽

• Pr
�

[𝑢����,� is 𝛿-close to RS[𝔽, ℒ`, 𝑑/2]] > 𝑒𝑟𝑟 ⇒

 𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑]

(recall ℒ(= ℒ /2)

(contra-positive)

Why is this true?
The first part of the lemma is easy. Let’s prove the second part.

• Suppose that Pr�[𝑢����,� is 𝛿-close to RS[𝔽, ℒ`, 𝑑/2]] > 𝑒𝑟𝑟

• Then by the BCIKS’20 theorem, there are 𝑔�, 𝑔� ∊ RS[𝔽, ℒ`, 𝑑/2]
 that match 𝑢�, 𝑢� on a set 𝑆 ⊆ ℒ` of size 𝑆 ≥ 1 − 𝛿 (⁄𝑛 2)

• Define 𝑔: ℒ ⇾ 𝔽 as 𝑔 𝑎 ≔ 𝑔� 𝑎` + 𝑎 � 𝑔�(𝑎`) ∊ RS[𝔽, ℒ, 𝑑]

• Then: 𝑔 𝑎 = 𝑢(𝑎) for all 𝑎 ∊ ℒ for which 𝑎` ∊ 𝑆 (2|𝑆| values in ℒ)

• But then ∆ 𝑢, 𝑔 ≤ 1 − ` �
" = 1 − �

"/` ≤ 𝛿.

 ⇒ 𝑢 is 𝛿-close to RS[𝔽, ℒ, 𝑑]

An important corollary

Let 𝒞 = RS[𝔽, ℒ, 𝑑] and 𝒞′ = RS[𝔽, ℒ`, 𝑑/2]

Corollary: For 𝑢: ℒ ⇾ 𝔽

• if ∆ 𝑢, 𝒞 < 1 − 𝜌 then Pr
K
	∆ 𝑢LHMI,K, 𝒞N ≥ ∆ 𝑢, 𝒞 	 ≥ 1 − 𝑒𝑟𝑟

• if ∆ 𝑢, 𝒞 ≥ 1 − 𝜌 then Pr
K
	∆ 𝑢LHMI,K, 𝒞N ≥ 1 − 𝜌	 ≥ 1 − 𝑒𝑟𝑟

(folding does not decrease distance, w.h.p)

Recall: ∆ 𝑢, 𝒞 ≤ 𝛿 ⟺ 𝑢 is 𝛿-close to 𝒞

4-way folding 𝑢: ℒ ⇾ 𝔽 (using 𝒊𝟐 = −𝟏)

For 𝑢: ℒ ⇾ 𝔽 define 𝑢', 𝑢,, 𝑢`, 𝑢� ∶ ℒ� ⇾ 𝔽 for 𝑎 ∊ ℒ	 as

The 4-way fold of u: for 𝑟 ∊ 𝔽 define 𝑢�����,�: ℒ� ⇾ 𝔽 as
 𝑢�����,�(𝑏) ≔ 𝑢' 𝑏 	+ 𝑟 � 𝑢, (𝑏) + 𝑟` � 𝑢` (𝑏) + 𝑟� � 𝑢� (𝑏) for 𝑏 ∊ ℒB

(a degree-4 FFT)

Evaluating 𝑢�����,�(𝑋) at 𝑏 ∊ ℒ� requires four evals. of 𝑢(𝑋).

4-way folding 𝑢: ℒ ⇾ 𝔽 (using 𝒊𝟐 = −𝟏)

For 𝑢: ℒ ⇾ 𝔽 define 𝑢', 𝑢,, 𝑢`, 𝑢� ∶ ℒ� ⇾ 𝔽 for 𝑎 ∊ ℒ	 as

The 4-way fold of u: for 𝑟 ∊ 𝔽 define 𝑢�����,�: ℒ� ⇾ 𝔽 as
 𝑢�����,�(𝑏) ≔ 𝑢' 𝑏 	+ 𝑟 � 𝑢, (𝑏) + 𝑟` � 𝑢` (𝑏) + 𝑟� � 𝑢� (𝑏) for 𝑏 ∊ ℒB

(a degree-4 FFT)

Fact: the same distance preservation corollary holds for 𝑢�����,�

8-way folding 𝑢: ℒ ⇾ 𝔽 (using an 8th root of unity)

Can similarly define 8-way folding, or even 2� folding for 𝑤 ≥ 3.

 maps 𝑢: ℒ ⇾ 𝔽 to 𝑢`3����,�: ℒ`
3 ⇾ 𝔽 (|ℒ&"| = |ℒ|/2/)

 (1) evaluating 𝑢`3����,�(𝑏) requires 2� evals. of 𝑢(𝑋)
 ⇒ uses a degree-2� FFT (degree-8 FFT for 8-way folding)

 (2) the same distance preservation corollary holds for 𝑢`3����,�

End of lecture: Brief Summary
For a linear code 𝒞: List 𝑢, 𝒞, 𝛿 is small up to 𝛿 < 1 − 1 − 𝜇

Poly-IOP ⇾ IOP compiler:
• Honest 𝑷 Commits to 𝑓 ∊ 𝔽CD[𝑋] by sending its encoding ̅𝑓 to 𝑽
• Prove evaluation of 𝑓 using RS-IOPP on quotient of sent word 𝑢
• Out-of-domain eval. commits 𝑃 to unique word	in List 𝑢, 𝒞, 𝛿

Folding:
• (𝑢: ℒ ⇾ 𝔽) ⇾ (𝑢����,�: ℒ` ⇾ 𝔽) is a distance preserving map
• Proof using the BCIKS’20 proximity gap theorem

Let’s put all this machinery to use

See you in the next lecture …

THE END

