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Polynomial IOPs    (PIOPs)

Prover 𝑃(𝑝𝑝,𝒙,𝒘) Verifier 𝑉(𝑣𝑝, 𝒙)

𝑟1 ⇽ 𝔽"
𝑟1 ⋮

𝑟#$% ⇽ 𝔽"
𝑟#$%

𝑓! 	∈ 𝔽"
#$ 𝑋

oracle

𝑓𝑡  ∈ 𝔽"
#$ 𝑋oracle

Verifier is
assured that
all oracles are
in 𝔽"

&' 𝑋

Setup(𝐶)  ⇾  public parameters  𝑝𝑝  and (𝑣𝑝, 	 ) 𝑓%&, … , 𝑓%' ∊ 𝔽"
#$ 𝑋

<latexit sha1_base64="LbvA78ERoA4G2H3gMB+mg3FPy+o="></latexit>

verifyf→s,...,ft(x, r1, , . . . , rt→1) → 0/1



The Plonk poly-IOP    (eprint/2019/953)

Gabizon – Williamson – Ciobotaru

Plonk PIOP +  Polynomial Commitment    ⇒   SNARK

(and also a zk-SNARK)



Plonk Systems

The Plonk
PIOP

KZG’10 Aztec,  JellyFish
pairings

Halo2
(slow verifier)

DLOG-PCS
(bulletproofs)

DLOG
group

Plonky2, Plonky3FRI
CRH

No trusted setup

PCS



The PLONK PIOP

eprint/2019/953



PLONK:  a poly-IOP for a general circuit  𝐶(𝑥, 𝑤)

The computation trace (arithmetization):

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1+ 𝑥2)(𝑥2+ 𝑤1)
77 inputs: 5,   6,   1

Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6 1

left
inputs

right
inputs

outputs

Step 1:   compile circuit to a computation trace   (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)



Encoding the trace as a polynomial

|𝐶| ≔ total # of gates in 𝐶 ,      |𝐼| ≔ |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

let  𝑑	≔	3 𝐶 + |𝐼|   (in example, 𝑑 = 12) and   Ω ≔ { 1, 𝜔, 𝜔2,…, 𝜔'$% } 

The plan:  
    prover interpolates a poly.   𝑇 ∈ 	𝔽"

(#$)[X] 

    that encodes the entire trace.

inputs: 5,   6,   1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

Let’s see how …



Encoding the trace as a polynomial

The plan:   Prover interpolates  𝑇 ∈ 	𝔽"
(&')[X]   such that 

(1)    𝑻 encodes all inputs:     T(𝜔$-) = input #𝑗     for 𝑗 = 1, …, |𝐼| 

(2)    𝑻 encodes all wires:       ∀ 𝑙 = 0,… , 𝐶 − 1:   

• T(𝜔3𝑙): left input to gate #𝑙

• T(𝜔3𝑙+1): right input to gate #𝑙

• T(𝜔3𝑙+2): output of gate #𝑙

Plonk PIOP:
• send oracle for 𝑇
• prove 𝑇 is valid

(gates and wires)



Encoding the trace as a polynomial
In our example, Prover interpolates  𝑇(𝑋)  such that:
 inputs: T(𝜔%&) = 5,    T(𝜔%,) = 6,    T(𝜔%-) = 1, 
 gate 0: T(𝜔!) = 5,      T(𝜔&) = 6,       T(𝜔,) = 11, 
 gate 1: T(𝜔-) = 6,      T(𝜔.) = 1,       T(𝜔/) = 7, 
 gate 2: T(𝜔0) = 11,    T(𝜔1) = 7,      T(𝜔2) = 77

degree(𝑇) = 11

Prover can use FFT to compute the coefficients 
of T in time  O(𝑑	log	𝑑)

inputs: 5,   6,   1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77



Step 2:  proving validity of T
Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)

build  T(𝑋) ∈ 𝔽"
(&')[X] 

𝑇

Prover needs to prove that T is a correct computation trace:
(1) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly, 
(4) the output of last gate is 0

How?    First, let’s build some tools.

inputs: 5 , 6,     1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

(wiring constraints)



Proving properties of 
committed univariate polynomials 

Towards the Plonk PIOP



Proving properties of committed polynomials 

Prover P(𝑓, 𝑔) Verifier V(  𝑓	 , 𝑔	 )

Goal: convince verifier that 𝑓, 𝑔 ∈ 𝔽"
(#$) [𝑋] satisfy some properties

Proof systems presented as a Poly-IOP:

𝑟 𝑟 ⇽ 𝔽"

query 𝑓 𝑋 , 𝑔(𝑋), 𝑞(𝑋)  at some points in 𝔽" accept or reject

𝑞 (a commitment to some poly. 𝑞)



An example: polynomial equality testing

Prover Verifier

𝒇, 𝒈

query 𝑓(X) and 𝑔 𝑋  at 𝑟

accept if:
𝑓 𝑟 = g(𝑟)

𝑟 ⇽ 𝔽"

𝑓 𝑔
<latexit sha1_base64="7L6aXb+AutU5q4vaDunfVDWunoU=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWRoi6LgrisYB+QxDKZTtqhk0mYmQglZOXGX3HjQhG3foM7/8ZJm4W2HrhwOOde7r3HjxmVyrK+jdLS8srqWnm9srG5tb1j7u51ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPr3K/+0CEpBG/U5OYeCEachpQjJSW+uahSzl0Q6RGvp9eZ/34Pq25jMDBSeb0vL5ZterWFHCR2AWpggKtvvnlDiKchIQrzJCUjm3FykuRUBQzklXcRJIY4TEaEkdTjkIivXT6RgaPtTKAQSR0cQWn6u+JFIVSTkJfd+YHy3kvF//znEQFF15KeZwowvFsUZAwqCKYZwIHVBCs2EQThAXVt0I8QgJhpZOr6BDs+ZcXSee0bp/VG7eNavOyiKMMDsARqAEbnIMmuAEt0AYYPIJn8ArejCfjxXg3PmatJaOY2Qd/YHz+AFZQmGg=</latexit>

2 F(d)
p [X]

learn 𝑓 𝑟 , g(𝑟)

Goal: convince verifier that 𝑓 = 𝑔

Why is this sound?



Why is this sound?
A key fact:     for  non-zero  𝑓 ∈ 	𝔽"

(&') [𝑋]

   for  𝑟⇽ 𝔽"	:        Pr[ 𝑓(𝑟) = 0	] ≤

⇒   suppose  𝑝 ≈ 2256    and   𝑑 ≤ 240    then   𝑑/𝑝   is negligible

⇒ for 𝑟⇽ 𝔽":      if  𝑓(𝑟) = 0    then  𝑓  is identically zero w.h.p

  ⇒   a simple test if a committed poly. is the zero poly.

𝑑/𝑝

SZDL lemma: (∗) also holds for multivariate polynomials  (where d is total degree of 𝑓) 

(∗)

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma


Why is this sound?

Suppose  𝑝 ≈ 2256    and   𝑑 ≤ 240    so that    𝑑/𝑝   is negligible

Let    𝑓, 𝑔  ∈ 	𝔽"
(&') [𝑋].

 For  𝑟⇽ 𝔽" ,      if     𝑓(𝑟) = 𝑔(𝑟)      then       𝑓 = 𝑔     w.h.p

⇒   a simple equality test for two committed polynomials

𝑓(𝑟) − 𝑔(𝑟) = 0      ⇒      𝑓 − 𝑔 = 0   w.h.p



The polynomial equality testing protocol
Prover Verifier

𝒇, 𝒈

query 𝑓(X) and 𝑔 𝑋  at X = 𝑟

accept if:
𝑓 𝑟 = g(𝑟)

𝑟 ⇽ 𝔽"$

𝑓 𝑔
<latexit sha1_base64="7L6aXb+AutU5q4vaDunfVDWunoU=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWRoi6LgrisYB+QxDKZTtqhk0mYmQglZOXGX3HjQhG3foM7/8ZJm4W2HrhwOOde7r3HjxmVyrK+jdLS8srqWnm9srG5tb1j7u51ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPr3K/+0CEpBG/U5OYeCEachpQjJSW+uahSzl0Q6RGvp9eZ/34Pq25jMDBSeb0vL5ZterWFHCR2AWpggKtvvnlDiKchIQrzJCUjm3FykuRUBQzklXcRJIY4TEaEkdTjkIivXT6RgaPtTKAQSR0cQWn6u+JFIVSTkJfd+YHy3kvF//znEQFF15KeZwowvFsUZAwqCKYZwIHVBCs2EQThAXVt0I8QgJhpZOr6BDs+ZcXSee0bp/VG7eNavOyiKMMDsARqAEbnIMmuAEt0AYYPIJn8ArejCfjxXg3PmatJaOY2Qd/YHz+AFZQmGg=</latexit>

2 F(d)
p [X]

learn 𝑓 𝑟 , g(𝑟)

Lemma: complete and sound assuming 𝑑/𝑝 is negligible  

Goal: convince verifier that 𝑓 = 𝑔



The compiled proof system
Prover

𝒇, 𝒈

𝑟

<latexit sha1_base64="7L6aXb+AutU5q4vaDunfVDWunoU=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWRoi6LgrisYB+QxDKZTtqhk0mYmQglZOXGX3HjQhG3foM7/8ZJm4W2HrhwOOde7r3HjxmVyrK+jdLS8srqWnm9srG5tb1j7u51ZJQITNo4YpHo+UgSRjlpK6oY6cWCoNBnpOuPr3K/+0CEpBG/U5OYeCEachpQjJSW+uahSzl0Q6RGvp9eZ/34Pq25jMDBSeb0vL5ZterWFHCR2AWpggKtvvnlDiKchIQrzJCUjm3FykuRUBQzklXcRJIY4TEaEkdTjkIivXT6RgaPtTKAQSR0cQWn6u+JFIVSTkJfd+YHy3kvF//znEQFF15KeZwowvFsUZAwqCKYZwIHVBCs2EQThAXVt0I8QgJhpZOr6BDs+ZcXSee0bp/VG7eNavOyiKMMDsARqAEbnIMmuAEt0AYYPIJn8ArejCfjxXg3PmatJaOY2Qd/YHz+AFZQmGg=</latexit>

2 F(d)
p [X]

𝑦,   𝜋𝑓 𝑦′,   𝜋𝑔
𝑦	⇽	𝑓(𝑟)
𝑦/⇽	𝑔(𝑟)

proof that 
𝑦	 = 	𝑓(𝑟)

proof that 
𝑦′	 = 𝑔(𝑟)

Verifier

accept if:
(i) 𝑦 = 𝑦′  and

(ii) 𝜋𝑓, 𝜋𝑔 
    are valid

𝑟 ⇽ 𝔽"$

learn 𝑓 𝑟 , g(𝑟)

Make non-interactive 
using Fiat-Shamir 𝑐𝑜𝑚0 , 𝑐𝑜𝑚1



Important proof gadgets for univariates

Let Ω be some subset of 𝔽" of size 𝑘.

Let   𝑓 ∈ 	𝔽"
(&') [𝑋]            (𝑑 ≥ 𝑘)          Verifier has   𝑓

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (ZeroTest):   prove that  𝑓  is identically zero on Ω

Task 2 (SumCheck): prove that   ∑2∈4𝑓 𝑎 = 0	

Task 3 (ProdCheck): prove that   ∏2∈4𝑓(𝑎) = 1



The vanishing polynomial

Let Ω be some subset of 𝔽" of size 𝑘.

Def:  the vanishing polynomial of Ω is   𝑍4(𝑋) ≔ ∏2∈4(𝑋 − 𝑎)
 deg(𝑍4) = 𝑘

Let 𝜔 ∈ 𝔽" be a primitive 𝑘-th root of unity (so that  𝜔5 = 1). 

• if  Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } ⊆ 𝔽"    then   𝑍4 𝑋 = 𝑋5 − 1

  ⇒  for  𝑟 ∈ 𝔽",  evaluating   𝑍4 𝑟    takes  2 log6 𝑘   field operations



(1)  ZeroTest on Ω      (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } )

Prover P(𝑓) Verifier V(  𝑓	 )

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍3(𝑋) 𝑞  ∈ 	𝔽"
(#$) 𝑋 	

query 𝑞(𝑋) and 𝑓(𝑋) at  𝑟
learn 𝑞 𝑟 , 𝑓(𝑟)

accept if   𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍4(𝑟)

Thm:   this protocol is complete and sound,  assuming  𝑑/𝑝  is negligible.

Lemma:  𝑓 is zero on Ω if and only if 
	 𝑓 𝑋  is divisible by 𝑍3(𝑋)

(implies that 𝑓(𝑋) = 𝑞 𝑋 , 𝑍# (𝑋)		w.h.p)

verifier evaluates 
𝑍3(𝑟)	by itself 

𝑟 ⇽ 𝔽"
$



(1)  ZeroTest on Ω      (Ω = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } )

Prover P(𝑓) Verifier V(  𝑓	 )

𝑞(𝑋) ⇽ 𝑓(𝑋)/𝑍3(𝑋) 𝑞  ∈ 	𝔽"
(#$) 𝑋 	

query 𝑞(𝑋) and 𝑓(𝑋) at  𝑟
learn 𝑞 𝑟 , 𝑓(𝑟)

accept if   𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ 𝑍4(𝑟)

(implies that 𝑓(𝑋) = 𝑞 𝑋 D 𝑍3 𝑋  w.h.p)

verifier evaluates 
𝑍3(𝑟)	by itself 

𝑟 ⇽ 𝔽"
$

Verifier time:  O(log 𝑘)  and  two poly queries (but can be batched)

Prover time:  dominated by time to compute 𝑞(𝑋)   [and commit to 𝑞(𝑋)]

Lemma:  𝑓 is zero on Ω if and only if 
	 𝑓 𝑋  is divisible by 𝑍3(𝑋)



(3) Product check on Ω :     ∏!∈# 𝑓(𝑎) = 1

Set   𝑡 ∈ 𝔽"
(&5) [𝑋]   to be the degree-𝑑 polynomial:

    𝑡(1) = 𝑓(1), 	 𝑡(𝜔s) = ∏789
: 𝑓(𝜔i)	 for	 𝑠 = 1,… , 𝑘 − 1

Then     𝑡(𝜔5$%) =

and 𝑡(𝜔 ⋅ x) = 𝑡(𝑥) ⋅ 𝑓(𝜔 ⋅ x)	 for all   𝑥 ∈ Ω (including  𝑥 = 𝜔%&' )

Lemma: if (1)    𝑡(𝜔5$%) = 1    and
  (2)    𝑡% 𝑥 ≔ 𝑡 𝜔 ⋅ x − 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x = 0     ∀𝑥 ∈ Ω
 then    ∏2∈4𝑓(𝑎) = 1

∏2∈4𝑓(𝑎) 



(3) Product check on Ω     (unoptimized)

Prover P(𝑓) Verifier V( 𝑓	 )
construct  𝑡 𝑋  ∈ 	𝔽"

(#4)  ,      𝑡&(𝑋) ≔ 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)
and   q 𝑋 ≔ 𝑡1(𝑋)/(𝑋4 − 1) 	 ∈ 	𝔽"

(#$)

𝑞 ,    𝑡

query  𝑡(𝑋)  at   𝜔4%&	, 𝑟, 𝜔𝑟
learn 𝑡(𝜔%&'),   t(r),   𝑡(𝜔𝑟),   
 𝑞(𝑟),  𝑓(𝜔𝑟)query  𝑞 𝑋  at  𝑟 , and  𝑓(𝑋) at 𝜔𝑟

accept if    𝑡(𝜔4%&) ≟ 1    and
𝑡 𝜔𝑟 − 𝑡(𝑟)𝑓(𝜔𝑟) 	≟ 𝑞(𝑟) ⋅ (𝑟4 − 1)

𝑟 ⇽ 𝔽"

𝑡1(Ω) 	= 0     ⇐

Complete and sound,  assuming   ⁄deg(𝑡&) 𝑝 = ⁄(𝑘 + 𝑑) 𝑝    is negligible.



Same works for rational functions:   ∏R∈S(𝑓/𝑔)(𝑎) = 1

Set   𝑡 ∈ 𝔽"
(#4) [𝑋]   to be the degree-𝑘 polynomial:

      𝑡(1) = 𝑓(1)/𝑔(1), 	 𝑡(𝜔s) = ∏56!
' 𝑓(𝜔i)/𝑔(𝜔i)     for	 𝑠 = 1,… , 𝑘 − 1

Prover P(𝑓, 𝑔) Verifier V(  𝑓	 , 𝑔	 )

Lemma: if (i) 𝑡(𝜔4%&) = 1    and
  (ii) 𝑡 𝜔 ⋅ x ⋅ 𝑔 𝜔 ⋅ x = 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x      for all   𝑥 ∈ Ω

 then    ∏7∈3𝑓(𝑎)/𝑔(𝑎) = 1



(4)  Another useful gadget:  permutation check

Let    𝑓, 𝑔  polynomials in 𝔽"
(&') 𝑋 .     Verifier has  𝑓  ,   𝑔  .

Prover wants to prove that (	𝑓 1 , 𝑓 𝜔 , 𝑓 𝜔6 , … , 𝑓(𝜔5$%) ) ∈ 𝔽"5

        is a permutation of (	𝑔 1 , 𝑔 𝜔 , 𝑔 𝜔6 , … , 𝑔(𝜔5$%) ) ∈ 𝔽"5

 ⇒   Proves that  𝑔(Ω) is the same as 𝑓(Ω), just permuted



Let     f𝑓 𝑋 = 	∏2∈4(𝑋 − 𝑓 𝑎 )     and     g𝑔 𝑋 = 	∏2∈4(𝑋 − 𝑔 𝑎 )

Prover P(𝑓, 𝑔) Verifier V(  𝑓	 , 𝑔	 )

Then:   f𝑓 𝑋 = g𝑔 𝑋 	 ⟺	 𝑔(Ω) is a permutation of 𝑓(Ω)
𝑟

prove that f𝑓 𝑟 = g𝑔 𝑟 	

prod-check:
<latexit sha1_base64="T7gWbQMte9/b4cc/TBW1IHbsi+s="></latexit>

f̂(r)

ĝ(r)
=

Y

a2⌦

✓
r � f(a)

r � g(a)

◆
= 1

accept or reject
[Lipton’s trick, 1989]

implies Y𝑓 𝑋 = Z𝑔 𝑋 	w.h.p

𝑟 ⇽ 𝔽"
$

(4)  Another useful gadget:  permutation check



(4’) Permutation check on pairs

Let    𝑓%, 𝑓6, 𝑔%, 𝑔6  be polynomials in 𝔽"
(&') 𝑋 .

Prover wants to prove that the 𝑘 pair 

 

are a permutation of

<latexit sha1_base64="obJRpI/VdGZXnGnWa6iFOE6e8CM="></latexit>((
f1(1), f2(1)

)
, . . . ,

(
f1(ω

k→1), f2(ω
k→1)

))
→ (F2

p)
k

<latexit sha1_base64="68z11DfzXRWf7B3B/t4gUkEhHa8="></latexit>((
g1(1), g2(1)

)
, . . . ,

(
g1(ω

k→1), g2(ω
k→1)

))
→ (F2

p)
k

one pair



(4’) Permutation check on pairs

Define: f𝑓 𝑋, 𝑌 ≔ ∏2∈4 	(𝑋 − 𝑌 j 𝑓% 𝑎 − 𝑓6 𝑎 )     and    

 g𝑔 𝑋, 𝑌 ≔ ∏2∈4 	(𝑋 − 𝑌 j 𝑔%(𝑎) − 𝑔6 𝑎 )

Lemma:   Y𝑓 𝑋, 𝑌 = Z𝑔 𝑋, 𝑌 	 if and only if 

	 	 	 𝑓&(𝑎), 𝑓, 𝑎 7∈3	 is a permutation of  𝑔&(𝑎), 𝑔, 𝑎 7∈3

To prove, use the fact that 𝔽" 𝑋, 𝑌  is a unique factorization domain 

Now:  Y𝑓 𝑋, 𝑌 = Z𝑔 𝑋, 𝑌  can be checked using a product check (using 𝑋, 𝑌 ⇽ 𝔽+)



The protocol
Prover P(𝑓&, 𝑓,, 𝑔&, 𝑔,)

𝑟, 𝑠

accept or reject

Complete and sound,  assuming  (𝑘 + 𝑑)/𝑝  is negligible.

implies Y𝑓 𝑋, 𝑌 = Z𝑔 𝑋, 𝑌 	w.h.p

by Schwartz-
Zippel

prove that Y𝑓 𝑟, 𝑠 = Z𝑔 𝑟, 𝑠 :

𝑟, 𝑠 ⇽ 𝔽"

Verifier V(  𝑓&, 𝑓,	 , 𝑔&, g,   )

ProdCheck:
<latexit sha1_base64="M16rWAChvfHEIrIpvwBxJd1w24c="></latexit>∏

a→!

(
r → s · f1(a)→ f2(a)

r → s · g1(a)→ g2(a)

)
= 1



(5)  final gadget: prescribed permutation check

𝑊:Ω ⇾ Ω is a permutation of Ω if     ∀𝑖 ∈ 𝑘 :   𝑊(𝜔0) = 𝜔1   is a bijection

 example (𝑘 = 3):     𝑊 𝜔2 = 𝜔3	, 	 𝑊 𝜔4 = 𝜔2	, 	 𝑊(𝜔3) = 𝜔4

Let    𝑓, 𝑔  polynomials in 𝔽5
(67)[𝑋] .     Verifier has   𝑓   ,    𝑔   ,  𝑊  .

Goal:   prover wants to prove that    𝑓(𝑦) = 𝑔(𝑊(𝑦))	 for all   𝑦 ∈ Ω

⇒   Proves that  𝑔(Ω) is the same as 𝑓(Ω), permuted by the prescribed 𝑊



Prescribed permutation check

How?    Use a zero-test to prove   𝑓 𝑦 − 𝑔 𝑊 𝑦 = 0    on Ω

The problem:    the polynomial   𝑓 𝑦 − 𝑔 𝑊 𝑦   has degree  𝑘𝑑

 ⇒   prover would need to manipulate polynomials of degree 𝑘𝑑

 ⇒   quadratic time prover !!     (goal:  linear time prover)

Goal:  reduce this to a perm. check on pairs for degree-𝑑 poly  (not 𝑘𝑑)



Prescribed permutation check

Observation:   

 if   𝑊(𝑎), 𝑓 𝑎 7∈3	 is a permutation of   𝑎, 𝑔 𝑎 7∈3

	 then  𝑓(𝑦) = 𝑔(𝑊(𝑦))	 for all 𝑦 ∈ Ω

Proof by example:    𝑊 𝜔! =	𝜔,	, 	 𝑊 𝜔& = 𝜔!	, 	 𝑊(𝜔,) = 𝜔&	

 Right tuple:  (ω0,g(ω0)),  (ω1,g(ω1)),  (ω2,g(ω2)) 

 Left tuple:  (ω2 ,f(ω0)),  (ω0 ,f(ω1)),  (ω1,f(ω2)) 

So:  permutation check on pairs ⇒  prescribed permutation check 



Summary of proof gadgets

prescribed permutation check 

permutation check on pairs 

product check,    sum check 

zero test on Ω 

polynomial equality testing



The PLONK Poly-IOP
for general circuits

eprint/2019/953



PLONK:  a poly-IOP for a general circuit  𝐶(𝑥, 𝑤)

The computation trace (arithmetization):

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1+ 𝑥2)(𝑥2+ 𝑤1)
77 inputs: 5,   6,   1

Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

5 6 1 example input

11

5 6

7

6 1

left
inputs

right
inputs

outputs

Step 1:   compile circuit to a computation trace   (gate fan-in = 2)

(Gate 0) (Gate 1)

(Gate 2)



Encoding the trace as a polynomial

|𝐶| ≔ total # of gates in 𝐶 ,      |𝐼| ≔ |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

let  𝑑	≔	3 𝐶 + |𝐼|   (in example, 𝑑 = 12) and   Ω ≔ { 1, 𝜔, 𝜔2,…, 𝜔'$% } 

The plan:  
    prover interpolates a poly.   𝑇 ∈ 	𝔽"

(#$)[X] 

    that encodes the entire trace.

inputs: 5,   6,   1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

Let’s see how …



Encoding the trace as a polynomial

The plan:   Prover interpolates  𝑇 ∈ 	𝔽"
(&')[X]   such that 

(1)    𝑻 encodes all inputs:     T(𝜔$-) = input #𝑗     for 𝑗 = 1, …, |𝐼| 

(2)    𝑻 encodes all wires:       ∀ 𝑙 = 0,… , 𝐶 − 1:   

• T(𝜔3𝑙): left input to gate #𝑙

• T(𝜔3𝑙+1): right input to gate #𝑙

• T(𝜔3𝑙+2): output of gate #𝑙

inputs: 5,   6,   1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77



Encoding the trace as a polynomial
In our example, Prover interpolates  𝑇(𝑋)  such that:
 inputs: 𝑇(𝜔%&) = 5,    𝑇(𝜔%,) = 6,    𝑇(𝜔%-) = 1, 
 gate 0: 𝑇(𝜔!) = 5,      𝑇(𝜔&) = 6,       𝑇(𝜔,) = 11, 
 gate 1: 𝑇(𝜔-) = 6,      𝑇(𝜔.) = 1,       𝑇(𝜔/) = 7, 
 gate 2: 𝑇(𝜔0) = 11,    𝑇(𝜔1) = 7,      𝑇(𝜔2) = 77

degree(𝑇) = 11

Prover can use FFT to compute the coefficients 
of T in time  O(𝑑	log	𝑑)

inputs: 5,   6,   1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77



Step 2:  proving validity of 𝑇
Prover P(𝑆𝑝, 𝒙,𝐰) Verifier V(𝑆𝑣, 𝒙)

build  𝑇(𝑋) ∈ 𝔽"
(&')[X] 

𝑇

Prover needs to prove that T is a correct computation trace:
(1) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly, 
(4) the output of last gate is 0

Proving (4) is easy:   prove  𝑇(𝜔F G $%) = 0

inputs: 5 , 6,     1
Gate 0: 5 , 6 , 11
Gate 1: 6 , 1 , 7
Gate 2: 11, 7, 77

(wiring constraints)



Proving (1):  𝑇 encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 	𝔽5
(6|;,|)[X] 

that encodes the 𝑥-inputs to the circuit:

  for  𝑗 = 1, . . . , |𝐼<|: 	 𝑣(𝜔=1) =	input #j

In our example:   𝑣 𝜔%& = 5, 	 𝑣 𝜔%, = 6 .     (𝑣  is linear)

constructing  𝑣(𝑋)  takes time proportional to the size of input  𝑥

     ⇒   verifier has time do this



Proving (1):  𝑇 encodes the correct inputs

Both prover and verifier interpolate a polynomial 𝑣(𝑋) ∈ 	𝔽5
(6|;,|)[X] 

that encodes the 𝑥-inputs to the circuit:

  for  𝑗 = 1, . . . , |𝐼<|: 	 𝑣(𝜔=1) =	input #j

Let  Ωinp ≔ {	𝜔%&, 𝜔%,, … , 𝜔% 9$ 	}	⊆ Ω (points encoding the input)

Prover proves (1) by using a ZeroTest on Ωinp to prove that     

   𝑇(y) − 𝑣(y) = 0       ∀ y ∈ Ωinp



Proving (2):  every gate is evaluated correctly
Idea:   encode gate types using a selector polynomial  S(X)

  define  S(X) ∈ 	𝔽5
(67)[X]   such that   ∀ 𝑙 = 0,… , 𝐶 − 1:   

   S(𝜔3𝑙) = 1   if   gate #𝑙  is an addition gate
   S(𝜔3𝑙) = 0   if   gate #𝑙  is a multiplication gate

𝑥1 𝑥2 𝑤1

+ +

×

(Gate 0) (Gate 1)

(Gate 2)
inputs: 5 , 6, 1 𝑆(𝑋)
Gate 0 (𝜔0): 5 , 6 , 11 1
Gate 1 (𝜔3): 6 , 1 , 7 1
Gate 2 (𝜔6): 11, 7, 77 0

(+)
(+)
(×)



Proving (2):  every gate is evaluated correctly
Idea:   encode gate types using a selector polynomial  S(X)

  define  S(X) ∈ 	𝔽5
(67)[X]   such that   ∀ 𝑙 = 0,… , 𝐶 − 1:   

   S(𝜔3𝑙) = 1   if   gate #𝑙  is an addition gate
   S(𝜔3𝑙) = 0   if   gate #𝑙  is a multiplication gate

T(𝜔2y)

Then   ∀ y ∈ Ωgates ≔ { 1, 𝜔3, 𝜔6, 𝜔9, …, 𝜔F( G $%) } :

 S(y)⋅[T(y) + T(𝝎𝐲)]    +    (1 – S(y))⋅T(y)⋅T(𝝎𝐲)   =

left input right input outputleft input right input



Proving (2):  every gate is evaluated correctly

S(y)⋅[T(y) + T(𝜔y)]  +  (1 – S(y))⋅T(y)⋅T(𝜔y)  −  T(𝜔2y)  = 0

Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)

build    T(𝑋) ∈ 𝔽"
(&')[X] 

𝑇

Setup(𝐶)   ⇾   𝑝𝑝≔S   and   𝑣𝑝≔ (   S   )

Prover uses ZeroTest to prove that for all  ∀	𝑦 ∈ Ω𝑔𝑎𝑡𝑒𝑠 :



Proving (3):  𝑇 respects the wires of  𝐶

Copy constraints:
  T(𝜔-2) = T(𝜔1) = T(𝜔3)
  T(𝜔-1) = T(𝜔0)
  T(𝜔2) = T(𝜔6)
  T(𝜔-3) = T(𝜔4)

example:   x1=5,		x2=6	,		𝑤1=1

	 𝜔-1,  𝜔-2, 𝜔-3:  5, 6, 1
 𝜔0,  𝜔1,  𝜔2 :  5, 6, 11
 𝜔3,  𝜔4,  𝜔5 :  6, 1, 7
 𝜔6,  𝜔7,  𝜔8 : 11, 7, 77

0:

1:

2:

Lemma:   ∀ 𝑦∈Ω: T(𝑦) = T(W(𝑦))   ⇒   wire constraints are satisfied

Define a polynomial   W: Ω ⇾ Ω   that implements a rotation:
 W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2 )  ,     W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) ,  …



Proving (3):  𝑇 respects the wires of  𝐶

Copy constraints:
  T(𝜔-2) = T(𝜔1) = T(𝜔3)
  T(𝜔-1) = T(𝜔0)
  T(𝜔2) = T(𝜔6)
  T(𝜔-3) = T(𝜔4)

example:   x1=5,		x2=6	,		𝑤1=1

	 𝜔-1,  𝜔-2, 𝜔-3:  5, 6, 1
 𝜔0,  𝜔1,  𝜔2 :  5, 6, 11
 𝜔3,  𝜔4,  𝜔5 :  6, 1, 7
 𝜔6,  𝜔7,  𝜔8 : 11, 7, 77

0:

1:

2:

Lemma:   ∀ 𝑦∈Ω: T(𝑦) = T(W(𝑦))   ⇒   wire constraints are satisfied

Define a polynomial   W: Ω ⇾ Ω   that implements a rotation:
 W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2 )  ,     W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) ,  …

Proved using a prescribed permutation check



The complete Plonk Poly-IOP   (and SNARK)

Setup(𝐶) ⇾   𝑝𝑝	≔ (𝑆,𝑊)   and   𝑣𝑝 ≔ (  𝑆  and  𝑊 )          (untrusted)

  

Prover proves:  
 (1)  S(y)⋅[T(y) + T(𝜔y)]  + (1 – S(y))⋅T(y)⋅T(𝜔y) − T(𝜔2y) = 0; ∀ y ∈ Ωgates 

 (2)  T(y) − 𝑣(y) = 0 ∀ y ∈ Ωinp 

 (3)  T(y) − T(𝑊(y)) = 0    (using prescribed perm. check) ∀ y ∈ Ω

 (4)  T(𝜔- : %&) = 0          (output of last gate = 0)

gates:

inputs:

wires:

output:

Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)
build  𝑣(𝑋) ∈ 𝔽"

(#|9$|) [X]build    𝑇(𝑋) ∈ 𝔽"
(#$)[X] 𝑇



The complete Plonk Poly-IOP   (and SNARK)

Setup(𝐶) ⇾   𝑝𝑝	≔ (𝑆,𝑊)   and   𝑣𝑝 ≔ (  𝑆  and  𝑊 )          (untrusted)

  Prover P(𝑝𝑝, 𝒙,𝐰) Verifier V(𝑣𝑝, 𝒙)
build  𝑣(𝑋) ∈ 𝔽"

(#|9$|) [X]build    𝑇(𝑋) ∈ 𝔽"
(#$)[X] 𝑇

Thm: The Plonk Poly-IOP is complete and knowledge sound, 
 assuming 7|𝐶|/𝑝	is negligible

(eprint/2019/953)



Many extensions …

Plonk proof:   a short proof  (O(1) commitments),    fast verifier

The SNARK can be made into a zk-SNARK

Main challenge:   reduce prover time

• Hyperplonk:  replace Ω  with  0,1 #     ( where  𝑡 = log,|Ω| )

• The polynomial T  is now a multilinear polynomial in 𝑡 variables

• ZeroTest is replaced by a multilinear SumCheck  (linear time)



A generalization:  plonkish arithmetization

Plonk for circuits with gates other than  +  and  ×  on rows:

Plonkish computation trace: (also used in AIR)
u1 v1 w1 t1 r1

u2 v2 w2 t2 r2

u3 v3 w3 t3 r3

u4 v4 w4 t4 r4

u5 v5 w5 t5 r5

u6 v6 w6 t6 r6

u7 v7 w7 t7 r7

u8 v8 w8 t8 r8

output

∀	𝑦 ∈ Ω:    𝑣 𝑦𝜔 + 𝑤(𝑦) D 𝑡(𝑦) − 𝑡 𝑦𝜔 = 0

An example custom gate:

All such gate checks are included in the gate check 



A generalization:  plonkish arithmetization

Plonk for circuits with gates other than  +  and  ×  on rows:

Plonkish computation trace: (also used in AIR)
u1 v1 w1 t1 r1 0

u2 v2 w2 t2 r2 0

u3 v3 w3 t3 r3 1

u4 v4 w4 t4 r4 0

u5 v5 w5 t5 r5 1

u6 v6 w6 t6 r6 0

u7 v7 w7 t7 r7 0

u8 v8 w8 t8 r8 1∀ 𝑦 ∈ Ω:   S X D [𝑣 𝑦𝜔 + 𝑤(𝑦) D 𝑡(𝑦) − 𝑡 𝑦𝜔 ] = 0

An example custom gate:

Selector poly 𝑆(𝑋) can choose when to apply gate
output

S(X)



THE  END


