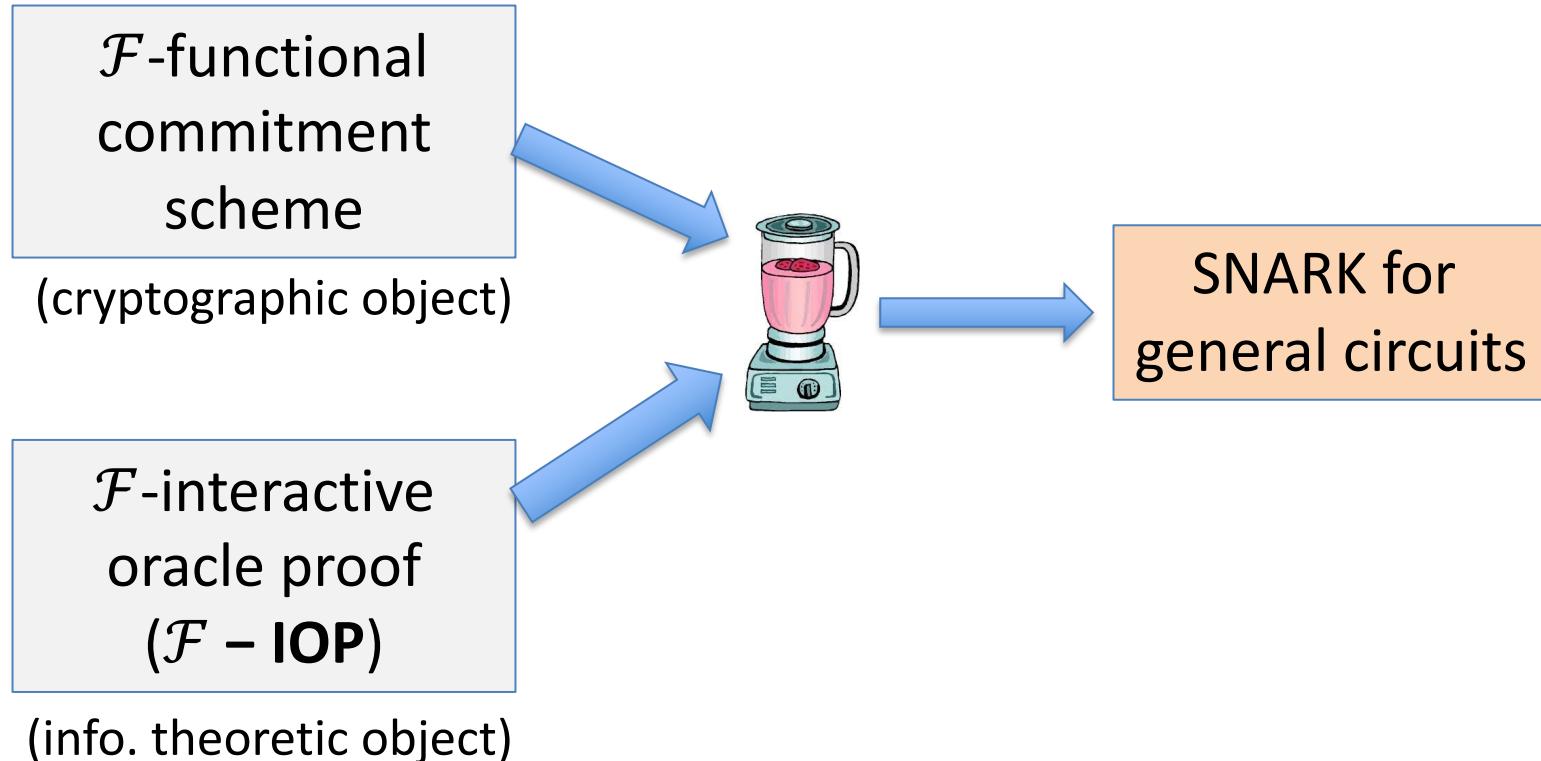


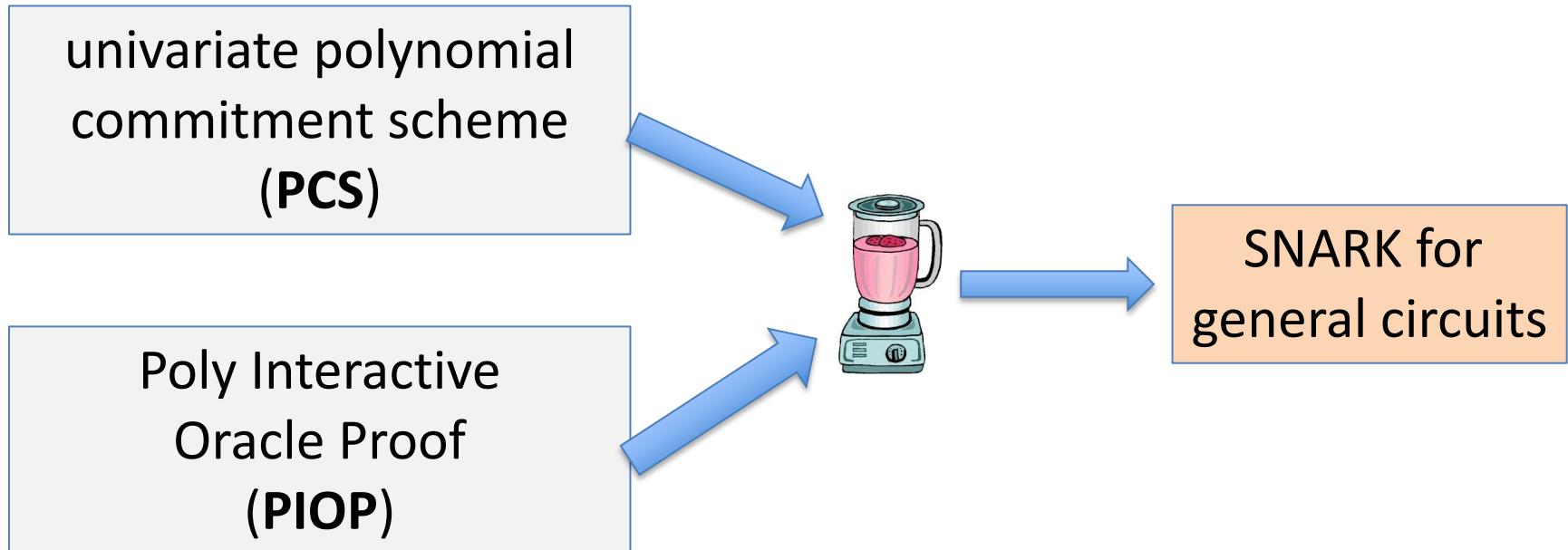
The PLONK Polynomial Interactive Oracle Proof (PIOB)

Dan Boneh
Stanford University

Review: a General Paradigm for a Modern SNARK



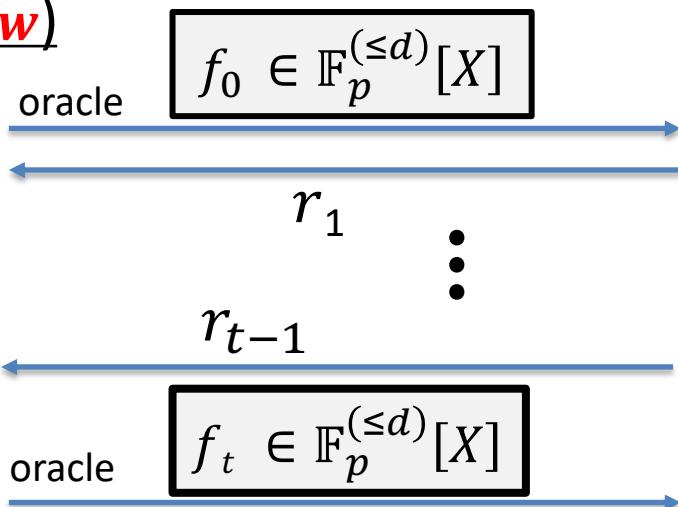
A special case: Polynomial IOP (PIOP)



Polynomial IOPs (PIOPs)

$\text{Setup}(C) \rightarrow \text{public parameters } pp \text{ and } (vp, \boxed{f_{-1}, \dots, f_{-s} \in \mathbb{F}_p^{(\leq d)}[X]})$

Prover $P(pp, \textcolor{green}{x}, \textcolor{red}{w})$



Verifier is assured that all oracles are in $\mathbb{F}_p^{(\leq d)}[X]$

Verifier $V(vp, \textcolor{green}{x})$

$\text{verify}^{f_{-s}, \dots, f_t}(\mathbf{x}, r_1, \dots, r_{t-1}) \rightarrow 0/1$

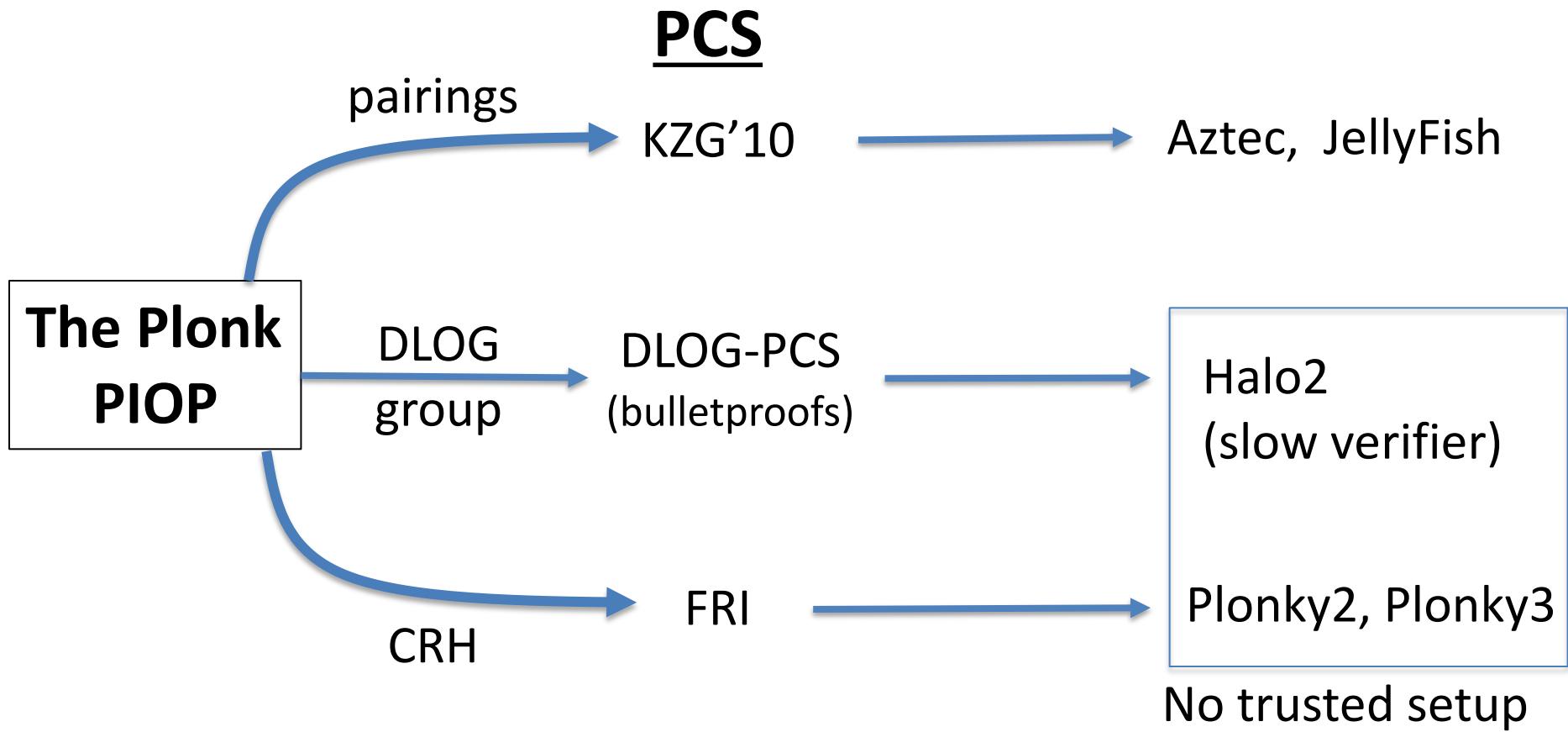
The Plonk poly-IOP (eprint/2019/953)

Gabizon – Williamson – Ciobotaru

Plonk PIOP + Polynomial Commitment \Rightarrow SNARK

(and also a zk-SNARK)

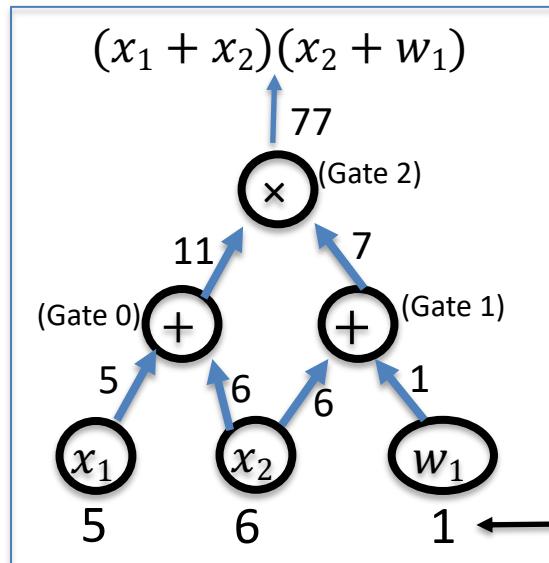
Plonk Systems



The PLO^NK PIOP

PLONK: a poly-IOP for a general circuit $C(x, w)$

Step 1: compile circuit to a computation trace (gate fan-in = 2)



The computation trace (arithmetization):

inputs:	5, 6, 1
Gate 0:	5, 6, 11
Gate 1:	6, 1, 7
Gate 2:	11, 7, 77

left inputs

right inputs

outputs

Encoding the trace as a polynomial

$|C| :=$ total # of gates in C , $|I| := |I_x| + |I_w| =$ # inputs to C

let $d := 3 |C| + |I|$ (in example, $d = 12$) and $\Omega := \{1, \omega, \omega^2, \dots, \omega^{d-1}\}$

The plan:

prover interpolates a poly. $T \in \mathbb{F}_p^{(\leq d)}[X]$
that encodes the entire trace.

Let's see how ...

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

The plan: Prover interpolates $T \in \mathbb{F}_p^{(\leq d)}[X]$ such that

(1) **T encodes all inputs:** $T(\omega^{-j}) = \text{input } \#j \quad \text{for } j = 1, \dots, |I|$

(2) **T encodes all wires:** $\forall l = 0, \dots, |C| - 1:$

- $T(\omega^{3l})$: left input to gate $\#l$
- $T(\omega^{3l+1})$: right input to gate $\#l$
- $T(\omega^{3l+2})$: output of gate $\#l$

Plonk PIOP:

- send oracle for T
- prove T is valid (gates and wires)

Encoding the trace as a polynomial

In our example, Prover interpolates $T(X)$ such that:

inputs: $T(\omega^{-1}) = 5, T(\omega^{-2}) = 6, T(\omega^{-3}) = 1,$

gate 0: $T(\omega^0) = 5, T(\omega^1) = 6, T(\omega^2) = 11,$

gate 1: $T(\omega^3) = 6, T(\omega^4) = 1, T(\omega^5) = 7,$

gate 2: $T(\omega^6) = 11, T(\omega^7) = 7, T(\omega^8) = 77$

$\text{degree}(T) = 11$

Prover can use FFT to compute the coefficients of T in time $O(d \log d)$

inputs: 5, 6, 1

Gate 0: 5, 6, 11

Gate 1: 6, 1, 7

Gate 2: 11, 7, 77

Step 2: proving validity of T

Prover $P(pp, x, w)$

build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$

T

Verifier $V(vp, x)$

Prover needs to prove that T is a correct computation trace:

- (1) T encodes the correct inputs,
- (2) every gate is evaluated correctly,
- (3) the wiring is implemented correctly,
- (4) the output of last gate is 0

How? First, let's build some tools.

(wiring constraints)

inputs:	5	,	6	,	1
Gate 0:	5	,	6	,	11
Gate 1:	6	,	1	,	7
Gate 2:	11	,	7	,	77

Towards the Plonk PIOP

Proving properties of
committed univariate polynomials

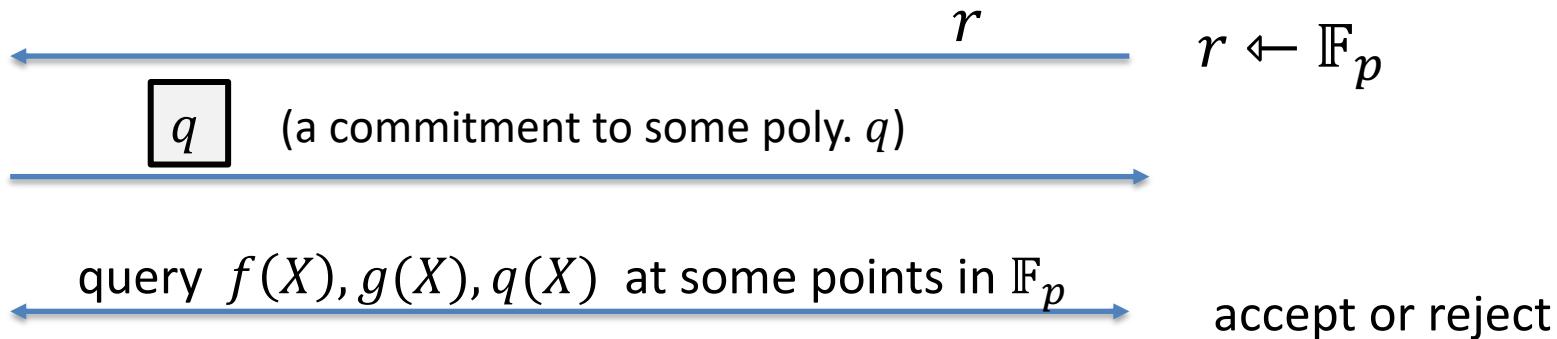
Proving properties of committed polynomials

Prover $P(f, g)$

Verifier $V(\boxed{f}, \boxed{g})$

Goal: convince verifier that $f, g \in \mathbb{F}_p^{(\leq d)}[X]$ satisfy some properties

Proof systems presented as a Poly-IOP:



An example: polynomial equality testing

Prover

$$f, g \in \mathbb{F}_p^{(\leq d)}[X]$$

Goal: convince verifier that $f = g$

Verifier

$$\begin{matrix} f \\ g \end{matrix}$$

query $f(X)$ and $g(X)$ at r

$$r \leftarrow \mathbb{F}_p$$

learn $f(r), g(r)$

accept if:
 $f(r) = g(r)$

Why is this sound?

Why is this sound?

A key fact: for non-zero $f \in \mathbb{F}_p^{(\leq d)}[X]$

$$\text{for } r \leftarrow \mathbb{F}_p : \quad \Pr[f(r) = 0] \leq d/p \quad (*)$$

- ⇒ suppose $p \approx 2^{256}$ and $d \leq 2^{40}$ then d/p is negligible
- ⇒ for $r \leftarrow \mathbb{F}_p$: if $f(r) = 0$ then f is identically zero w.h.p
 - ⇒ a simple test if a committed poly. is the zero poly.

SZDL lemma: (*) also holds for **multivariate** polynomials (where d is total degree of f)

Why is this sound?

Suppose $p \approx 2^{256}$ and $d \leq 2^{40}$ so that d/p is negligible

Let $f, g \in \mathbb{F}_p^{(\leq d)}[X]$.

For $r \leftarrow \mathbb{F}_p$, if $f(r) = g(r)$ then $f = g$ w.h.p

$$f(r) - g(r) = 0 \Rightarrow f - g = 0 \text{ w.h.p}$$

\Rightarrow a simple equality test for two committed polynomials

The polynomial equality testing protocol

Prover

$$f, g \in \mathbb{F}_p^{(\leq d)}[X]$$

Goal: convince verifier that $f = g$

Verifier

$$\begin{matrix} f \\ g \end{matrix}$$

$$r \xleftarrow{\$} \mathbb{F}_p$$

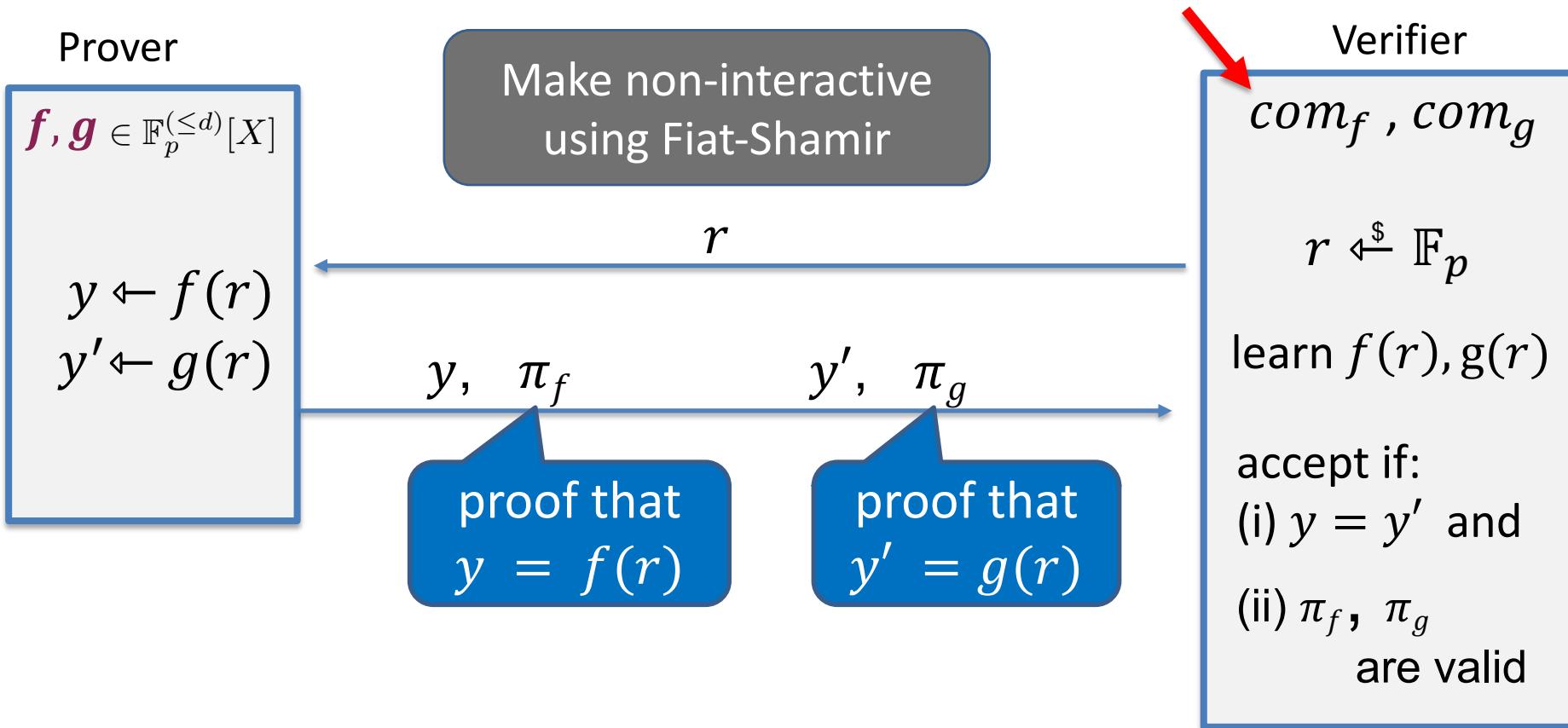
learn $f(r), g(r)$

accept if:
 $f(r) = g(r)$

query $f(X)$ and $g(X)$ at $X = r$

Lemma: complete and sound assuming d/p is negligible

The compiled proof system



Important proof gadgets for univariates

Let Ω be some subset of \mathbb{F}_p of size k .

Let $f \in \mathbb{F}_p^{(\leq d)}[X]$ $(d \geq k)$ Verifier has \boxed{f}

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (**ZeroTest**): prove that f is identically zero on Ω

Task 2 (**SumCheck**): prove that $\sum_{a \in \Omega} f(a) = 0$

Task 3 (**ProdCheck**): prove that $\prod_{a \in \Omega} f(a) = 1$

The vanishing polynomial

Let Ω be some subset of \mathbb{F}_p of size k .

Def: the **vanishing polynomial** of Ω is $Z_\Omega(X) := \prod_{a \in \Omega} (X - a)$
 $\deg(Z_\Omega) = k$

Let $\omega \in \mathbb{F}_p$ be a primitive k -th root of unity (so that $\omega^k = 1$).

- if $\Omega = \{1, \omega, \omega^2, \dots, \omega^{k-1}\} \subseteq \mathbb{F}_p$ then $Z_\Omega(X) = X^k - 1$

\Rightarrow for $r \in \mathbb{F}_p$, evaluating $Z_\Omega(r)$ takes $2 \log_2 k$ field operations

(1) ZeroTest on Ω

$(\Omega = \{ 1, \omega, \omega^2, \dots, \omega^{k-1} \})$

Prover $P(f)$

$$q(X) \leftarrow f(X)/Z_\Omega(X)$$

$$q \in \mathbb{F}_p^{(\leq d)}[X]$$

query $q(X)$ and $f(X)$ at r

Verifier $V(\boxed{f})$

$$r \xleftarrow{\$} \mathbb{F}_p$$

verifier evaluates $Z_\Omega(r)$ by itself

learn $q(r), f(r)$

accept if $f(r) \stackrel{?}{=} q(r) \cdot Z_\Omega(r)$

(implies that $f(X) = q(X) \cdot Z_\Omega(X)$ w.h.p)

Lemma: f is zero on Ω if and only if $f(X)$ is divisible by $Z_\Omega(X)$

Thm: this protocol is complete and sound, assuming d/p is negligible.

(1) ZeroTest on Ω

$(\Omega = \{ 1, \omega, \omega^2, \dots, \omega^{k-1} \})$

Prover $P(f)$

$$q(X) \leftarrow f(X)/Z_\Omega(X)$$

$$q \in \mathbb{F}_p^{(\leq d)}[X]$$

query $q(X)$ and $f(X)$ at r

Verifier $V(\boxed{f})$

$$r \xleftarrow{\$} \mathbb{F}_p$$

verifier evaluates $Z_\Omega(r)$ by itself

learn $q(r), f(r)$

accept if $f(r) \stackrel{?}{=} q(r) \cdot Z_\Omega(r)$

(implies that $f(X) = q(X) \cdot Z_\Omega(X)$ w.h.p)

Lemma: f is zero on Ω if and only if $f(X)$ is divisible by $Z_\Omega(X)$

Verifier time: $O(\log k)$ and two poly queries (but can be batched)

Prover time: dominated by time to compute $q(X)$ [and commit to $q(X)$]

(3) Product check on Ω : $\prod_{a \in \Omega} f(a) = 1$

Set $t \in \mathbb{F}_p^{(\leq k)}[X]$ to be the degree- d polynomial:

$$t(1) = f(1), \quad t(\omega^s) = \prod_{i=0}^s f(\omega^i) \quad \text{for } s = 1, \dots, k-1$$

Then $t(\omega^{k-1}) = \prod_{a \in \Omega} f(a)$

and $t(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in \Omega$ (including $x = \omega^{k-1}$)

Lemma: if (1) $t(\omega^{k-1}) = 1$ and

$$(2) \quad t_1(x) := t(\omega \cdot x) - t(x) \cdot f(\omega \cdot x) = 0 \quad \forall x \in \Omega$$

then $\prod_{a \in \Omega} f(a) = 1$

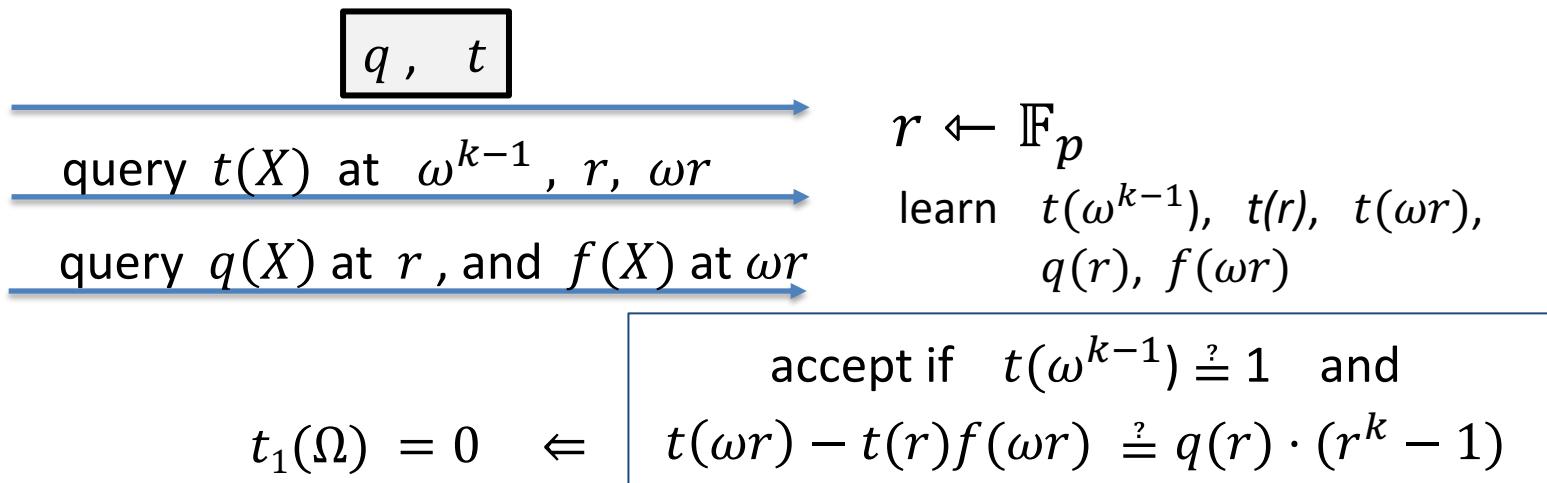
(3) Product check on Ω (unoptimized)

Prover $P(f)$

construct $t(X) \in \mathbb{F}_p^{(\leq k)}$, $t_1(X) := t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X)$

and $q(X) := t_1(X)/(X^k - 1) \in \mathbb{F}_p^{(\leq d)}$

Verifier $V(\boxed{f})$



Complete and sound, assuming $\deg(t_1)/p = (k + d)/p$ is negligible.

Same works for rational functions: $\prod_{a \in \Omega} (f/g)(a) = 1$

Prover $P(f, g)$

Verifier $V(\boxed{f}, \boxed{g})$

Set $t \in \mathbb{F}_p^{(\leq k)}[X]$ to be the degree- k polynomial:

$$t(1) = f(1)/g(1), \quad t(\omega^s) = \prod_{i=0}^s f(\omega^i)/g(\omega^i) \quad \text{for } s = 1, \dots, k-1$$

Lemma: if (i) $t(\omega^{k-1}) = 1$ and
(ii) $t(\omega \cdot x) \cdot g(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in \Omega$

$$\text{then } \prod_{a \in \Omega} f(a)/g(a) = 1$$

(4) Another useful gadget: permutation check

Let f, g polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has \boxed{f}, \boxed{g} .

Prover wants to prove that $(f(1), f(\omega), f(\omega^2), \dots, f(\omega^{k-1})) \in \mathbb{F}_p^k$

is a permutation of $(g(1), g(\omega), g(\omega^2), \dots, g(\omega^{k-1})) \in \mathbb{F}_p^k$

\Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, just permuted

(4) Another useful gadget: permutation check

Prover $P(f, g)$

Verifier $V(\boxed{f}, \boxed{g})$

Let $\hat{f}(X) = \prod_{a \in \Omega} (X - f(a))$ and $\hat{g}(X) = \prod_{a \in \Omega} (X - g(a))$

Then: $\hat{f}(X) = \hat{g}(X) \Leftrightarrow g(\Omega)$ is a permutation of $f(\Omega)$

$$r \xleftarrow{\quad} r \xleftarrow{\$} \mathbb{F}_p$$

prove that $\hat{f}(r) = \hat{g}(r)$

prod-check: $\frac{\hat{f}(r)}{\hat{g}(r)} = \prod_{a \in \Omega} \left(\frac{r - f(a)}{r - g(a)} \right) = 1$

$\xleftarrow{\quad} \xrightarrow{\quad}$ implies $\hat{f}(X) = \hat{g}(X)$ w.h.p

accept or reject

[Lipton's trick, 1989]

(4') Permutation check on pairs

Let f_1, f_2, g_1, g_2 be polynomials in $\mathbb{F}_p^{(\leq d)}[X]$.

Prover wants to prove that the k pair

$$\left((f_1(1), f_2(1)), \dots, (f_1(\omega^{k-1}), f_2(\omega^{k-1})) \right) \in (\mathbb{F}_p^2)^k$$

are a permutation of

$$\left((g_1(1), g_2(1)), \dots, (g_1(\omega^{k-1}), g_2(\omega^{k-1})) \right) \in (\mathbb{F}_p^2)^k$$

one pair

(4') Permutation check on pairs

Define: $\hat{f}(X, Y) := \prod_{a \in \Omega} (X - Y \cdot f_1(a) - f_2(a))$ and

$$\hat{g}(X, Y) := \prod_{a \in \Omega} (X - Y \cdot g_1(a) - g_2(a))$$

Lemma: $\hat{f}(X, Y) = \hat{g}(X, Y)$ if and only if

$$(f_1(a), f_2(a))_{a \in \Omega} \text{ is a permutation of } (g_1(a), g_2(a))_{a \in \Omega}$$

To prove, use the fact that $\mathbb{F}_p[X, Y]$ is a unique factorization domain

Now: $\hat{f}(X, Y) = \hat{g}(X, Y)$ can be checked using a product check (using $X, Y \leftarrow \mathbb{F}_p$)

The protocol

Prover $P(f_1, f_2, g_1, g_2)$

Verifier $V(f_1, f_2, g_1, g_2)$

$$\xleftarrow{r, s} \quad r, s \leftarrow \mathbb{F}_p$$

prove that $\hat{f}(r, s) = \hat{g}(r, s)$:

$$\text{ProdCheck: } \prod_{a \in \Omega} \left(\frac{r - s \cdot f_1(a) - f_2(a)}{r - s \cdot g_1(a) - g_2(a)} \right) = 1$$

by Schwartz-Zippel

$$\xleftarrow{\quad\quad\quad\quad\quad}$$

implies $\hat{f}(X, Y) = \hat{g}(X, Y)$ w.h.p

accept or reject

Complete and sound, assuming $(k + d)/p$ is negligible.

(5) final gadget: prescribed permutation check

$W: \Omega \rightarrow \Omega$ is a **permutation of Ω** if $\forall i \in [k]: W(\omega^i) = \omega^j$ is a bijection

example ($k = 3$): $W(\omega^0) = \omega^2$, $W(\omega^1) = \omega^0$, $W(\omega^2) = \omega^1$

Let f, g polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has \boxed{f} , \boxed{g} , \boxed{W} .

Goal: prover wants to prove that $f(y) = g(W(y))$ for all $y \in \Omega$

\Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove $f(y) - g(W(y)) = 0$ on Ω

The problem: the polynomial $f(y) - g(W(y))$ has degree kd

- ⇒ prover would need to manipulate polynomials of degree kd
- ⇒ quadratic time prover !! (goal: linear time prover)

Goal: reduce this to a perm. check on pairs for degree- d poly (not kd)

Prescribed permutation check

Observation:

if $(W(a), f(a))_{a \in \Omega}$ is a permutation of $(a, g(a))_{a \in \Omega}$

then $f(y) = g(W(y))$ for all $y \in \Omega$

Proof by example: $W(\omega^0) = \omega^2$, $W(\omega^1) = \omega^0$, $W(\omega^2) = \omega^1$

Right tuple: $(\omega^0, g(\omega^0)), (\omega^1, g(\omega^1)), (\omega^2, g(\omega^2))$

Left tuple: $(\omega^2, f(\omega^0)), (\omega^0, f(\omega^1)), (\omega^1, f(\omega^2))$

So: permutation check on pairs \Rightarrow prescribed permutation check

Summary of proof gadgets

prescribed permutation check

permutation check on pairs

product check, sum check

zero test on Ω

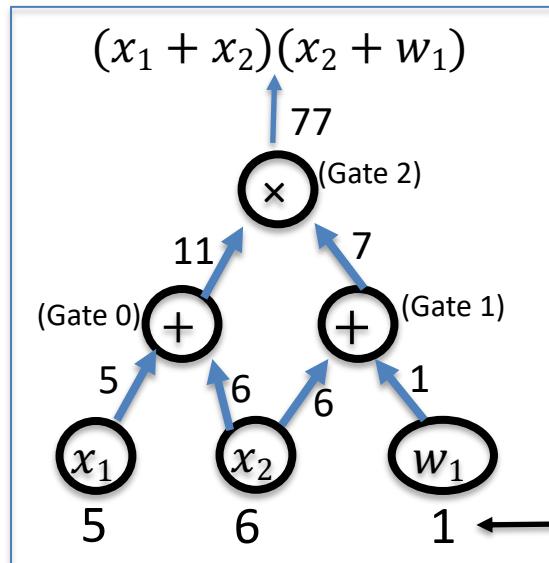
polynomial equality testing

The PLONK Poly-IOP for general circuits

eprint/2019/953

PLONK: a poly-IOP for a general circuit $C(x, w)$

Step 1: compile circuit to a computation trace (gate fan-in = 2)



The computation trace (arithmetization):

inputs:	5, 6, 1
Gate 0:	5, 6, 11
Gate 1:	6, 1, 7
Gate 2:	11, 7, 77

left inputs

right inputs

outputs

Encoding the trace as a polynomial

$|C| :=$ total # of gates in C , $|I| := |I_x| + |I_w| =$ # inputs to C

let $d := 3 |C| + |I|$ (in example, $d = 12$) and $\Omega := \{1, \omega, \omega^2, \dots, \omega^{d-1}\}$

The plan:

prover interpolates a poly. $T \in \mathbb{F}_p^{(\leq d)}[X]$
that encodes the entire trace.

Let's see how ...

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

The plan: Prover interpolates $T \in \mathbb{F}_p^{(\leq d)}[X]$ such that

(1) **T encodes all inputs:** $T(\omega^{-j}) = \text{input } \#j \quad \text{for } j = 1, \dots, |I|$

(2) **T encodes all wires:** $\forall l = 0, \dots, |C| - 1:$

- $T(\omega^{3l})$: left input to gate $\#l$
- $T(\omega^{3l+1})$: right input to gate $\#l$
- $T(\omega^{3l+2})$: output of gate $\#l$

inputs:	5, 6, 1
Gate 0:	5, 6, 11
Gate 1:	6, 1, 7
Gate 2:	11, 7, 77

Encoding the trace as a polynomial

In our example, Prover interpolates $T(X)$ such that:

inputs: $T(\omega^{-1}) = 5, T(\omega^{-2}) = 6, T(\omega^{-3}) = 1,$

gate 0: $T(\omega^0) = 5, T(\omega^1) = 6, T(\omega^2) = 11,$

$\text{degree}(T) = 11$

gate 1: $T(\omega^3) = 6, T(\omega^4) = 1, T(\omega^5) = 7,$

gate 2: $T(\omega^6) = 11, T(\omega^7) = 7, T(\omega^8) = 77$

Prover can use FFT to compute the coefficients
of T in time $O(d \log d)$

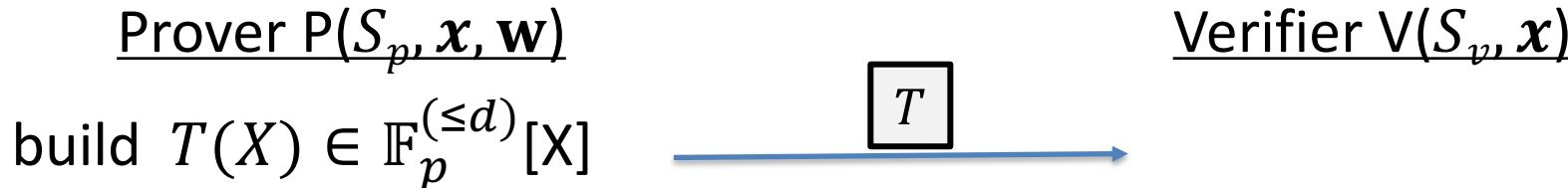
inputs: 5, 6, 1

Gate 0: 5, 6, 11

Gate 1: 6, 1, 7

Gate 2: 11, 7, 77

Step 2: proving validity of T



Prover needs to prove that T is a correct computation trace:

- (1) T encodes the correct inputs,
- (2) every gate is evaluated correctly,
- (3) the wiring is implemented correctly,
- (4) the output of last gate is 0

Proving (4) is easy: prove $T(\omega^{3|C|-1}) = 0$

(wiring constraints)

inputs:	5	,	6	,	1
Gate 0:	5	,	6	,	11
Gate 1:	6	,	1	,	7
Gate 2:	11	,	7	,	77

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x -inputs to the circuit:

for $j = 1, \dots, |I_x|$: $v(\omega^{-j}) = \text{input } \#j$

In our example: $v(\omega^{-1}) = 5, v(\omega^{-2}) = 6$. (v is linear)

constructing $v(X)$ takes time proportional to the size of input x

\Rightarrow verifier has time do this

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x -inputs to the circuit:

$$\text{for } j = 1, \dots, |I_x|: \quad v(\omega^{-j}) = \text{input } \#j$$

Let $\Omega_{\text{inp}} := \{ \omega^{-1}, \omega^{-2}, \dots, \omega^{-|I_x|} \} \subseteq \Omega$ (points encoding the input)

Prover proves (1) by using a ZeroTest on Ω_{inp} to prove that

$$T(y) - v(y) = 0 \quad \forall y \in \Omega_{\text{inp}}$$

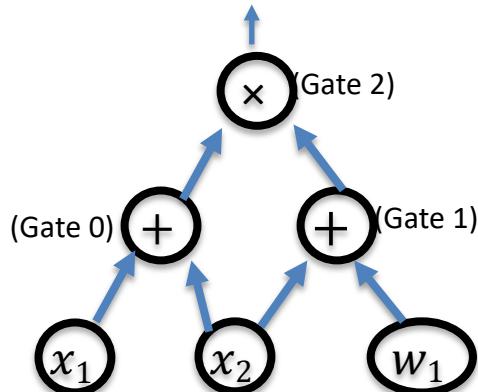
Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial $S(X)$

define $S(X) \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall l = 0, \dots, |C| - 1$:

$S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate

$S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate



inputs:	5	6	1	$S(X)$	
Gate 0 (ω^0):	5	6	11	1	(+)
Gate 1 (ω^3):	6	1	7	1	(+)
Gate 2 (ω^6):	11	7	77	0	(\times)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial $S(X)$

define $S(X) \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall l = 0, \dots, |C| - 1$:

$S(\omega^{3l}) = 1$ if gate # l is an addition gate

$S(\omega^{3l}) = 0$ if gate # l is a multiplication gate

Then $\forall y \in \Omega_{\text{gates}} := \{ 1, \omega^3, \omega^6, \omega^9, \dots, \omega^{3(|C|-1)} \}$:

$$S(y) \cdot [\mathbf{T}(y) + \mathbf{T}(\omega y)] + (1 - S(y)) \cdot \mathbf{T}(y) \cdot \mathbf{T}(\omega y) = \mathbf{T}(\omega^2 y)$$

left input

right input

left input

right input

output

Proving (2): every gate is evaluated correctly

$\text{Setup}(C) \rightarrow pp := S \text{ and } vp := (\boxed{S})$

Prover $P(pp, x, w)$

build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$

\boxed{T}

Verifier $V(vp, x)$

Prover uses ZeroTest to prove that for all $\forall y \in \Omega_{gates} :$

$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0$$

Proving (3): T respects the wires of C

Copy constraints:

$$\left\{ \begin{array}{l} T(\omega^{-2}) = T(\omega^1) = T(\omega^3) \\ T(\omega^{-1}) = T(\omega^0) \\ T(\omega^2) = T(\omega^6) \\ T(\omega^{-3}) = T(\omega^4) \end{array} \right.$$

example: $x_1=5, x_2=6, w_1=1$

$$\begin{array}{llll} \hline \omega^{-1}, \omega^{-2}, \omega^{-3}: & 5, & 6, & 1 \\ \hline 0: \omega^0, \omega^1, \omega^2: & 5, & 6, & 11 \\ 1: \omega^3, \omega^4, \omega^5: & 6, & 1, & 7 \\ 2: \omega^6, \omega^7, \omega^8: & 11, & 7, & 77 \end{array}$$

Define a polynomial $W: \Omega \rightarrow \Omega$ that implements a rotation:

$$W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^{-2}), \quad W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1}), \dots$$

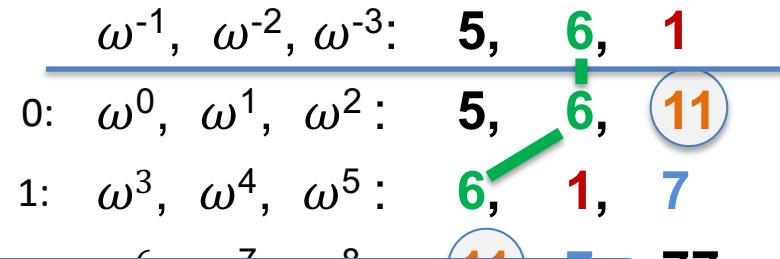
Lemma: $\forall y \in \Omega: T(y) = T(W(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): T respects the wires of C

Copy constraints:

$$\left\{ \begin{array}{l} T(\omega^{-2}) = T(\omega^1) = T(\omega^3) \\ T(\omega^{-1}) = T(\omega^0) \\ T(\omega^2) = T(\omega^6) \end{array} \right.$$

example: $x_1=5, x_2=6, w_1=1$



77

Proved using a prescribed permutation check

Define a polynomial

$$W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^0, \omega^{-1}, \omega^2, \omega^{-3}) \rightarrow \Omega \text{ that implements a rotation:}$$

Lemma: $\forall y \in \Omega: T(y) = T(W(y)) \Rightarrow$ wire constraints are satisfied

The complete Plonk Poly-IOP (and SNARK)

$\text{Setup}(C) \rightarrow pp := (S, W) \text{ and } vp := (\boxed{S} \text{ and } \boxed{W})$ (untrusted)

Prover $P(pp, x, w)$

build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$

\boxed{T}

Verifier $V(vp, x)$

build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

Prover proves:

gates: (1) $S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0; \forall y \in \Omega_{\text{gates}}$

inputs: (2) $T(y) - v(y) = 0 \quad \forall y \in \Omega_{\text{inp}}$

wires: (3) $T(y) - T(W(y)) = 0 \quad (\text{using prescribed perm. check}) \quad \forall y \in \Omega$

output: (4) $T(\omega^{3|C|-1}) = 0 \quad (\text{output of last gate} = 0)$

The complete Plonk Poly-IOP (and SNARK)

$\text{Setup}(C) \rightarrow pp := (S, W) \text{ and } vp := (\boxed{S} \text{ and } \boxed{W})$ (untrusted)

Prover $P(pp, x, w)$

build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$

\boxed{T}

Verifier $V(vp, x)$

build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

Thm: The Plonk Poly-IOP is complete and knowledge sound,
assuming $7|C|/p$ is negligible

Many extensions ...

Plonk proof: a short proof ($O(1)$ commitments), fast verifier

The SNARK can be made into a zk-SNARK

Main challenge: reduce prover time

- **Hyperplonk:** replace Ω with $\{0,1\}^t$ (where $t = \log_2|\Omega|$)
 - The polynomial T is now a multilinear polynomial in t variables
 - ZeroTest is replaced by a multilinear SumCheck (linear time)

A generalization: plonkish arithmetization

Plonk for circuits with gates other than $+$ and \times on rows:

Plonkish computation trace: (also used in AIR)

An example custom gate:

$$\forall y \in \Omega: v(y\omega) + w(y) \cdot t(y) - t(y\omega) = 0$$

All such gate checks are included in the gate check

u1	v1	w1	t1	r1
u2	v2	w2	t2	r2
u3	v3	w3	t3	r3
u4	v4	w4	t4	r4
u5	v5	w5	t5	r5
u6	v6	w6	t6	r6
u7	v7	w7	t7	r7
u8	v8	w8	t8	r8

output

A generalization: plonkish arithmetization

Plonk for circuits with gates other than $+$ and \times on rows: $S(X)$

Plonkish computation trace: (also used in AIR)

An example custom gate:

$$\forall y \in \Omega: S(X) \cdot [v(y\omega) + w(y) \cdot t(y) - t(y\omega)] = 0$$

u1	v1	w1	t1	r1	0
u2	v2	w2	t2	r2	0
u3	v3	w3	t3	r3	1
u4	v4	w4	t4	r4	0
u5	v5	w5	t5	r5	1
u6	v6	w6	t6	r6	0
u7	v7	w7	t7	r7	0
u8	v8	w8	t8	r8	1

output

Selector poly $S(X)$ can choose when to apply gate

THE END