CS355, Spring 25

The PLONK
Polynomial Interactive Oracle Proof (PIOP)

Dan Boneh

Stanford University

Review: a General Paradigm for a Modern SNARK

F-functional

commitment |
scheme \g

(cryptographic object)

F-interactive %

oracle proof
(F - 10P)

(info. theoretic object)

SNARK for
general circuits

A special case: Polynomial IOP (PIOP)

univariate polynomial
commitment scheme
(PCS)

Poly Interactive
Oracle Proof
(PIOP)

<

SNARK for
general circuits

Polynomial IOPs (PIOPs)

Setup(C) — public parameters pp and (vp, | f-q, ..., fos eIFffd)[X])

Prover P(pp,x,w)

oracle

fo € By P[X]

Verifier V(vp, x)

Verifier is
assured that

. m(=d)
in [F[X]

all oracles are | «

Tt—1

oracle

fo € FEVIX |

-1 « Iy

Verifyf_s’“'

’ft(x,rl,,...,rt_l) — 0/1

The Plonk poly-IOP (eprint/2019/953)

Gabizon — Williamson — Ciobotaru

Plonk PIOP + Polynomial Commitment = SNARK

(and also a zk-SNARK)

The Plonk
PIOP

pairings

DLOG

Plonk Systems
PCS

DLOG-PCS
—

group

CRH

—» Aztec, JellyFish

» | Halo2

(bulletproofs)

(slow verifier)

» | Plonky2, Plonky3

No trusted setup

The PLONK PIOP

eprint/2019/953

PLONK: a poly-IOP for a general circuit C(x,w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

The computation trace (arithmetization):

(x1 + x2) (2 + wy)

/7 inputs: 5, 6, 1
@(Gatez)
> |Gateo: 5, 6, 11
6

11 7 6
(Gate 0) (Gate 1) Gate 1: , 1 , 7
5 }6 ')‘6 1 Gate2: 11, 7, |77

5 6 1 «— example input left right || outputs
inputs || inputs

Encoding the trace as a polynomial

|C| :=total # of gatesinC, |I|=|I,|+|[,| =#inputstoC

let d:=3|C|+ |I| (nexample,d =12) and Q:={1, w, w?.., w* 1}

The plan:
prover interpolates a poly. T € F; [x]

that encodes the entire trace.

Let’s see how ...

inputs: 5, 6,
Gate0: 5, 6, 11
Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

The plan: Prover interpolates T € IF;Sd)[X] such that
(1) T encodes allinputs: T(w™/) =input#j forj=1,.., |

(2) T encodes all wires: VI1=0,...,|C|—1:

e T(w3!): leftinput to gate #l

Plonk PIOP:
e T(w3™1): right input to gate #!
(): rig P 8 send oracle for T
e T(w32): output of gate #l I, prove T is valid
~(1)- (gates and wires)

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:

inputs: T(@™) =5, T@™?) =6 T@>)=1,
gate 0: T(w®) =5, T@H=6 Tw?) =11, degree(T) = 11
gatel: T(w3) =6, TwH=1 Tw?) =7,

gate2: T(w®) =11, T(w) =7 T(w® =77

inputs: 5, 6, 1

Gate0: 5, 6, 11
Prover can use FFT to compute the coefficients Gatel: 6, 1, 7
of Tin time O(d log d) Gate2: 11, 7, |77

Step 2: proving validity of T

Prover P(pp, x, w)

build T(X) € F&V[X] :

Verifier V(vp, x)

Prover needs to prove that T is a correct computation trace:

P(l) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly,

(4) the output of last gate is O

How? First, let’s build some tools.

(wiring constraints)

inputs: 5, g, 1
Gate0: 5, .6, 11
Gate 1: 6,/1 , 7

Gate2: 11, 7, 77

Towards the Plonk PIOP

Proving properties of

committed univariate polynomials

Proving properties of committed polynomials

Prover P(f, g) Verifier V(m ,@)

Goal: convince verifier that f, g € IF;Sd) | X] satisfy some properties

Proof systems presented as a Poly-IOP:

q (a commitment to some poly. q)

query f(X),g(X),q(X) atsome pointsinF,

accept or reject

An example: polynomial equality testing

Prover

)9 e P9 [x]

Goal: convince verifierthat f = g

Verifier

query f(X) and g(X) atr

Why is this sound?

fllg

r«—IFp

| learn f(r), g(r)

accept if:

f(r) =g(r)

Why is this sound?

(=d)
p

for re1TF, : Prlf(r)=0]< d/p (%)

A key fact: for non-zero f € F | X]

= suppose p=22°% and d<2% then d/p isnegligible
= forreT,: if f(r) =0 then f isidentically zerow.h.p

= asimple test if a committed poly. is the zero poly.

{ SZDL lemma: (*) also holds for multivariate polynomials (where d is total degree of f) }

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Why is this sound?

Suppose p=22% and d<2% sothat d/p isnegligible

let f, g € IFz(fd) | X].

For r—F,, if f(r)=g(r) then f=g whp

L)

fa)—gr)=0 = f—-g=0 whp

= a simple equality test for two committed polynomials

The polynomial equality testing protocol

Prover Goal: convince verifierthat f = g verifier
|9 e FEPIX] fl 19
query f(X)andg(X) atX=r r e Fp

learn f(r), g(r)

accept if:

f(r) =g(r)

Lemma: complete and sound assuming d /p is negligible

The compiled proof system

Verifier
Prover Make non-interactive \
f,9 e FEI[X] using Fiat-Shamir comy , COMg
r r < F,
y—f(r)
y'—g(r) y, T y, learn (1), g(7)
accept if:
proof that p’roof that)y =y and
y = f(r) y =9g@))
(i) sy m,

are valid

Important proof gadgets for univariates

Let (0 be some subset of IFp of size k.

let f € IF;Sd) [X] (d=k) Verifier has | f

Let us construct efficient Poly-IOPs for the following tasks:

Task 1(ZeroTest): prove that f isidentically zero on ()
Task 2 (SumCheck): prove that), ,cqf(a) =0

Task 3 (ProdCheck): prove that [[,cqf(a) =1

The vanishing polynomial

Let (0 be some subset of IFp of size k.

Def: the vanlshlng polynomial of Qis Zq(X) =[1,eq(X — a)
deg(Zq) =

Let w € [F, be a primitive k-th root of unity (so that wk =1).
¢+ if 0={1, 0, w2 ., w"}CSF, then ZoX)=X"-1

= for r € F),, evaluating Zo(r) takes 2log, k field operations

(1) ZeroTest on ()

Prover P(f) Verifier V(E_)

a0 f(X0/Za0 [qe BED x]

$ verifier evaluates
r — [F
p [Zqo(7) by itself

_ Query q(X) and f(X) at r

learn q(r), f(r)
Lemma: f is zero on Q if and only if . .
F(X) is divisible by Zo,(X) acceptif f(r) = q(r)-Za(r)

(implies that f(X) = q(X) - Zo (X) w.h.p)

Thm: this protocol is complete and sound, assuming d/p is negligible.

(1) ZeroTest on ()

Prover P(f) Verifier V(E_)

a0 f(X0/Za0 [qe BED x]

; "
r & IFp [venﬂer evaluates

_ query q(X) and f(X) at r Zq(r) by itself

learn q(r), f(r)
Lemma: f is zero on Q if and only if . .
F(X) is divisible by Zo,(X) acceptif f(r) = q(r)-Za(r)

(implies that F(X) = q(X) - Zq (X) w.h.p)

Verifier time: O(log k) and two poly queries (but can be batched)

Prover time: dominated by time to compute g(X) [and commit to q(X)]

(3) Product checkon Q) : [[,cqf(a) =1

Set t E IFz(fk) |X] to be the degree-d polynomial:
t()=f1), tw)=Ii.gf(w) for s=1,...,k—1

Then t(w* 1) = [l eqf(@)
and t(a) . X) = t(x) . f(a) . X) forall x €) (including x = wk 1)

Lemma: if (1) t(w®* 1) =1 and
(2) t1(x) =t(w-x)—t(x) - flw-x)=0 VxeQ
then [lgeqf(a) =1

(3) Product check on) (unoptimized)
Prover P(f) Verifier V(m)

construct t(X) € IFz(fk) , t1(X) =t(w-X)—tX): f(w-X)
and q(X) = t;(X)/(X*—1) € FS?

q, t
r«IF
query t(X) at ok 1, r, wr p
learn t(w®™1Y), t(r), t(wr),
query g(X) at r,and f(X) at wr q(r), f(wr)

acceptif t(w®1)Z1 and
ti(Q) =0 < | tlwr) —t()f(wr) =q(r)- (r —1)

Complete and sound, assuming deg(t;)/p = (k+d)/p is negligible.

Same works for rational functions: [[cq(f/g)(a) =1

Prover P(f, g)

Set t € IF;SR) |X] to be the degree-k polynomial:

VerifierV(lZI,lél)

t() =fM)/g1), t(@) =Ilizf(@)/g(w) for s=1,.., k-1

Lemma:

if

then

(i)
(ii)

t(w*1)=1 and

t(w-x) - glw-x) =tx) - flw-x)
[laeaf(@)/g(a) =1

forall x e

(4) Another useful gadget: permutation check

Let f,g polynomialsin [F;Sd) | X]. Verifier has , @ .

Prover wants to prove that (f(1), f(w), f(w?), ..., f(w*™1)) € Fg

is a permutation of (g(1), g(w), g(w?), ..., g(w* 1)) € Fg

= Proves that g({) is the same as f({1), just permuted

(4) Another useful gadget: permutation check

Prover P(f, g) Verifier V(m , @)

Let f(X) = [lgeaX = f(@)) and GX) = [lgeaX — g(a))
Then: f(X) =4§(X) < g(Q)isa permutation of f()

r re&TF

prove that f(r) = §(r)

prod-check: 0 =TT (=21

g(r) Jeg \r—g(a)

I
[

<€

> implies f(X) = §(X) w.h.p
t ject
[Lipton’s trick, 1989] acceptorrejec

(4’) Permutation check on pairs

Let fi, 2,91, g> be polynomialsin IFz(fd) | X].

Prover wants to prove that the k pair

(A0, 1), (AT, o)) € ()

are a permutation of

(9101, 921)) - (92 (@51, g2 (H 7))) € (B2

i I
I

one pair

(4’) Permutation check on pairs

Define: £(X,Y) =[lgeq X =Y - fi(a) — f,(a)) and
gX,Y) = llgeq X =Y - g1(a) — g2(a))

Lemma: f(X,Y) =g(X,Y) ifandonlyif

(fl(a);fz (a))deQ is a permutation of (gl (a), 92 (a))aeg

To prove, use the fact that IF,,[X, Y] is a unique factorization domain

Now: f(X,Y) = §(X,Y) can be checked using a product check (using X,Y « Fp,)

The protocol

Prover P(f4, -, 4+, G-) Verifier V(|f1,f7| ;I.CI1,27I)

. r,S r,s « IF,

prove that f(r,s) = §(r, s):

r—s- fi(a) — f2(CL)> by Schwartz- }
. =1 .
ProdCheck: algﬂl (,r “s-q1(a) — g2(a) Zippel
= >

implies f(X,Y) = §(X,Y) w.h.p

accept or reject

Complete and sound, assuming (k + d)/p is negligible.

(5) final gadget: prescribed permutation check

W:Q — Qis a permutation of Qif Vi € [k]: W(w') = w’ is a bijection

example (k =3): W(w?) = w?, Ww!)=w?, WWw?) =w!

Let f,g polynomialsin IFz(fd) |X]. Verifier has) El) :

forall y e

Goal: prover wants to prove that f(y) = g(W (y))

= Proves that g(Q) is the same as f (1), permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove | f(y) — g(W(y)) =0 on(

The problem: the polynomial f(y) — g(W(y)) has degree kd

= prover would need to manipulate polynomials of degree kd

= quadratic time prover !! (goal: linear time prover)

Goal: reduce this to a perm. check on pairs for degree-d poly (not kd)

Prescribed permutation check

Observation:
it (W(@),f(@) q isapermutation of (a,9(@)),,

then f(y) =g(W(y)) forally € Q

Proof by example: W(w®) = w?, W(w!)=w’, W((w?) =w!

Right tuple: (w%g(w?)), (wg(wl)), (w?g(w?))

Lefttuple: (w2 ,f(w9), (w°,flw?)), (w?fw?))

So: permutation check on pairs = prescribed permutation check

Summary of proof gadgets

prescribed permutation check

permutation check on pairs

product check, sum check

zero test on ()

polynomial equality testing

The PLONK Poly-10OP

for general circuits

eprint/2019/953

PLONK: a poly-IOP for a general circuit C(x,w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

The computation trace (arithmetization):

(x1 + x2) (2 + wy)

/7 inputs: 5, 6, 1
@(Gatez)
> |Gateo: 5, 6, 11
6

11 7 6
(Gate 0) (Gate 1) Gate 1: , 1 , 7
5 }6 ')‘6 1 Gate2: 11, 7, |77

5 6 1 «— example input left right || outputs
inputs || inputs

Encoding the trace as a polynomial

|C| :=total # of gatesinC, |I|=|I,|+|[,| =#inputstoC

let d:=3|C|+ |I| (nexample,d =12) and Q:={1, w, w?.., w* 1}

The plan:
prover interpolates a poly. T € F; [x]

that encodes the entire trace.

Let’s see how ...

inputs: 5, 6,
Gate0: 5, 6, 11
Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

The plan: Prover interpolates T € IF;Sd)[X] such that
(1) T encodes allinputs: T(w™/) =input#j forj=1,.., |

(2) T encodes all wires: VI1=0,...,|C|—1:

e T(w3!): leftinput to gate #l

inputs: 5, 6, 1
e T(w3"1): right input to gate #l Gate0: 5, 6, 11
e T(w32): output of gate #l Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:

inputs: T(@™) =5, Tw™?)=6 T(@™) =1,
gate 0: T(w®) =5 T(w)=6 T(w?) =11, degree(T) =11
gatel: T(w3) =6, TwH)=1 Tw>) =7,

gate2: T(w®) =11, T(w) =7 T(w® =77

inputs: 5, 6, 1

Gate0: 5, 6, 11
Prover can use FFT to compute the coefficients Gatel: 6, 1, 7
of Tin time O(d log d) Gate2: 11, 7, |77

Step 2: proving validity of T

Prover P(Sp, X, W)

build T(X) € F&V[X] :

Verifier V(S,, x)

Prover needs to prove that T is a correct computation trace:

P(l) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly,

(4) the output of last gate is O

Proving (4) is easy: prove T(w3!¢1=1) =0

(wiring constraints)

inputs: 5, g, 1
Gate0: 5, .6, 11
Gate 1: 6,/1 , 7

Gate2: 11, 7, 77

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IF;S“"D[X]
that encodes the x-inputs to the circuit:

for j=1,....|L|: v(w™7) =input #]

In our example: v(w 1) =5, v(w™?)=6. (v islinear)

constructing v(X) takes time proportional to the size of input x

= verifier has time do this

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IF;S“"D[X]
that encodes the x-inputs to the circuit:

for j=1,....|L|: v(w™7) =input #]

Let Qi ={w L w2 .., 07 l}ca (points encoding the input)

Prover proves (1) by using a ZeroTest on Q,,, to prove that

inp
T(y) — v(y) =0 VYE Q'inp

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)
define S(X) € FSV[X] suchthat VI =0,..,|C| - 1:
S(w3) =1 if gate #l is an addition gate
S(w3!) =0 if gate #l is a multiplication gate

IOGate . inputs: 5, 6, 1 S(X)
GateO (w%): 5, 6, 11 1 (+)
(Gatec))ﬁ-{ Gate 1) Gatel(w3): 6, 1, 7 1 (+)
S &D/ Gate2 (wS): 11,7, 77 | 0 |(x)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)
define S(X) € FSV[X] suchthat VI =0,..,|C| - 1:
S(w3) =1 if gate #l is an addition gate
S(w3!) =0 if gate #l is a multiplication gate

Then Vy € Qe =11, &3 0 w’, .., w3UCI-1y .

S(y)-[T(y) + T(wy)] + (1-S(y))Tly) T(wy) = T(w?y)

czh diem cEhdrm &

Proving (2): every gate is evaluated correctly

Setup(C) — pp:=S and vp:=(|S|)

Prover P(pp, x, W) Verifier V(vp, x)

build T(X) € Fy; [x] :

Prover uses ZeroTest to prove that forall Vy € (4. :

S(y)-[T(y) + T(wy)] + (1=S(y))-T(y) T(wy) - T(w?y) =0

Proving (3): T respects the wires of C

Copy constraints: example: x=5, =6, w;=1
[T(w?2) =T(w?) = T(w3) o', w? w3 5, 6, :@
0: C()O w1 Cl)2: 5 6
-1y = 0 , , , :
| Tlw?)=T(w") b W ot 6,/1, -
T(w?) = T(w®) 2 Wb, w!, ws: @ 7. 77
_ T(w?) = T(w?)

Define a polynomial W: Q — Q0 that implements a rotation:
W(w?, wt, »?) = (w!, 0’ w?), Ww?, o%=(w’, o), ..

Lemma: V yeQ:T(y)=T(W(y)) = wire constraints are satisfied

Proving (3): T respects the wires of C

example: x=5, x,=6, w;=1

Copy constraints:
[T(w?2) = T(w?!) = T(w3)

w!, w? w3 5, 9
0: w? !, w?: 5, 6, (11
1

1y = 0
- Tw™) = T(®) 1. w3, w?* wd: 6,/, 7
T(w?) = T(n)®) N 4
[Proved using a prescribed permutation check
Define a polyno — () that implements a rotation:
W(w?, w!, w3) w3, w?), Wwl =, wl), ..

Lemma: V yeQ:T(y)=T(W(y)) = wire constraints are satisfied

The complete Plonk Poly-IOP (and snark)

Setup(C) = pp:=(S,W) and vp:=(|S |and |W]) (untrusted)

Prover P(pp, x, w) Verifier V(vp, x)
build T(X) € FEPIX] I _ build v(x) € F&D [x]

Prover proves:
gates: (1) S(y)-[T(y) + T(wy)] +(1—=S(y))-T(y) T(wy) — T(w?y) = 0; VY € Qyates

inputs: (2) T(y) —v(y) =0 Vy€Q,
wires: (3) T(y) = T(W(y)) =0 (using prescribed perm. check) Vye€Q

output: (4) T(w3/¢I-1) =0 (output of last gate = 0)

The complete Plonk Poly-IOP (and snark)

Setup(C) = pp:=(S,W) and vp = (|S |and|W]) (untrusted)

Prover P(pp, x, w) Verifier V(vp, x)
build T(X) € FEPIX] I _ build v(x) € F&D [x]

Thm:The Plonk Poly-10OP is complete and knowledge sound,
assuming 7|C|/p is negligible

(eprint/2019/953)

Many extensions ...

Plonk proof: a short proof (O(1) commitments), fast verifier

The SNARK can be made into a zk-SNARK

Main challenge: reduce prover time
* Hyperplonk: replace O with {0,1}t (where t = log,|Q|)
 The polynomial T is now a multilinear polynomial in t variables

» ZeroTest is replaced by a multilinear SumCheck (linear time)

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and X on rows:

ul (vl |wl t1 |rl

Plonkish computation trace: (also used in AIR) w2 v2 w2 2 |
ud | v3 r3

An example custom gate: . &
us |v5 w5 t5 | r5

Vyel: v(yw)+w(y) t(y) —tlyw) =0 UG | V6 | w6 | t6 | 16
u/7 v/’ | w7 t7 |r7

All such gate checks are included in the gate check | 5 g | we s (=

A generalization: plonkish arithmetization

Plonk for circuits with gates other than + and X on rows: S(X)
ul vl | wl tl rl 0
Plonkish computation trace: (also used in AIR) w v w2l o
u3 | v3 r3 1
ud 4 | 0
uS |v5 | w5 | t5 r5 1
An example custom gate: u6 | v6 | wé (t6 |16 | O
u7 v/ w7 t7 r7 0
vy € Q: SX) [viyw) +w®) - t(y) —t(yw)] =0 "o s | ws 12 (s) 2

Selector poly S(X) can choose when to apply gate

THE END

