
CS 355: Applications of ZK
Brian Gu, 0xPARC Foundation



Brian and 0xPARC

INTRO



I’m Brian

● Been working in the ZK space since 2019 (learned about zkSNARKs at a 
workshop at Stanford!)

● Co-founder of 0xPARC
● Built Dark Forest, the first non-cryptocurrency application of zkSNARKs



0xPARC

● A foundation focused on bringing “programmable cryptography” technologies 
like ZK, FHE, MPC, … from theory to practice.

● Lots of companies and teams in the blockchain + applied ZK world came out 
of0xPARC (and ETHUni) programs and grants!



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces (likely to skip)

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Preamble: Programmable Cryptography



We like to think of zkSNARKs as 
“programmable” cryptography



First gen crypto → Second gen crypto

INTRO



(First-generation) cryptography
• Encryption and signatures

• “Securityˮ and “privacyˮ 



(First-generation) cryptography in the wild
Today, we already use cryptography everywhere without 
thinking twice – think https in the browser, password managers, 
E2E encrypted messaging like Whatsapp and Signal, …



Second-generation cryptography 
(“programmable cryptography”)



Programmable Cryptography
• Proofs for specific functions → proofs for any function

• Verification of specific claims → verification of any claim

• Special-purpose protocols → general-purpose “cryptography compilersˮ



Programmable Cryptography
Computation, data, and the operations we perform on them



Programmable Cryptography
A tool for building digital systems with powerful new properties; not just 
a tool for securing systems.







Example: zkSNARKs and membership proofs
Letʼs look at identity claims!



🥳 I know a private key
corresponding to Aliceʼs public key.

Example: zkSNARKs and membership proofs
Letʼs look at identity claims!



😏 I know a private key corresponding 
to Alice, Bob, OR Charlieʼs public keys.

Example: zkSNARKs and membership proofs
Letʼs look at identity claims!



😦 I know a private key corresponding to Alice, Bob, 
OR Charlieʼs public keys, and the other two [can/canʼt] 

prove that they did NOT generate this message.

Example: zkSNARKs and membership proofs
Letʼs look at identity claims!



• 😵 I know a private key corresponding to Alice, Bob, OR Charlieʼs 
public key…

• AND I either possess a signed attestation from one of David, Eve, 
Fred}, or during the block with header X, I knew the private key 
corresponding to an account with at least 32ETH…

• OR I possess a biometric that, when run through a neural network, 
hashes to the fingerprint hash of a non-sanctioned individual.

Example: zkSNARKs and membership proofs
Letʼs look at identity claims!



zkSNARKs turn math problems into 
programming tasks.



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Context: Group signatures

“I am one of Alice, Bob, or Charlie, and I attest to message M.”



Context: Group signatures

“I am one of Alice, Bob, or Charlie, and I attest to message M.”



Context: Group signatures



It’s way easier to do this now!

● zkmessage.xyz was built in a weekend
● Most of the work was on writing the webserver and frontend
● Demo



Setup: Hash functions and keypairs

Hash function: takes in some input, deterministically produces some 
“random-looking” output that the input can’t be reverse-engineered from.

H(secret) = public commitment

https://emn178.github.io/online-tools/sha256.html

We are going to use (secret, public commitment) as a keypair.

https://emn178.github.io/online-tools/sha256.html


Setup: Hash functions and keypairs

Everyone joining zkmessage.xyz locally generates a (secret, commitment) pair.

New users publish their commitment on Twitter, publicly associating their Twitter 
handle with their commitment. Because commitment is a hash of secret, secret 
acts like a private key / password for the account.



v0: group membership



Posting: what’s being proven?

Fill in a plain English sentence:

I am one of Alice, Bob, or Charlie

I know either Alice’s secret, Bob’s secret, or Charlie’s secret

I know a number X that hashes to Y1, or Y2, or Y3

I know a number X such that (H(X) - Y1) * (H(X) - Y2) * (H(X) - Y3) = 0

I know a number X, such that Y := H(X), and (Y - Y1) * (Y - Y2) * (Y - Y3) = 0



Posting: what’s being proven?

I know:

Private X, Y

Public Y1, Y2, Y3



Posting: what’s being proven?

User-provided Computed

Private

Public



Posting: what’s being proven?

I know:

Inputs Computed

Private X Y

Public Y1, Y2, Y3



Posting: what’s being proven?
I know:

Such that:

Y := H(X)

TEMP := (Y - Y1) * (Y - Y2)

TEMP * (Y - Y3) = 0

Inputs Computed

Private X Y, TEMP

Public Y1, Y2, Y3



v1: group membership + specific message



Posting: what’s being proven?
I know:

Such that:

Y := H(X)

TEMP := (Y - Y1) * (Y - Y2)

TEMP * (Y - Y3) = 0

Inputs Computed

Private X Y, TEMP

Public Y1, Y2, Y3, M



v2: group membership + specific message + 
can prove post facto you said it or didn’t say it



Posting: what’s being proven?
I know:

Such that:

Y := H(X)

TEMP := (Y - Y1) * (Y - Y2)

TEMP * (Y - Y3) = 0

T := H(S)

Inputs Computed

Private X, S Y, TEMP

Public Y1, Y2, Y3, M T

Downsides:
- Have to save S for every 

message you’ve ever 
sent

- Doesn’t allow you to 
disavow a message



Posting: what’s being proven?
I know:

Such that:

Y := H(X)

TEMP := (Y - Y1) * (Y - Y2)

TEMP * (Y - Y3) = 0

C := H(M, X)

Inputs Computed

Private X Y, TEMP

Public Y1, Y2, Y3, M C



Post-facto proving I was the author
I know:

Such that:

Y = H(X)

C = H(M, X)

Inputs Computed

Private X

Public M, Y, C



Post-facto proving I wasn’t the author
I know:

Such that:

Y = H(X)

IsEqual(C, H(M, X)) = 0

Inputs Computed

Private X

Public M, Y, C



v3: group membership + specific message + 
huge groups



Interlude: Merkle Trees



Merkle Proofs

● A protocol for:
○ Assigning a cryptographic ID to a set (“Merkle root”)
○ Generating short proofs that a given element is in the set

■ Specifically: proving that the element is in some hash chain that results in the set’s 
cryptographic ID



Posting: what’s being proven?
I know: Inputs Computed

Private X, MP Y

Public M, GID

Also, stored on / served by the backend:
Some registry that allows the verifier to 
retrieve (and check) what keys are in any 
given GID

Such that:
Y := H(X)
MERKLE_VERIFY(MP, Y, GID) == 1



v4: RSA group membership





Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Nullifiers



Building a polling application

Design requirements:

● Server should be able to verify that everyone voting is a member of the voting 
group (i.e. someone in a known list of public keys)

● Server shouldn’t be able to determine the identity behind any vote
● No one should be able to vote more than once



How to upgrade zkmessage.xyz to polling?



Zupoll



Zupoll demo



Proposal

ZKMessage, but there’s a question at the top, the group is locked, and all the 
messages are (vote_id) (i.e. 0 or 1).

Is this enough?



Posting: what’s being proven?

Fill in a plain English sentence:

I am one of Alice, Bob, or Charlie[, and I haven’t voted yet]

I know either Alice’s secret, Bob’s secret, or Charlie’s secret [, and I haven’t voted yet]

I know a number X that hashes to Y1, or Y2, or Y3[, and I haven’t voted yet]

I know a number X such that (H(X) - Y1) * (H(X) - Y2) * (H(X) - Y3) = 0[, and I haven’t voted yet]

I know a number X, such that Y := H(X), and (Y - Y1) * (Y - Y2) * (Y - Y3) = 0[, and I haven’t voted yet]



Idea: nullifiers

Compute and share a deterministic poster ID that is unlinkable to the original 
poster.

If someone posts twice, you won’t know who they are, but you’ll see the same 
deterministic poster ID come up.



pw1 pw2
pw3 pw4

pk1 = 
H(pw1) pk2

pk3
pk4

rootServer view



pw1 pw2
pw3 pw4

pk1 = 
H(pw1) pk2

pk3
pk4

rootServer view

Vote: YES

Nullifier1 = 
G(pw2)



Posting: what’s being proven?
I know:

Such that:

Y := H(X)

Z := G(X)

MERKLE_VERIFY(MP, Y, GID) == 1

Inputs Computed

Private X, MP Y, TEMP

Public GID, V Z



pw1 pw2
pw3 pw4

pk1 = 
H(pw1) pk2

pk3
pk4

rootServer view

Nullifier1 
= G(pw2)

Vote: NO

Nullifier2 
= G(pw3)

ZKP: I know 
pw3 such that 
G(pw3) = 
nullifier2, and 
H(pw3) is in 
merkle tree



pw1 pw2
pw3 pw4

pk1 = 
H(pw1) pk2

pk3
pk4

rootServer view

Nullifier1 
= G(pw2)

Nullifier2 
= G(pw3)



pw1 pw2
pw3 pw4

pk1 = 
H(pw1) pk2

pk3
pk4

rootServer view

Vote: YES

Nullifier3 
= G(pw3)

Nullifier2 
= G(pw3)

Nullifier1 
= G(pw2)



Vote: YES

Nullifier3 
= G(pw3) pw1 pw2

pw3 pw4

pk1 = 
H(pw1) pk2

pk3
pk4

rootServer view

Nullifier2 
= G(pw3)

Nullifier1 
= G(pw2)



Other usages of nullifiers



Zkmessage: anonymity to pseudonymity

Give everyone a persistent, pseudonymous identity.

● ID can be linked across messages.



ZCash and TornadoCash

Same trick can be used for anonymous digital currency systems.

Goal: make digital currency transfers without having to reveal who sender and 
recipient are.



Idea: Bitcoin mixers

Someone operates a Bitcoin address and says:

“send Bitcoins here and tell me out-of-band who you want me to send it to. I’ll 
keep track of everyone’s intended recipients and make all the transfers at once, 
every 24 hours”



Idea: Bitcoin mixers

Someone operates a Bitcoin address and says:

“send Bitcoins here and tell me out-of-band who you want me to send it to. I’ll 
keep track of everyone’s intended recipients and make all the transfers at once, 
every 24 hours”

Failure modes?



0 0
0 0

H(0)
H(0)

H(0)
H(0)

rootContract view

H(H(0), H(0)) H(H(0), H(0))



pw1 pw2
pw3 0

dn1 = 
H(pw1) dn2

dn3
H(0)

rootContract view

nullifier1



pw1 pw2
pw3 pw4

dn1 = 
H(pw1) dn2

dn3
dn4

rootContract view

nullifier1



pw1 pw2
pw3 pw4

dn1 = 
H(pw1) dn2

dn3
dn4

rootContract view

Nullifier1 
= G(pw2)



pw1 pw2
pw3 pw4

dn1 = 
H(pw1) dn2

dn3
dn4

rootContract view

Nullifier1 
= G(pw2)

Nullifier2 
= G(pw3)

ZKP: I know 
pw3 such that 
G(pw3) = 
nullifier2, and 
H(pw3) is in 
merkle tree



pw1 pw2
pw3 pw4

dn1 = 
H(pw1) dn2

dn3
dn4

rootContract view

Nullifier1 
= G(pw2)

Nullifier2 
= G(pw3)



pw1 pw2
pw3 pw4

dn1 = 
H(pw1) dn2

dn3
dn4

rootContract view

Nullifier3 
= G(pw3)

Nullifier2 
= G(pw3)

Nullifier1 
= G(pw2)



pw1 pw2
pw3 pw4

dn1 = 
H(pw1) dn2

dn3
dn4

rootContract view

Nullifier3 
= G(pw3)

Nullifier2 
= G(pw3)

Nullifier1 
= G(pw2)



Understanding check

What happens if we make a proof that inputs a value of R that isn’t the actual 
deposit note tree root?

● Will the proof verify?
● Will the protocol break?



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth









Why do you need ZK to build a (complex) 
decentralized game?



MOTIVATION: COMPLETE AND INCOMPLETE INFORMATION



COMPLETE INFORMATION GAMES



INFORMATION ASYMMETRY



INFORMATION ASYMMETRY



INFORMATION ASYMMETRY



Player Network

Hidden information on the blockchain



s1 C1
C1 = Commit(s1)

Player Network

Hidden information on the blockchain



s1 C1
C1 = Commit(s1)

Player Network

P1 = Proof(s1,C1)
P1

Hidden information on the blockchain



s1 C1

s2 C2
C2 = Commit(s2)

C1 = Commit(s1)
Player Network

P1 = Proof(s1,C1)
P1

Hidden information on the blockchain



s1 C1

s2 C2
C2 = Commit(s2)

P12 = Proof(s1,s2,C1,C2)

C1 = Commit(s1)

P12

Player Network

P1 = Proof(s1,C1)
P1

Hidden information on the blockchain



I’m drawing a card from a deck and adding it to my hand.

I’m not going to show you my hand, but I can prove that I drew the card at 
random from a properly-shuffled deck. 

zkSNARKs



I’m moving my knight from secret location A to secret location B.

I’m not going to tell you where A and B are, but I can prove that they are an 
L-shape away from each other.

Zero-Knowledge Fog of War



Game Construction

● Everyone lives on large 2-D grid



Game Construction

● Everyone lives on large 2-D grid
● For location (x, y), hash(x,y) is location’s public address. 

○ The coordinates themselves are the location’s private address.



Game Construction

● Everyone lives on large 2-D grid
● For location (x, y), hash(x,y) is location’s public address. 
● Locations (x,y) such that 

hash(x,y) < DIFFICULTY_THRESHOLD

have habitable planets. All other spaces are empty.



Game Construction

● Everyone lives on large 2-D grid
● For location (x, y), hash(x,y) is location’s public address. 
● Locations (x,y) such that 

hash(x,y) < DIFFICULTY_THRESHOLD

have habitable planets. All other spaces are empty.

● Player-controlled units live on planets the player owns. 



Game Construction: State

Public State

● Which public addresses are owned, who owns them, and their populations



Game Construction: State

Public State

● Which public addresses are owned, who owns them, and their populations

Private State

● Private addresses (x,y) of player’s planets
● Information learned from computation



function initializePlayer(uint planetId, uint claimedDist, Proof zkProof)

Initialize a player at coordinates with ID planetId. Also checks that these 
coordinates are within some claimed distance from the origin.

Player Action: Init



function initializePlayer(uint planetId, uint claimedDist, Proof zkProof)

zkProof: I know some coordinates (x, y) such that

● hash(x, y) = planetId

● x^2 + y^2 < claimedDist^2

Player Action: Init



function move(uint fromPlanetId, uint toPlanetId, uint worldRadius, uint 
maxDist)

Move forces from fromPlanetId to toPlanetId. 
● Check that both planets are “in bounds”
● Pay some cost depending on maxDist between the two planets.

Player Action: Move



function move(uint fromPlanetId, uint toPlanetId, uint worldRadius, uint 
maxDist)

zkProof: I know some coordinates (x1, y1) and (x2, y2) such that

● hash(x1, y1) = fromPlanetId
● hash(x2, y2) = toPlanetId
● x2^2 + y2^2 < worldRadius^2
● (x1-x2)^2 + (y1-y2)^2 < distMax^2

Player Action: Move



Demo



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Escrow



Escrow



Escrow



Escrow



Escrow



Escrow



Escrow



Escrow



Escrow

?????



On-Chain Marketplace

● Toy example: Bob wants to buy the preimage of 0x98b3f001 from Alice



On-Chain Marketplace

Escrow contract checks that both buyer and seller have fulfilled conditions:

● Bob has locked up $$ in escrow
● Alice has published the data the buyer wants

Problem:

● The only way that the contract can check seller’s condition is if it can read the 
seller’s data!



Solution

● Alice publishes data encrypted with buyer’s public key
● Alice also publishes a zkSNARK proof that this ciphertext is the correct data, 

encrypted with Bob’s public key
● Smart contract only releases funds to Alice if zkSNARK proof verifies

https://github.com/nulven/EthDataMarketplace - Nick Ulven (2021)

https://github.com/nulven/EthDataMarketplace


Solution

Public Input: 

● Buyer public key pk
● Ciphertext c
● Commitment h 

Private Input:

● Secret data s

Proves:

● Hash(s) = h (or property(s) = h)
● Enc(s, pk) = c



Nightmarket



Nightmarket

https://blog.zkga.me/nightmarket - 0xSage, xyz_pierre (2022)

https://nightmart.xyz/

https://blog.zkga.me/nightmarket
https://nightmart.xyz/


Nightmarket



Nightmarket



Nightmarket



What else can we sell?

● A Bitcoin, Ethereum, SSH, DKIM private key
● A smart contract exploit (or program exploit more generally)
● A picture of a bird
● …



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Pattern #1: privacy on decentralized systems



Privacy on decentralized systems

● Sensitive social, financial, or professional data
○ e.g. private bids in an auction

● My ownership of a crypto token
○ e.g. private cryptocurrency

● A private hand of cards in a game
○ e.g. Dark Forest



Player Network

Hidden information on the blockchain



s1 C1
C1 = Commit(s1)

Player Network

Hidden information on the blockchain



s1 C1
C1 = Commit(s1)

Player Network

P1 = Proof(s1,C1)
P1

Hidden information on the blockchain



s1 C1

s2 C2
C2 = Commit(s2)

C1 = Commit(s1)
Player Network

P1 = Proof(s1,C1)
P1

Hidden information on the blockchain



s1 C1

s2 C2
C2 = Commit(s2)

P12 = Proof(s1,s2,C1,C2)

C1 = Commit(s1)

P12

Player Network

P1 = Proof(s1,C1)
P1

Hidden information on the blockchain



Privacy on decentralized systems



Privacy on decentralized systems



Privacy on decentralized systems



Privacy on decentralized systems



Privacy on decentralized systems Social, professional, medical, scientific, 
etc.?



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



Pattern #2: accelerating blockchains



Blockchains

Programmable blockchains are decentralized networks for running computations.

The security of a blockchain comes from the fact that everyone on the network 
runs and checks all the computations!



Blockchains

Programmable blockchains are decentralized networks for running computations.

The security of a blockchain comes from the fact that everyone on the network 
runs and checks all the computations!

This is also where we run into performance bottlenecks…



zkSNARKs are like “computational wormholes”

f(x) = y

v(f, x, y, pi) = true

x

y



zkSNARKs are like “computational wormholes”

ETH_TRANSITION(x, delta) = y

v(x, delta, y, pi) = true

x

y



Co-processors: Verifiable Computation

What other specific (expensive) computations might we want a decentralized 
network to run?



Co-processors: Verifiable Computation and ZKML

In the future, suppose a neural network or LLM is run to make a judgement 
on-chain.

● Ex: running a financial strategy, attesting to the sentiment of today’s news

Running a neural net is expensive! Who runs the LLM? Are they running it 
correctly? What if the LLM’s model parameters are proprietary?

zkSNARKs enable one person on the network to run the computation, and 
everyone to get (and trust) the result.



Co-processors: Verifiable Computation and ZKML



Verifiable Computation

Before any caseload: OpenAI commits to the model commit(model) = C

Then, on any run, proves…



Verifiable Computation

Public inputs:

● Input x
● Claimed output y
● Model commitment c

Private inputs:

● Model M

Proves:

● M(x) = y
● commit(M) = c



Agenda

● Preamble: zkSNARKs are “programmable” cryptography
● Part 1: How to use zkSNARKs in apps

○ Group / ring signatures
○ Anonymous polling / private cryptocurrency
○ Dark Forest
○ Information marketplaces

● Part 2: Three categories of zkSNARK applications
○ Adding hidden information to decentralized systems
○ Speeding up blockchains
○ Language of Truth



General problem: someone on the 
Internet wants to ask someone on the 

Internet for some data



Are you Brian?

Digital Communication Today



Digital Communication Today

Please respond 

for me 🥺



Digital Communication Today

Yea, heʼs Brian



Digital Communication Today

Whatʼs your credit score?



Digital Communication Today

Please respond 

for me 🥺



Digital Communication Today

*gathers your data*



His credit score is 740

Digital Communication Today



Given an arbitrary function f, 
compute for me f(your personal data)

Digital Communication Today



Digital Communication Today

Please respond 

for me 🥺



HEREʼS WHAT YOU 
NEED TO KNOW 
ABOUT BRIAN

CASE 1



CASE 2

OPTIN NO ALWD

TAT PI 
DO 

NO IS

TAT D IS PLI 

AMGS 10 POVD 

WO DN’T AV  

LINSIG AGEN







Are you Brian?

The World with Programmable Cryptography



Are you Brian?

The World with Programmable Cryptography

Yes!



Are you Brian?

The World with Programmable Cryptography

Yes!



Are you Brian?

The World with Programmable Cryptography

Yes!

*sad Zuck noises*



Are you a CS355 student?

The World with Programmable Cryptography



The World with Programmable Cryptography

Yes!

Are you a CS355 student?



The World with Programmable Cryptography

Whatʼs your credit score?



The World with Programmable Cryptography

(gather my data)



The World with Programmable Cryptography

740

Whatʼs your credit score?



The World with Programmable Cryptography

*insert arbitrary query here*



The World with Programmable Cryptography

For arbitrary f, compute for 
me f(data you have)



The World with Programmable Cryptography

(gather my data)

For arbitrary f, compute for 
me f(data you have)

*answer*



The World with Programmable Cryptography

(gather my data)

For arbitrary f, compute for 
me f(data you have)

*answer*





Examples



Examples



Language of Truth

The high-level goal: instead of relying on digital middlemen to answer queries or 
share data, Internet users can do this themselves!



“Language of Truth” Applications

● Move your likes, friends, followers, history, and reputation seamlessly across 
Facebook, Twitter, Reddit, Instagram, etc.

● Replace Equifax, Transunion, or Experian with cryptographic protocols; your 
smartphone can honestly answer any query about your financial history in a 
privacy-preserving way

● Universal + interoperable digital identity standards accepted by all websites, 
businesses, government agencies, universities, and more.



• A single Protocol for all of your social data, digital identity, financial 
history, professional interactions, medical data, ….

• Every website on the Internet handles and outputs data in a way that 
is compatible with the Universal Protocol

• Every website on the Internet can verify, understand, and consume 
data conforming to the protocol

A Universal Protocol



At 0xPARC, we work on:

● Research to advance the underlying cryptographic protocols.
● Prototyping and benchmarking new cryptographic schemes.
● Building open-source infrastructure for progcrypto applications.
● Developing and deploying the first applications of new crypto tech.

Reach out to brian@0xparc.org to learn more!

Interested in getting involved?

mailto:brian@0xparc.org


Thank You!


