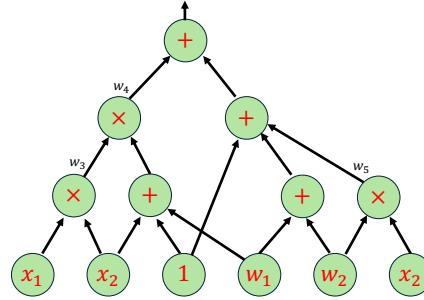


Assignment #2

Due: 11:59pm on Wed, Apr. 30, 2025, on Gradescope (each answer on a separate page)

Problem 1. (*R1CS*) Consider the following arithmetic circuit $\mathcal{C}(x_1, x_2, w_1, w_2)$ over a finite field \mathbb{F} :



Construct an R1CS program $A, B, C \in \mathbb{F}^{\ell \times m}$ that accepts exactly the same pairs $(x_1, x_2) \in \mathbb{F}^2$ as the circuit \mathcal{C} above.

Hint: It is sufficient to use only $\ell = 3$ constraints (i.e., the matrices A, B, C have only three rows). Try to define $\bar{z} = (1, x_1, x_2, w_1, w_2, w_3, w_4, w_5) \in \mathbb{F}^8$, where w_3, w_4, w_5 are defined as the output of the multiplication gates in the figure above.

Problem 2. (*An R1CS for a range check*) Let \mathbb{F}_p be a prime finite field, where $p \gg 2^\ell$. Design an R1CS program $A, B, C \in \mathbb{F}_p^{k \times m}$ that accepts exactly the set of elements $\{0, 1, \dots, 2^\ell - 1\} \subset \mathbb{F}_p$. More precisely, your R1CS program A, B, C takes only one public input $x_1 \in \mathbb{F}_p$, and the language accepted by the program is $L(R_{A,B,C}) = \{0, 1, \dots, 2^\ell - 1\}$. Your program should have at most $\ell + 1$ constraints.

Hint: Observe that $x \in \mathbb{F}_p$ satisfies $0 \leq x < 2^\ell$ if and only if the binary representation of x has at most ℓ bits. Try to provide the bits in the binary representation of x as the witness to your R1CS program.

Discussion: Your R1CS program can be used to construct a non-interactive zero-knowledge proof that a given ElGamal ciphertext is an encryption of an integer in the interval $[0, 2^\ell)$. We saw in the lecture the tools needed to use your R1CS program to derive a Σ -protocol for this relation. This Σ -protocol can be made non-interactive using the Fiat-Shamir transformation. The proof size is $\ell + 2$ field elements. Using Bulletproofs one can give a proof of size $O(\log \ell)$ for this relation.

Problem 3. (*Collision resistance of the Pedersen hash*) Let \mathbb{G} be a cyclic group of prime order q and let $g_1, \dots, g_n \xleftarrow{\text{R}} \mathbb{G}$ be generators of \mathbb{G} . Define a hash function $H : \mathbb{Z}_q^n \rightarrow \mathbb{G}$ as

$$H(\alpha_1, \dots, \alpha_n) := g_1^{\alpha_1} \cdots g_n^{\alpha_n}.$$

Our goal is to prove that if DLOG is difficult in \mathbb{G} then H is collision resistant. Suppose towards a contradiction that there is an efficient algorithm \mathcal{A} that takes as input (g_1, \dots, g_n) , and outputs

a collision for H . That is, $\mathcal{A}(g_1, \dots, g_n)$ outputs $\bar{\alpha}, \bar{\beta} \in \mathbb{Z}_q^n$ such that

$$g_1^{\alpha_1} \cdots g_n^{\alpha_n} = H(\bar{\alpha}) = H(\bar{\beta}) = g_1^{\beta_1} \cdots g_n^{\beta_n}.$$

Show that \mathcal{A} can be used to efficiently compute discrete log in \mathbb{G} , which contradicts the assumption the DLOG is difficult in \mathbb{G} .

Hint: Your goal is to construct an efficient algorithm \mathcal{B} that takes as input generators $u, v \in \mathbb{G}$ and outputs $\delta \in \mathbb{Z}_q$ such that $v = u^\delta$. Your algorithm $\mathcal{B}(u, v)$ could operate as follows: (i) sample random $\rho_1, \dots, \rho_n \leftarrow \mathbb{Z}_q$ and $\nu_1, \dots, \nu_n \leftarrow \mathbb{Z}_q$, (ii) set $g_i := u^{\rho_i} v^{\nu_i}$ for $i = 1, \dots, n$, (iii) run $\mathcal{A}(g_1, \dots, g_n)$, and (iv) use the resulting collision $\bar{\alpha}, \bar{\beta} \in \mathbb{Z}_q^n$ to compute the required $\delta \in \mathbb{Z}_q$. Make sure to explain why your \mathcal{B} will output δ with high probability over the choice of $\bar{\rho}, \bar{\nu}$.