CS251 Fall 2022
(cs251.stanford.edu)

Ethereum: mechanics

Dan Boneh

Note: HW#2 posted tonight. Due Oct. 24.

New topic: limitations of Bitcoin

Recall: UTXO contains (hash of) ScriptPK
* simple script: indicates conditions when UTXO can be spent

Limitations:
* Difficult to maintain state in multi-stage contracts

* Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.
* Desired policy: can only transfer 2BTC per day out of my wallet

An example: DNS

Domain name system on the blockchain: [google.com — IP addr]

Need support for three operations:
* Name.new(OwnerAddr, DomainName): intent to register

* Name.update(DomainName, newVal, newOwner, OwnerSig)
 Name.lookup(DomainName)

Note: also need to ensure no front-running on Name.new()

A broken implementation

Name.new() and Name.upate() create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG VERIFY
<DNS> <DomainName> <IPaddr> <1> a—

only owner can “spend” this UTXO to update domain data)

Contract: (should be enforced by miners) verity
sig is valid

1

if domain google.com is registered,

. . ensure top
no one else can register that domain

of stack is 1

Problem: this contract cannot be enforced using Bitcoin script

NameCoin: a fork of Bitcoin that implements this contract
(see also the Ethereum Name Service -- ENS)

Can we build a blockchain that natively supports generic
contracts like this?

= Ethereum ‘

N4

Ethereum: enables a world of applications

A world of Ethereum Decentralized apps (DAPPs)

New coins: ERC-20 standard interface
DeFi: exchanges, lending, stablecoins, derivatives, etc.
Insurance

DAOs: decentralized organizations

stateofthedapps.com, dapp.review

Bitcoin as a state transition system

world state updated world state
UTXO, , UTXO,
e, uTxo, Input . UTXo, -

Tx: UTXO, — UTXO,

Bitcoin rules:

S X |[—=>S

I:bitcoin

S: set of all possible world states, s, € S genesis state
I: set of all possible inputs

Ethereum as a state transition system

Much richer state transition functions

= onhe transition executes an entire program

Ethereum updated Ethereum
world state world state

input

TX

Running a program on a blockchain (DAPP)

... blolhain ...

state, Tx1 state; TTx2 e

program
code N create a DAPP

compute layer (execution chain): The EVM

The Ethereum system

Proof-of-Stake consensus

Block

15764027

15764026

15764025

15764024

15764023

15764022

15764021

15764020

Age

4 secs ago

16 secs ago

28 secs ago

40 secs ago

52 secs ago

1 min ago

1 min ago

1 min ago

Txn

91

26

165

188

18

282

295

71

Fee Recipient

Fee Recipient: 0x467...263

Oxedc7ec654e305a38ffff...

bloXroute: Max Profit Bui...

Lido: Execution Layer Re...

Fee Recipient: OxeBe...Acf

0xd4e96ef8eee8678dbff...

0xbb3afde35eb9f5feb53...

Fee Recipient: 0x6d2...766

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives
Tx fees for block
(along with other rewards)

A bit about the beacon chain (Eth2 consensus layer)

To become a validator: stake (lock up) 32 ETH ... or use Lido.

Validators: - sign blocks to express correctness (finalized once enough sigs)
- occasionally act as block proposer (chosen at random)
- correct behavior = issued new ETH every epoch (32 blocks)

- incorrect behavior = slashed (jots of details)

. Staked ETH el
© (27M) J—

_o e s
i’

Jp———

wwwww

The economics of staking

Validator locks up 32 ETH. Oct 2023: 27M ETH staked (total)

Annual validator income (an example): ()
* |ssuance: 1.0ETH ey, (PASE_REWARD_FACTOR)
e Txfees: 0.4ETH ‘ .
« MEV: 0.4 ETH ONSESTIC

e Total: 1.8 ETH (5.6% return on 32 ETH staked)

In practice: staking provider (e.g., Lido) takes a cut of the returns

The Ethereum system

update _ _
worl?d state compute layer (execution chain)

sends transactions to compute layer

|notifynew_payload (payload) [Engine API]
]

32 blocks
in an epoch

consensus layer (beacon chain)

The Ethereum Compute Layer:

The EVM

Ethereum compute layer: the EVM

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) externally owned accounts (EOA):
controlled by ECDSA signing key pair (pk,sk).

sk: signing key known only to account owner

(2) contracts: controlled by code.
code set at account creation time, does not change

Data associated with an account

Account data Owned (EOA) Contracts

address (computed): H(pk) H(CreatorAddr, CreatorNonce)
code: 1 CodeHash
storage root (state): L StorageRoot
balance (in Wei): balance balance (1 Wei = 10718 ETH)
nonce: nonce nonce

-

(#Tx sent) + (Haccounts created): anti-replay mechanism

Account state: persistent storage

Every contract has an associated storage array S[]:

S[0], S[1], ... , S[2%°®-1]: each cell holds 32 bytes, init to O.

Account storage root: Merkle Patricia Tree hash of S]]
e Cannot compute full Merkle tree hash: 22°° leaves

R 0_- o,

5{000] = a 0 — 1 0 time to compute
S[010] =b — —1Lb root hash:
S[011] =c root 1 <2X S|
S[110] =d 1 110,d 1 1L¢C |S| = # non-zero cells

State transitions: Tx and messages

Transactions: signed data by initiator

To: 32-byte address of target (0 — create new account)

From, [Signature]: initiator address and signature on Tx (if owned)
Value: # Wei being sent with Tx (1 wei =108 ETH)

Tx fees (eip 1559): gasLimit, maxFee, maxPriorityFee (later)

if To=0: create new contract code = (init, body)

if To#0: data (what function to call & arguments)

nonce: must match current nonce of sender (prevents Tx replay)

chain_id: ensures Tx can only be submitted to the intended chain

State transitions: Tx and messages

Transaction types:

owned — owned: transfer ETH between users
owned — contract: call contract with ETH & data

Example (vlock #10993504)

From To msg.value Tx fee (ETH)
Oxadec1125ce9428ae5... - [3 0x2cebe81fe0dcd220e... 0 Ether 0.00404405
Oxba272f30459a119b2... - B Uniswap V2: Router 2 0.14 Ether 0.00644563
0x4299d864bbda0fe32... ~ B Uniswap V2: Router 2 0.00716578
0x4d1317a2a98cfead ... " 0xc59f33af5f4a7c8647... 0.001239
0x29ecaa773f052d14e... - [CryptoKitties: Core 0 Ether 0.00775543
0x63bb46461696416fa... -~ @ Uniswap V2: Router 2 0.00766728
0xde70238aef7a35abd... - (2 Balancer: ETH/DOUGH... 0 Ether 0.00261582
0Ox69acal0fe1394d535f... - [3 0x837d03aa7fc09b8be... 0 Ether 0.00259936

0xe2f5d180626d29e75... - [3 Uniswap V2: Router 2 0 Ether 0.00665809

Messages: virtual Tx initiated by a contract

Same as Tx, but no signature (contract has no signing key)

contract = owned: contract sends funds to user
contract — contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx processed. Composability!

Tx from owned addr — contract — another contract
L; another contract — different owned

State

14c5f8ba: owned
- 1024 eth
bb75a980: contract
- 5202 eth

if 'contract.storage[tx.data[0]):
contract.storage[tx.data[0]] = tx.data[1]

10, 235235, 0, ALICE ...

% Value:
10 eth

892bf92f: contract
-0 eth

send(tx.value / 3, contract.storage[0])
send(tx.value / 3, contract.storage[1])
send(tx.value / 3, contract.storage(2])

[ALICE, BOB, CHARLIE]

4096ad65: owned
- 77 eth

Example Tx

Transaction

From:
14c5f8ba

To:
bb75a980

Data:
2,
CHARLIE

Sig:
30452fdedb3d
f7959f2ceb8al

world state (four accounts)

State’

14c5f8ba:
- 1014 eth

bb75a980:

if !cunlracl.slorage[tmdalalol]:

contract.storage[tx.data[0]] = tx.data[1]

[0, 235235(CHARLIE)ALICE i

892bf92f:
-0 eth

send(tx.value / 3, contract.storage[0])
send(tx.value / 3, contract.storage(1])
send(tx.value / 3, contract.storage[2])

[ALICE, BOB, CHARLIE]

4096ad65:
- 77 eth

updated world state

An Ethereum Block

Block proposer creates a block of n Tx: (from Txs submitted by users)
e To produce a block do:

* fori=1,...,n: execute state change of Tx, sequentially
(can change state of >n accounts)

* record updated world state in block

Other validators re-execute all Tx to verify block =
sign block if valid = enough sigs, epoch is finalized.

Block header data (simplified)

(1) consensus data: proposer ID, parent hash, votes, etc.
(2) address of gas beneficiary: where Tx fees will go
(3) world state root: updated world state
Merkle Patricia Tree hash of all accounts in the system
(4) Tx root: Merkle hash of all Tx processed in block
(5) Tx receipt root: Merkle hash of log messages generated in block

(5) Gas used: used to adjust gas price (target 15M gas per block)

The Ethereum blockchain: abstractly

|

accts. accts.
Q - A

JUd
updated TX log updated TX log
world messages world messages

state state

Amount of memory to run a node

=1.3TB

1100
X —

O 1000
900

800
1. Jun 1. Jul 1. Aug 1. Sep 1. Oct

TimelLine

ETH total blockchain size (archival): 16 TB (Oct. 2023)

An example contract: NameCoin

contract nameCoin { // Solidity code (next lecture)

struct nameEntry {
address owner; // address of domain owner
bytes32 value; //IP address

}

// array of all registered domains
mapping (bytes32 => nameEntry) data;

An example contract: NameCoin

function nameNew(bytes32 name) { A

// registration costs is 100 Wei

if (data[name] == 0 && msg.value >=100) {
data[name].owner = msg.sender //record domain owner
emit Register(msg.sender, name) // log event

I3

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.

An example contract: NameCoin

function nameUpdate(
bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from domain owner,

// and update cost of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >=10) {
data[name].value = newValue; // record new value
data[name].owner = newOwner; // record new owner

1

An example contract: NameCoin

function nameLookup(bytes32 name) {

return data[name];

}

} // end of contract

Used by other contracts

Humans do not need this
(use etherscan.io)

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

= compile to EVM bytecode
(some projects use WASM or BPF bytecode)

= validators use the EVM to execute contract bytecode
in response to a Tx

The EVM

Stack machine (like Bitcoin) but with JUMP

max stack depth = 1024
program aborts if stack size exceeded; block proposer keeps gas
contract can create or call another contract

In addition: two types of zero initialized memory

Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

e Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

LOGO(data): write data to log

see https://www.evm.codes

Every instruction costs gas, examples:

SSTORE addr (32 bytes), value (32 bytes)
* zero — non-zero: 20,000 gas
* Nnon-zero — non-zero: 5,000 gas

* non-zero — zero: 15,000 gas

(for a cold slot)

refund (example)

Refund is given for reducing size of blockchain state

CREATE : 32,000 + 200 X (code size) gas;

CALL gas, addr, value, args

SELFDESTRUCT addr: kill current contract (5000 gas)

Gas calculation

Why charge gas?
e Tx fees (gas) prevents submitting Tx that runs for many steps.

* During high load: block proposer chooses Tx from mempool
that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)

* Every Tx contains a gasPrice 'bid” (gas = Wei conversion price)

* Producer chooses Tx with highest gasPrice (max sum(gasPrice X gasLimit))
= not an efficient auction mechanism (first price auction)

Gas prices spike during congestion

GasPrice in Gwei:
86 Gwei =86 X 10° ETH

JAN 22 APR 22 JUL 22 0CT 22

Average Tx fee in USD ———congestion

JAN 22 APR '22 JUL 22 0CT "22

Gas calculation: EIP1559 (since 8/2021)

EIP1559 goals (informal):

e users incentivized to bid their true utility for posting Tx,
* block proposer incentivized to not create fake Tx, and

* disincentivize off chain agreements.

[Transaction Fee Mechanism Design, by T. Roughgarden, 2021]

Gas calculation: EIP1559

Every block has a “baseFee”:
the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

» earlier blocks at gas limit (30M gas) = base fee goes up 12.5% | | croojate

" in between

e earlier blocks empty = base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) = base fee does not change

Gas calculation

EIP1559 Tx specifies three parameters:

e gasLimit: max total gas allowed for Tx

* maxFee: maximum allowed gas price (max gas — Wei conversion)
 maxPriorityFee: additional “tip” to be paid to block proposer

Computed gasPrice bid:

gasPrice — min(maxFee, baseFee + maxPriorityFee)

Max Tx fee: gasLimit X gasPrice

Gas calculation (informal)

gasUsed « gas used by Tx

Send gasUsed X (gasPrice — baseFee) to block proposer

BURN gasUsed X baseFee V(m

= total supply of ETH can decrease

Gas calculation

) if gasPrice < baseFee: abort
) If gasLimit X gasPrice < msg.sender.balance: abort
(3) deduct gasLimit X gasPrice from msg.sender.balance
)
)

set Gas + gasLimit
execute Tx: deduct gas from Gas for each instruction
if at end (Gas < 0): abort, Tx is invalid (proposer keeps gasLimit X gasPrice)

(6) Refund Gas X gasPrice to msg.sender.balance

(7) gasUsed « gasLimit — Gas M(x\
(7a) BURN gasUsed X baseFee .
(7b) Send gasUsed X (gasPrice — baseFee) to block producer

Example baseFee and effect of burn

15763570
15763569
15763568
15763567
15763566
15763565

21,486,058
14,609,185
25,239,720
29,976,215
14,926,172
1,985,580

baseFee < 16Gwei
baseFee > 16Gwei

16.92
(<15M) 16.97
15.64
13.90
(<15M) 13.91
(<15M) 15.60

beacon chain

0.363
0.248
0.394
0.416
0.207
0.031

-

= gasUsed X baseFee

= hew issuance > burn = ETH inflates
= new issuance <burn = ETH deflates

Why burn ETH ???

Recall: EIP1559 goals (informal)

e users incentivized to bid their true utility for posting Tx,
* block proposer incentivized to not create fake Tx, and

* disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to block producer):

= in periods of low Tx volume proposer would try to increase
volume by offering to refund the baseFee off chain to users.

Note: transactions are becoming more complex

Total Gas Usage

Evolution of the total gas used by the Ethereum network per day

100G

Gas Usage

50G

2016 2017 2018 2019 2020 2021 2022

Gas usage is increasing = each Tx takes more instructions to execute

END OF LECTURE

Next lecture: writing Solidity contracts

