
Incentives and Accountability in Consensus:
Proof-of-Stake

CS251 Fall 2023
(cs251.stanford.edu)

Ertem Nusret Tas

Recap: Security for SMR

Let 𝐿𝑂𝐺!" denote the log learned by a client 𝑖 at time 𝑡.
Then, a secure SMR protocol satisfies the following guarantees:

Safety (Consistency):

• For any two clients 𝑖 and 𝑗, and times 𝑡 and 𝑠: either 𝐿𝑂𝐺!" ≼ 𝐿𝑂𝐺#
$ is

true or 𝐿𝑂𝐺#
$ ≼ 𝐿𝑂𝐺!" is true or both (Logs are consistent).

Liveness:
• If a transaction 𝑡𝑥 is input to an honest replica at some time 𝑡, then for

all clients 𝑖, and times 𝑠 ≥ 𝑡 + 𝑇%&'(: 𝑡𝑥 ∈ 𝐿𝑂𝐺#".

No double
spend

No
censorship

Similar to agreement!

Similar to validity and termination!

• Alice’s ledger at time 𝑡!
contains 𝑡𝑥!:

𝐿𝑂𝐺"!
#$%&' =< 𝑡𝑥! >

• Alice thinks it received
Eve’s payment and sends

over the car.

Recap: Why is safety important?
Suppose Eve has a UTXO.
• 𝑡𝑥!: transaction spending Eve’s UTXO to pay to car vendor Alice.
• 𝑡𝑥(: transaction spending Eve’s UTXO to pay to car vendor Bob.

𝑡! = 0 𝑡" 𝑡#
• Bob’s ledger at time 𝑡(

contains 𝑡𝑥(:
𝐿𝑂𝐺""

)*+ =< 𝑡𝑥(>
• Bob thinks it received

Eve’s payment and sends
over the car.

Eve

Alice Bob

𝑈𝑇𝑋𝑂,-'

spent to
pay Alice

spent to
pay Bob

• Alice’s ledger at time 𝑡!
contains 𝑡𝑥!:

𝐿𝑂𝐺"!
#$%&' =< 𝑡𝑥! >

• Alice thinks it received
Eve’s payment and sends

over the car.

Recap: Why is safety important?
Suppose Eve has a UTXO.
• 𝑡𝑥!: transaction spending Eve’s UTXO to pay to car vendor Alice.
• 𝑡𝑥(: transaction spending Eve’s UTXO to pay to car vendor Bob.

𝑡! = 0 𝑡" 𝑡#
• Bob’s ledger at time 𝑡(

contains 𝑡𝑥(:
𝐿𝑂𝐺""

)*+ =< 𝑡𝑥(>
• Bob thinks it received

Eve’s payment and sends
over the car.

Eve

Alice Bob

𝑈𝑇𝑋𝑂,-'

spent to
pay Alice

spent to
pay Bob

Double-spend → inconsistent ledgers → safety violation!
Safety → no double-spend!

safety violation

Recap of the Last Lecture

• Sybil Attack
• Adversary impersonates many different nodes to outnumber the honest nodes.

• Sybil Resistance
• Proof-of-Work, Proof-of-Stake, and Proof-of-Space.

• Bitcoin and Nakamoto Consensus
• Longest chain rule + 𝑘-deep confirmation rule

• Consensus in the Internet Setting
• Sybil resistance and dynamic availability: liveness under changing participation.

• Security for Bitcoin
• Nakamoto’s private attack and forking

• Incentives in Bitcoin

Incentives in Bitcoin
How does Bitcoin incentivize miners to participate in consensus and mine new blocks?
• Block rewards – currently 6.25 Bitcoin – halved every 210,000 blocks – halved ~4 years
• Transaction fees

How does a miner capture these rewards?
• The first transaction in a Bitcoin block is called the coinbase transaction.
• The coinbase transaction can be created by the miner.
• Miner uses it to collect the block reward and the transaction fees.

Can these incentives guarantee honest participation?
• Not necessarily!
• Selfish mining attack!
• (See the optional slides if interested in the details.)

>0 BTC
earned

Incentives in Bitcoin

Genesis 𝑡𝑥𝑠

𝑡𝑥#
𝑡𝑥$
𝑡𝑥%
𝑡𝑥&

Transaction fees:
𝑡𝑥!: 4 BTC
𝑡𝑥(: 3 BTC
𝑡𝑥.: 2 BTC
𝑡𝑥/: 1 BTC

+0 BTC
earnedMiner A

Miner B

…

𝑘 + 1-deep

Incentives in Bitcoin

Genesis 𝑡𝑥𝑠

𝑡𝑥#
𝑡𝑥$
𝑡𝑥%
𝑡𝑥&

𝑡𝑥#

Transaction fees:
𝑡𝑥!: 4 BTC
𝑡𝑥(: 3 BTC
𝑡𝑥.: 2 BTC
𝑡𝑥/: 1 BTC

+0 BTC
earned

>0 BTC
earned

Miner A

Miner B

…

𝑘 + 1-deep

…

Incentives in Bitcoin

Genesis 𝑡𝑥𝑠

𝑡𝑥#
𝑡𝑥$
𝑡𝑥%
𝑡𝑥&

𝑡𝑥#

Transaction fees:
𝑡𝑥!: 4 BTC
𝑡𝑥(: 3 BTC
𝑡𝑥.: 2 BTC
𝑡𝑥/: 1 BTC

Total MEV: 10 BTC

𝑡𝑥$

Need to think about incentives!!

Miners have incentive to
violate the protocol!

Miners violate the protocol
→ No safety

→ Double-spend!

Miner (maximal) extractable
value (MEV): a measure of
miner’s profit via inclusion,
exclusion or re-ordering of

transactions within its block

Miner A

Miner B Miner C

…

𝑘 + 1-deep

𝑘 + 1-deep

Miner A’s block got
‘reorged’:

It was part of the
longest chain before
but not anymore!!

From Bitcoin to Proof-of-Stake

Combining GHOST and Casper (2020)

1982 2008 2022

The Byzantine
Generals Problem

2015
…

Bitcoin PoW Ethereum PoS Ethereum

Consensus in the Internet Setting
• Sybil resistance
• Dynamic availability

• (Liveness under changing part.)
Block rewards (carrot)

Ø to incentivize participation!

Ø Consensus in the Internet Setting
Ø Sybil resistance
Ø Dynamic availability

Ø Block rewards (carrot)
Ø Finality and accountable safety
Ø Slashing (stick)

Ø to punish protocol violation!
The Byzantine Generals Problem (1982)
Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
Ethereum: A Next-Generation Smart Contract and Decentralized Application Platform. (2015)

Time

A few words on Proof-of-Stake (PoS)

In a Proof-of-Stake protocol, nodes
lock up (i.e., stake) their coins in the

protocol to become eligible to
participate in consensus.

The more coins staked by a node…
• Higher the probability that the node is

elected as a leader.
• Larger the weight of that node’s actions.

If a node is caught doing an adversarial
action (e.g., sending two values), it can be

punished by burning its locked coins (stake)!
This is called slashing.

Thus, in a Proof-of-Stake protocol,
nodes can be held accountable for

their actions (unlike in Bitcoin, where
nodes do not lock up coins).

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

Need votes from 𝟐
𝟑
 of total number of nodes (𝒏) for finality:

Quorum size = $
%
 of total number of nodes (𝑛)

Alice’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠/

Vote by a node: Signature of the
node on the block and the epoch PBFT: Practical Byzantine

Fault Tolerance. (1999)

(9 nodes)

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

≥
2
3
𝑛 ≥

2
3
𝑛

Votes for 𝑡𝑥𝑠! Votes for 𝑡𝑥𝑠"

Alice’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠/

Need votes from 𝟐
𝟑
 x total number of nodes (𝒏)	for finality:

Quorum size = $
%
 x total number of nodes (𝑛)

Vote by a node: Signature of the
node on the block and the epoch PBFT: Practical Byzantine

Fault Tolerance. (1999)

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

≥
2
3
𝑛 ≥

2
3
𝑛≥

1
3
𝑛

Votes for 𝑡𝑥𝑠! Votes for 𝑡𝑥𝑠"

Alice’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠/

Need votes from 𝟐
𝟑
 x total number of nodes (𝒏)	for finality:

Quorum size = $
%
 x total number of nodes (𝑛)

≥ "
$
𝑛 of nodes must have voted twice

 (once for txs4 and once for txs5)
Therefore, ≥ "

$
𝑛 nodes are adversarial

PBFT: Practical Byzantine
Fault Tolerance. (1999)

Safety when #
adversarial nodes < 𝟏

𝟑 x
total number of nodes

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

Alice’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠/ Bob’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠5
safety violation!

Need votes from 𝟐
𝟑
 x total number of nodes (𝒏) for finality:

Quorum size = $
%
 x total number of nodes (𝑛)

A Simple (PBFT-style) PoS Protocol*

Protocol
violators!

Staked Coins

e

e+1

…

epochs

Safety when # adversarial
nodes < 𝟏

𝟑 x total number of
nodes

Can punish ≥ 𝟏
𝟑 x total

number of nodes when
safety is violated!!Alice’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠/ Bob’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠5

safety violation!

Need votes from 𝟐
𝟑
 x total number of nodes (𝒏) for finality:

Quorum size = $
%
 x total number of nodes (𝑛)

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

Need votes from 𝟕
𝟗
 x total number of nodes (𝒏) for finality:

Quorum size = +
,
 x total number of nodes (𝑛)

A Simple (PBFT-style) PoS Protocol*

Protocol
violators!

Staked Coins

e

e+1

…

epochs

Safety when # adversarial
nodes < 𝟓

𝟗
 x total number of
nodes

Can punish ≥ 𝟓
𝟗
 x total

number of nodes when
safety is violated!!

Need votes from 𝟕
𝟗
 x total number of nodes (𝒏) for finality:

Quorum size = +
,
 x total number of nodes (𝑛)

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

Not live when 𝟏
𝟑
 of total

number of nodes crash
Alice’s log: 𝑡𝑥𝑠!

Need votes from 𝟐
𝟑
 x total number of nodes (𝒏) for finality:

Quorum size = $
%
 x total number of nodes (𝑛)

A Simple (PBFT-style) PoS Protocol*
Staked Coins

e

e+1

…

epochs

Live even when 𝟏𝟑 x total
number of nodes crash

Alice’s log: 𝑡𝑥𝑠! 𝑡𝑥𝑠/

Need votes from 𝟐
𝟑
 x total number of nodes (𝒏) for finality:

Quorum size = $
%
 x total number of nodes (𝑛)

A Simple (PBFT-style) PoS Protocol*

Sybil resistance mechanism:
Consensus protocol (SMR):

Proof-of-Work Proof-of-Stake

Nakamoto consensus
(longest chain)

Bitcoin
PoW Ethereum

Ouroboros

PBFT-style (with votes) ?? PoS Ethereum*
Simple PBFT-style PoS

protocol

• Sybil resistance mechanism determines how to select the nodes that are eligible to
participate in consensus and propose/vote for transactions/blocks.

• Consensus protocol specifies the instructions for honest nodes so that given a set of
eligible nodes with sufficiently many being honest, safety and liveness are satisfied.

satisfies finality and
accountable safety

satisfies dynamic availability

Ouroboros Genesis: Composable Proof-of-Stake Blockchains with Dynamic Availability. (2019)

Accountable Safety

In a protocol with resilience of n/3:
• The protocol is secure (safe & live) if there are less than n/3 adversarial nodes.
• Example: The simple proof-of-stake protocol.

In a protocol with accountable safety resilience of n/3:
• The protocol is secure if there are less than n/3 adversarial nodes.
• If there is ever a safety violation, all observers of the protocol can provably identify

(i.e., catch) at least n/3 adversarial nodes as protocol violators.
• No honest node is ever identified (no false accusation).
• Examples: The simple proof-of-stake protocol , PBFT, Tendermint, HotStuff …

Casper the Friendly Finality Gadget. (2017)
BFT Protocol Forensics (2021)

Accountable Safety

Number of
adversarial nodes (𝑓)

𝑛/3 2𝑛/3 1
Safety &
Liveness J

No Safety or
Liveness L

No Safety or
Liveness L

Safety &
Liveness J

• No liveness L
• If safety is violated, catch and punish

adversarial nodes J

Resilience of
n/3

Accountable safety is
a stronger notion
than just security.

Accountable
safety
resilience of
n/3

0

Finality

• We say that a protocol provides finality with resilience %
$

 if it preserves safety

during periods of asynchrony, when there are less than %
$

 adversarial nodes.

• Recall: under asynchrony, messages can be delayed arbitrarily for a finite time.
• Example: The simple proof-of-stake protocol, PBFT, Tendermint, HotStuff …

• Interestingly, in most protocol providing finality, transactions can be finalized much
faster than they can be confirmed in Bitcoin.
• No need to wait for k=6 blocks (1 hour)!

Accountability implies Finality

Finalizing
protocols:
safe under
asynchrony

Accountably
safe protocols:
can punish the

adversary

Accountability implies Finality:
Accountable safety (with resilience 8

.
) implies finality (with resilience 8

.
).

BFT Protocol Forensics (2021)
Accountable Safety Implies Finality (2023)

Simple proof-of-stake protocol,
PBFT, HotStuff, …

HotStuff-null

???

(Accountable safety:) if the protocol
can punish at least %

$
 adv. nodes after

a safety violation (and is safe when
there are less than %

$
 adv. nodes),

Then (Finality:) it must be safe when
there are less than %

$
	adv. nodes even

under asynchrony.

Accountability implies Finality

Finalizing
protocols:
safe under
asynchrony

Accountably
safe protocols:
can punish the

adversary

Accountability implies Finality:
Accountable safety (with resilience 8

.
) implies finality (with resilience 8

.
).

BFT Protocol Forensics (2021)
Accountable Safety Implies Finality (2023)

Simple proof-of-stake protocol,
PBFT, HotStuff, …

HotStuff-null

Holy Grail of Internet Scale Consensus
• We want Sybil resistance: Proof-of-Work or Proof-of-Stake…
• We want dynamic availability so that…

• Transactions continue to be confirmed and processed even when there is
low participation.

• Satisfied by Nakamoto consensus.
• We want finality and accountable safety so that…

• Finality: There cannot be safety violations (double-spends) during
asynchrony.

• Accountable safety: Nodes can be held accountable for their actions.
• Satisfied by our simple proof-of-stake protocol, PBFT, HotStuff, …

• Let’s focus on having dynamic availability and finality for now…

Holy Grail of Internet Scale Consensus
Is there a SMR protocol that provides both dynamic availability and finality

with any resilience?
No: Blockchain CAP Theorem!!

CAP: Consistency, Availability, Partition tolerance

Dynamically
available

protocols:
live under

changing part.

Finalizing
protocols:
safe under
asynchrony

Accountably
safe protocols:
can punish the

adversary

Simple proof-of-stake
protocol, PBFT, HotStuff, … Nakamoto consensus

Resource Pools and the CAP Theorem (2020)

Blockchain CAP Theorem

“I didn’t hear from the other
nodes; they are probably

offline.”

Log learned by Alice: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Dynamic
Availability:

Liveness under
changing part.

Client: Alice

Nodes/miners Nodes/minersLog: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑
Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Correct log: 𝑡𝑥#𝑡𝑥$𝑡𝑥%

For contradiction, suppose our SMR protocol has both dynamic availability and finality.
World 1

Blockchain CAP Theorem

“I didn’t hear from the other
nodes; they are probably
offline.”

Log learned by Bob: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Client: Bob

Nodes/minersLog: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏
Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Correct log: 𝑡𝑥%𝑡𝑥$𝑡𝑥#

For contradiction, suppose our SMR protocol has both dynamic availability and finality.

Dynamic
Availability:

Liveness under
changing part.

Nodes/miners

World 2

Blockchain CAP Theorem

“I didn’t hear from the other
nodes; they are probably
offline. I am in world 1.”

Log learned by Alice: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Client: Alice

“I didn’t hear from the other
nodes; they are probably
offline. I am in world 2.”

Log learned by Bob: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Client: Bob
Safety violation!

No safety under asynchrony!
No finality!

Nodes/miners Nodes/minersLog: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑
Log: 𝒕𝒙𝟏𝒕𝒙𝟐𝒕𝒙𝟑

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏
Log: 𝒕𝒙𝟑𝒕𝒙𝟐𝒕𝒙𝟏

Correct log: 𝑡𝑥#𝑡𝑥$𝑡𝑥% Correct log: 𝑡𝑥%𝑡𝑥$𝑡𝑥#

For contradiction, suppose our SMR protocol has both dynamic availability and finality.

Asynchrony:
Network
partition

World 3

Resolution: Nested Ledgers/Chains

Single chain: tx1, tx2, tx3, …
• Finality: Safe under asynchrony
• Dynamic availability: Live under

changing participation

Imp
oss

ible
!

Due to the CAP

Theorem!

Available chain

• Safe and live under synchrony and
changing participation.

• Not safe under asynchrony.

Accountable finalized chain
• Prefix property: Prefix of the available chain.
• Accountably safe under asynchrony.
• Live once the network becomes synchronous

and if enough nodes are online.
• Not live under low participation.

Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma (2020)

Resolution: Nested Ledgers/Chains

Available chain

• Safe and live under synchrony and
dynamic participation.

• Not safe under asynchrony.

Accountable finalized chain
• Prefix property: Prefix of the available chain.
• Accountably safe under asynchrony.
• Live once the network becomes synchronous

and if enough nodes are online.
• Not live under small participation.

Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma (2020)

Client chooses!

Liveness-
favoring client:
trusts available

chain

Safety-favoring
client:

trusts acc.
finalized chain

Π&'&

Π()%

Nakamoto
consensus

PBFT

Can interact with each other
thanks to the prefix property!!

Resolution: Nested Ledgers/Chains

Available chain

• Safe and live under synchrony and
dynamic participation.

• Not safe under asynchrony.

Accountable finalized chain
• Prefix property: Prefix of the available chain.
• Accountably safe under asynchrony.
• Live once the network becomes synchronous

and if enough nodes are online.
• Not live under small participation.

Ebb-and-Flow Protocols: A Resolution of the Availability-Finality Dilemma (2020)

Client chooses!

Liveness-
favoring client:
trusts available

chain

Safety-favoring
client:

trusts acc.
finalized chain

Π&'&

Π()%

Nakamoto
consensus

PBFT

Ledgers can be inconsistent!
No prefix property! Can interact with each other

thanks to the prefix property!!

Resolution: Nested Ledgers/Chains

Client chooses!

Liveness-
favoring client:
trusts available

chain

Safety-favoring
client:

trusts acc.
finalized chain

• When the participation seems low at the weekend, it can either be that participation is actually low due to nodes
taking time off or there is in fact a network partition.

• In this case, the boba vendor is willing to follow the available chain and risk a safety violation (and some double
spend) due to a partition, since its transactions are of less value. By following the available chain, it can in turn keep
selling boba at the weekends. Indeed, most of the time, there will not be a network partition, and participation will
be low at the weekends due to nodes taking time off.

• However, the car vendor’s transactions have large value, and the car vendor cannot afford even one double spend!
Therefore, it will follow the accountable, finalized chain that never has safety violations, but stops when there is low
participation, e.g., at the weekends. This is fine since the car vendor has few transactions and can afford to wait the
weekend. Indeed, on Monday, the accountable, finalized chain regains its liveness with higher participation.

Π&'& Π()%
txs

Proposal to
checkpoint

Accountable
finalized
chain

Available
chain

Latest checkpoint

How to obtain the nested chains?

Checkpointing Protocol
e.g., PBFT-style finality gadgets

Dynamically Available
Protocol

e.g., Nakamoto consensus

Combining GHOST and Casper. (2020)

Checkpointing Protocol

Propose “txs5”
C votes “txs5”
B votes “txs5”

Propose “txs6”
A votes “txs6”
C votes “txs6”

Dynamic Availability:
Longest chain keeps

growing.

Finality: Thanks to votes,
checkpoints are safe even

under asynchrony.

A

B

C

D

How to obtain the nested chains?

D votes “txs5”

D votes “txs6”Always extend the
last checkpoint!!

Nested Chains
Orange: available (full) chain

Blue: accountable, final (prefix) chain

LMD
GHOST

Casper
FFG

txs
Proposal to
checkpoint

Latest checkpoint

Ethereum

Latest Message Driven -
Greedy Heaviest

Observed Subtree

Casper the Friendly
Finality Gadget Accountable

finalized
chain

Available
chain

Combining GHOST and Casper. (2020)

A Greener Future for Blockchains?

Taken from the article “Ethereum's energy usage will soon decrease by
~99.95%” that appeared at the ‘ethereum foundation blog’ on May 18th 2021.

Next lecture: interesting scripts,
 wallets, and how to manage crypto assets

END OF LECTURE

*A Note on the Simple PoS Protocol
• This protocol is, in fact, not secure; because even though it satisfies safety, it does not

satisfy liveness:
• Suppose an adversarial epoch leader proposes two conflicting blocks and shows

each block to different halves of the set of nodes.

• In this case, each block gathers "
#
𝑛 votes, even though the quorum required for

finality is > #
$
𝑛 votes. None of the blocks get finalized, and the protocol gets stuck.

• Resolving this situation requires a non-trivial improvement of the protocol, and is at
the heart of PBFT, a secure SMR protocol, on which this simple protocol was based.

• The purpose of the simple (yet insecure) PoS protocol is to illustrate the core ideas in
finalizing and accountably-safe SMR protocols, such as quorum intersection.

• Secure and modern PBFT-style protocols include Tendermint and HotStuff.

Optional Slides

Slides going forward is optional material and investigate the Selfish Mining
Attack.

Selfish Mining Attack (Optional)

Block
Reward

Attacker keeps its blocks private until sufficiently many honest blocks are mined.
It then publishes the hidden blocks to ‘reorg’ the honest blocks.

Block
Reward

Block
Reward

Block
Reward

Block
Reward

Block
Reward

Majority is not Enough: Bitcoin Mining is Vulnerable (2013)

Selfish Mining Attack (Optional)

Suppose you hold 𝛽 fraction of the mining power.
If you behave honestly, mining on the tip of the longest chain in your view and
broadcasting your blocks as soon as they are mined…
 You mine ~𝛽 fraction of the blocks.
 You earn ~𝛽 fraction of the block rewards over Bitcoin’s lifetime.
Note that the total amount of block rewards over Bitcoin’s lifetime is fixed!

Selfish Mining Attack (Optional)

…… …

𝜷 fraction: adversary’s blocks
Total fraction on the longest chain: 1
Remaining 𝟏 − 𝜷 fraction: honest miners’ blocks

Selfish Mining Attack (Optional)

If you do selfish mining…
 You kick out ~𝛽 fraction of the mined blocks out of the longest chain.
 ~1 − 𝛽 fraction of the mined blocks are in the longest chain.

 You have mined ~)
*+)

 of the blocks in the longest chain.

 You earn ~)
*+)

> 𝛽 fraction of the block rewards over Bitcoin’s lifetime!

Selfish Mining Attack (Optional)

…… …

𝜷 fraction: adversary’s blocks
Total fraction on the longest chain: 𝟏 − 𝜷
Remaining 𝟏 − 𝟐𝜷 fraction: honest miners’
blocks that were not displaced by the adversary’s
blocks

…

𝜷 fraction: honest miners’ blocks
displaced by the adversary’s blocks

Selfish Mining Attack (Optional)

Chain quality (fraction of honest blocks in the longest chain) of Bitcoin ≤ *+,)
*+)

Is it possible to make Bitcoin incentive compatible and increase chain quality to
𝛽?

Yes!
Examples: Fruitchains (𝜀-Nash equilibrium), Colordag (𝜀-sure Nash equilibrium)

Fruitchains: A Fair Blockchain (2017)
Colordag: An Incentive-Compatible Blockchain (2022)

