
Final Topics: Bridging and MEV

CS251 Fall 2022
(cs251.stanford.edu)

Dan Boneh

Invited talk final lecture. Final exam next Wednesday.

… but first, final thoughts on ZK

Commercial interest in SNARKs

Many more building applications on top …

Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor
the operation of a herd of supercomputers
working with unreliable software.

Why so much commercial interest?

an L1 blockchain

coordinators

“Checking Computations in Polylogarithmic Time”

We are going to the moon …

Blockchains drive the development of SNARKs:
zkRollup, zkBridge, zkCreditScore, zkProofOfSolvency, …

… but many non-blockchain applications

Using ZK to fight disinformation

C2PA: a standard for content provenance

embedded certified
signing key sk

location
timestamp

signature verify metadata
by checking sig

C2PA

A problem: post-processing

Newspapers often process the photos before publishing:
• Resize (1500×1000), Crop, Grayscale (AP lists allowed ops)

???

C2PA “solution”:
editing software will sign
processed photo to certify edits

The problem: laptop cannot verify signature on processed photo

A solution using ZK proofs (SNARKs)

Editing software attaches a proof 𝜋 to (processed) photo that:

I know a triple (Orig, Ops, Sig) such that
1. Sig is a valid C2PA signature on Orig
2. photo is the result of applying Ops to Orig
3. metadata(photo) = metadata(Orig)

location
timestamp

proof π

processed
photo

⇒ Laptop verifies 𝜋 and shows metadata to user

(with T. Datta)

Performance

Proof size: 200-400 bytes. Verification time: 2 ms.

Proof generation time by newspaper:

• Resize (3000×3000 ⇾ 1500×1500): 84 sec.

• Crop (3000×3000 ⇾ 1500×1500): 60 sec.

• Grayscale (2.25M pixels): 25 sec.

See also: PhotoProof by Naveh & Tromer (2016)

(in browser)

What about video??

Many more topics …

Many more topics to cover …

(1) Maximal extractable value (MEV)

(2) Blockchain interoperability (bridging)

(3) Project governance: (see our Spring course on DAOs)

• How to decide on updates to Uniswap, Compound, … ???

(4) Insurance: against bugs in Dapp code and other hacks

(5) Many more cryptography techniques (see slides at end)

More topics …

• Where can I learn more?

• CS255 and CS355: Cryptography (Winter and Spring)

• EE374: Scaling blockchains with fast consensus (Winter)

• Stanford blockchain conference (SBC): Aug. 28-30, 2023.

• Stanford blockchain club

A career in blockchains? Where to start? [link]

https://portfoliojobs.a16z.com/jobs?jobTypes=Engineer&markets=Web3

Maximal Extractable Value (MEV)

Searchers

Ethereum gives rise to a new type of business: searchers

• Arbitrage: Uniswap DAI/USDC exchange rate is 1.001
whereas at Sushiswap the rate is 1.002

⇒ a searcher posts Tx to equalize the markets and profits

• Liquidation: suppose there is a liquidation opportunity on Aave
⇒ a searcher posts a liquidation Tx and profits

• Many other examples … often using a sequence of Tx (a bundle)

The MEV problem
What happens when a searcher posts a Tx to the mempool?

• Validator: create a new Tx’ with itself as beneficiary, and
place it before Sam’s Tx in the proposed block

• Another searcher: create a new Tx’ with itself as beneficiary,
and posts it with a higher maxPrioriyFee

⇒ this action is now mostly automated by bots
Tx’

Tx’: credit Alice
maxPrioriyFee: 2X

Tx: credit Sam
maxPrioriyFee: X

Sam

mempool

The result harms honest users
Price Gas Auctions (PGA): two or more searchers compete
• Repeatedly submit a Tx with higher and higher maxPriorityFee

until a validator chooses one … happens within a few seconds

⇒ causes congestion (lots of Tx in mempool) and high gas fees

Tx’

Tx’: credit Alice
maxPrioriyFee: 2X

Tx: credit Sam
maxPrioriyFee: X

Sam

mempool

The result harms consensus
Undercutting attack on longest-chain consensus:

block 1 block 3
3 MEV Tx

Rational miner: can cause a re-org by taking one MEV Tx for
itself and leave two for other miners

Miners incentivized
to build here

The problem: MEV Tx generate extra revenue for miners, higher than block rewards

miner #1 miner #2 miner #3

The result causes centralization
Validators can steal MEV Tx from searchers

Searchers only send Tx to a validator they trust
(have a business relation with)

These validators do not propagate Tx to the network,
but put them in blocks themselves

In the long run: a few validators will handle the bulk of all Tx

⇒ Private mempools

How big are MEV rewards?
Weekly MEV amount paid to validators (in ETH):

source: transparency.flashbots.net

What to do??

Proposer Builder Separation (PBS)

Goals:
• Eliminate price gas auctions in the public mempool

• Instead, create an open market for searchers to compete
on the position of their bundles in a block

• Prevent validator concentration: make it possible for every
validator to earn MEV payments from searchers

Current PBS implementation: MEV-boost

The participants in PBS (as in MEV-boost)

Users have Tx and searchers have bundles (sequence of Tx)
• searcher wants its bundle posted in a block unmodified

searchers
builder A

builder B

mempool
user

bundle

Tx

relay 1

relay 2

validator
(the current

block
proposer)

block

block

block

blockHdr

send block to
eth network

bundle

signature
signed
block

blockHdr

bundle

build block from
Tx and bundles choose best block

MEV-boost
Builder: collects bundles and Tx and builds a block
• includes a MEV offer to validator (feeRecipient)

Relay: collects blocks, chooses block with max MEV offer
• sends block header (and MEV offer) to block proposer
• Can’t expose Tx in block to proposer (or proposer could steal Tx)

Proposer: chooses best offer and signs header with its staking key
⇒ Then Relay reveals block contents; proposer sends to network

(if bad block, proposer can build a block locally from mempool)
https://writings.flashbots.net/searching-post-merge

Operating relays

Flashbots: Filters out OFAC sanctioned addresses,
aims to maximize validator payout

(so that many validators will work with it)

BloXroute: no censorship
aims to maximize validator payout

…

An example: flashbots relay

fee to validator

An example: flashbots relay

address of validator who proposed the block

Are we done? Not quite …

Over the last 30 days: five block builders built 80% of all blocks !!
• Clear centralization in the builder market
• Enables censorship by builders

MEV-boost is not designed for cross-chain MEV
• For cross-chain arbitrage, no atomicity guarantee for bundle

A solution: SUAVE (not yet deployed)

https://www.relayscan.io/

How to bridge chains

Interoperability between blockchain

Many L1 blockchains

Bitcoin: Bitcoin scripting language (with Taproot)

Ethereum: EVM. Currently: high Tx fees (better with Rollups)

EVM compatible blockchains: Celo, Avalanche, BSC, …
• Higher Tx rate ⟹ lower Tx fees
• EVM compatibility ⟹ easy project migration and user support

Other fast non-EVM blockchains: Solana, Flow, Algorand, …
• Higher Tx rate ⟹ lower Tx fees

Ethereum

Bitcoin

Cosmos

Polkadot

Flow

20 DOT

Can I use
Osmosis??

The problem: siloes

How???

Interoperability
Interoperability:
• User owns funds or assets (NFTs) on one blockchain system

Goal: enable user to move assets to another chain
Composability:
• Enable a DAPP on one chain to call a DAPP on another

Both are easy if the entire world used Ethereum
• In reality: many blockchain systems that need to interoperate
• The solution: bridges

A first example: BTC in Ethereum

How to move BTC to Ethereum ?? Goal: enable BTC in DeFi.
⟹ need new ERC20 on Ethereum pegged to BTC

(e.g., use it for providing liquidity in DeFi projects)

The solution: wrapped coins
• Asset X on one chain appear as wrapped-X on another chain
• For BTC: several solutions (e.g., wBTC, tBTC, …)

wBTC and tBTC: a lock-and-mint bridge
Let’s start with wBTC: moving 1 BTC to Ethereum

custodian’s
BTC address

1 ₿
1 ₿

mint 1 wBTC
credit Alice’s address

1 wBTC

to use in DeFi

ERC20

bridge contract

custodian

1₿ verified
(signed)

1 ₿

Alice
Alice on

Ethereum

(watch for deposits)

(lock 1 BTC)

Alice wants her 1 BTC back
Moving 1 wBTC back to the Bitcoin network:

custodian’s
BTC address

1 ₿
1 ₿

bridge contract

custodian

1 ₿

Alice
Alice on

Ethereum

(watch for burns)

burn my 1 wBTC

(signed)

Bitcoin Tx
(signed)

(1 BTC unlocked)

deduct 1 wBTC
from Alice

wBTC
Example BTC ⇾ Ethereum:

(Bitcoin Tx: ≈4,000 BTC)

(Ethereum Tx:)

Why two hours? … make sure no Bitcoin re-org

The problem: trusted custodian

Can we do better?

tBTC: no single point of trust

Alice requests to mint tBTC:
random three registered custodians are selected and

they generate P2PKH Bitcoin address for Alice
signing key is 3-out-of-3 secret shared among three

(all three must cooperate to sign a Tx)
Alice sends BTC to P2PKH address, and received tBTC.

Custodians must lock 1.5x ETH stake for the BTC they manage
• If locked BTC is lost, Alice can claim staked ETH on Ethereum.

Bridging smart chains (with Dapp support)

A very active area:
• Many super

interesting ideas

https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8

Two types of bridges

Type 1: a lock-and-mint bridge
• SRC ⇾ DEST: user locks funds on SRC side,

wrapped tokens are minted on the DEST side
• DEST ⇾ SRC: funds are burned on the DEST side,

and released from lock on the SRC Side

Type 2: a liquidity pool bridge
• Liquidity providers provide liquidity on both sides
• SRC ⇾ DEST: user sends funds on SRC side,

equivalent amount released from pool on DEST side

Bridging smart chains (with Dapp support)

Step 1 (hard): a secure cross-chain messaging system

Step 2 (easier): build a bridge using messaging system

Source
Chain S DAPP-X relayer

Target
Chain T DAPP-Y relayer

message to Y
on chain T: data

message from X
on chain S: data

I believe it

(contract)

(contract)

Bridging smart chains (with Dapp support)

Step 1 (hard): a secure cross-chain messaging system

Step 2 (easier): build a bridge using messaging system
• DAPP-X ⇾ DAPP-Y: “I received 3 CELO, ok to mint 3 wCELO”
• DAPP-Y ⇾ DAPP-X: “I burned 3 wCELO, ok to release 3 CELO”

If messaging system is secure, no one can steal locked funds at S

Source
Chain S DAPP-X Target

Chain TDAPP-Y

Primarily two types of messaging systems

(1) Externally verified: external parties verify message on chain S

Source
Chain S relayerS Target

Chain TrelayerT

Trustees (watch relayerS)

Relayer on S received
messages D[] (signed)

collect msgs D[]

verify sig and dispatch
to recipients

RelayerT dispatches only if all trustees signed
⟹ if DAPP-Y trusts trustees, it knows DAPP-X sent message

Primarily two types of messaging systems

(1) Externally verified: external parties verify message on chain S

Source
Chain S relayerS Target

Chain TrelayerT

Trustees (watch relayerS)

Relayer on S received
messages D[] (signed)

collect msgs D[]

verify sig and dispatch
to recipients

What if trustees sign and post a fake message to relayerT?
• off-chain party can send trustee’s signature to relayerS ⟹ trustee slashed

Activity

Primarily two types of messaging systems

Source
Chain S relayerS Target

Chain TrelayerT

(2) On-chain verified: chain T verifies block header of chain S

receive msgs verify and dispatch

oracle

send messages D[] to relayerT,
along with finalized

block header on chain S,
and consensus data

relayerT runs a (light) client for chain S to verify
that relayerS received messages D[]

no trustees

assumes security
of light client

oracle

Primarily two types of messaging systems

Source
Chain S relayerS Target

Chain TrelayerT

receive msgs

verify SNARK proof
and dispatch

Problem: high gas costs on chain T to verify state of source chain S.
Solution: zkBridge: use SNARK to reduce work for relayerT

SNARK prover
(proof of state on chain S)

msgs D[]

chain S block header (BH)
and consensus data

D[], BH, proof

Primarily two types of messaging systems

Source
Chain S relayerS Target

Chain TrelayerT

receive msgs

verify SNARK proof
and dispatch

… being built by Succinct Labs

SNARK prover
(proof of state on chain S)

msgs D[]
D[], BH, proof

oracle

chain S block header (BH)
and consensus data

Bridging: the future vision

User can hold assets on any chain

• Assets move cheaply and quickly from chain to chain

• A project’s liquidity is available on all chains

• Users and projects choose the chain that is best suited for their
application and asset type

We are not there yet …

Next lecture: super cool final guest lecture

END OF LECTURE

Fun crypto tricks

BLS signatures

inputs outputs
sig sigsig

sig sigsig sig

sig sig

sig sigsig

Tx1:

Tx2:

Tx3:

Tx4:

one Bitcoin block

Signatures make up
most of Tx data.

Can we compress
signatures?
• Yes: aggregation!
• not possible for ECDSA

BLS Signatures

Used in modern blockchains: Ehtereum 2.0, Dfinity, Chia, etc.

The setup:

• G = {1, g, …, gq-1} a cyclic group of prime order q

• H: M × G ⇾ G a hash function (e.g., based on SHA256)

BLS Signatures

KeyGen(): choose random 𝛼 in {1, … , 𝑞}

output sk = 𝛼 , pk = 𝑔! ∈ G

Sign(sk, 𝑚): output sig = 𝐻(𝑚, pk)! ∈ G

Verify(pk, 𝑚, sig): output accept if logg(pk) = logH(m,pk)(sig)

Note: signature on 𝑚 is unique! (no malleability)

How does verify work?

A pairing: an efficiently computable function e:G×G ⇾ G’

such that e(𝑔!, 𝑔") = 𝑒(𝑔, 𝑔)!" for all 𝛼, 𝛽 ∈ {1,… 𝑞}

and is not degenerate: 𝑒(𝑔, 𝑔) ≠ 1

Observe: logg(pk) = logH(m,pk)(sig)

if and only if e(g, sig) = e(pk, H(m,pk))

e(g, H(m,pk)𝛼) = e(g𝛼, H(m,pk))

= =

verify test

Properties: signature aggregation [BGLS’03]
Anyone can compress n signatures into one

pk1 , m1 ⟶ σ1

pkn , mn ⟶ σn

⋮ aggregate ⟶ σ*

Verify(pk , m , σ*) = “accept”
convinces verifier that

for i=1,…,n:
user i signed msg mi

single short signature

Aggregation: how

Verifying an aggregate signature: (incomplete)

user 1: pk1 = gα1 , m1 ⟶ σ1=H(m1,pk1)α1

user n: pkn = gαn , mn ⟶ σn=H(mn,pkn)αn

σ ⟵ σ1⋯ σn

∏$%&
' e(H(mi,pki), g

αi) ≟ e(σ, g)

Pi=1 e(H(mi,pki)
αi, g) = e(Pi=1H(mi,pki)

αi, g)

= =

Compressing the blockchain with BLS

inputs outputs
sig sigsig

sig sigsig sig

sig sig

sig sigsig

Tx1:

Tx2:

Tx3:

Tx4:

one Bitcoin block if needed:
compress all
signatures in a block
into a single
aggregate signatures

⇒ shrink block

or: aggregate in smaller
batches

sig*

Reducing Miner State

UTXO set size

≈70M UTXOs

Miners need to keep all UTXOs in memory to validate Txs

Can we do better?

Recall: polynomial commitments

• commit(pp, f, r) ⇾ comf commitment to f ∈ 𝔽(
(*+) 𝑋

• eval: goal: for a given comf and x, y ∈ 𝔽(,

construct a SNARK to prove that f(x) = y.

Homomorphic polynomial commitment

A polynomial commitment is homomorphic if

there are efficient algorithms such that:

• commit(pp, f1, r1) ⇾ comf1 commit(pp, f2, r2) ⇾ comf2

Then:

(i) for all 𝑎, 𝑏 ∈ 𝔽(: comf1 , comf2 ⇾ coma*f1+b*f2

(ii) comf1 ⇾ comX*f1

Committing to a set (of UTXOs)
Let 𝑆 = {𝑈1, … , 𝑈𝑛} ∈ 𝔽(be a set of UTXOs

Define: 𝑓 𝑋 = (𝑋 − 𝑈1) ⋯ (𝑋 − 𝑈𝑛) ∈ 𝔽(
(*') 𝑋

Set: comf = commit(𝑝𝑝, 𝑓, 𝑟) ⇽ short commitment to 𝑆

For 𝑈 ∈ 𝔽(: 𝑈 ∈ 𝑆 if and only if 𝑓(𝑈) = 0

To add U to S: comf ⇾ comX*f−U*f ⇽ short commitment to 𝑆 ∪ {𝑈}

(accumulator)

How does this help?
Miners maintain two commitments:

(i) commitment to set T of all UTXOs
(ii) commitment to set S of spent TXOs

≤ 1KB

comT, comSTx format:
• every input 𝑈 includes a proof (𝑈 ∈ 𝑇 && U ∉ 𝑆)

Two eval proofs: 𝑇(𝑈) = 0 && 𝑆(𝑈) ≠ 0 (short)

Tx processing: miners check eval proofs, and if valid,
add inputs to set S and outputs to set T. That’s it!

Does this work ??
Problem: how does a user prove that her UTXO 𝑈 satisfies

𝑇(𝑈) = 0 && 𝑆(𝑈) ≠ 0 ???

This requires knowledge of the entire blockchain
⇒ user needs large memory and compute time
⇒ … can be outsourced to an untrusted 3rd party

The proof factory

polynomials
S and T

UTXO 𝑈 , fee

proof 𝜋
spend 𝑈

Is this practical?
Not quite …
• Problem: the factory’s work per proof is linear in the

number of UTXOs ever created

• Many variations on this design:
• can reduce factory’s work to log2(# current UTXOs) per proof
• Factory’s memory is linear in (# current UTXOs)

End result: outsource memory requirements to a
small number of 3rd party service providers

Taproot: semi-private
scripts in Bitcoin

Taproot is here …

Script privacy

Currently: Bitcoin scripts must be fully revealed in spending Tx

Can we keep the script secret?

Answer: Yes, easily! when all goes well …

How?

ECDSA and Schnorr public keys:
• KeyGen(): sk = 𝛼 , pk = 𝑔! ∈ G for 𝛼 in {1, … , 𝑞}

Suppose skA = 𝛼 , skB = 𝛽.
• Alice and Bob can sign with respect to pk = 𝑝𝑘- O 𝑝𝑘. = 𝑔!/"

⇒ an interactive protocol between Alice and Bob
(note: much simpler with BLS)

⇒ Alice & Bob can imply consent to Tx by signing with pk = 𝑔!/"

How?

S: Bitcoin script that must be satisfied to spend a UTXO 𝑈
S involves only Alice and Bob. Let 𝑝𝑘-. = 𝑝𝑘- O 𝑝𝑘.

Goal: keep S secret when possible.

How: modify S so that a signature with respect to

pk = 𝑝𝑘-. O 𝑔0((1!" , 3)

is sufficient to spend UTXO, without revealing S !!

The main point

• If parties agree to spend UTXO,
⇒ sign with respect to 𝑝𝑘-. and spend while keeping S secret

• If disagreement, Alice can reveal S
and spend UTXO by proving that she can satisfy S.

Taproot pk compactly supports both ways to spend the UTXO

