CS251 Fall 2022
(cs251.stanford.edu)

Final Topics: Bridging and MEV

Dan Boneh

Invited talk final lecture. Final exam next Wednesday.

... but first, final thoughts on ZK

Commercial interest in SNARKs

& STARKWARE O Aztec BALCURIE O DSPresso

AA
‘A 'NGONYAMA

Many more building applications on top ...

Why so much commercial interest?

Babai-Fortnow-Levin-Szegedy 1991.:
an L1 blockchain

In this setup, a-sirgle-retiasie-RE€ can monitor
the operation of a herd of supereerputers

working with unreliable software. coordinators

“Checking Computations in Polylogarithmic Time”

We are going to the moon ...

Blockchains drive the development of SNARKs:
zkRollup, zkBridge, zkCreditScore, zkProofOfSolvency, ...

... but many non-blockchain applications

Using ZK to fight disinformation

Ukraine conflict: Many
misleading images have been

sh . . .
| Fact-checking videos and pictures
= from Ukraine

since Russiai Russia-Ukraine Conflict—How To
andpieures! mell If Pictures And Videos Are

Fake

C2PA: a standard for content provenance

Sony Unlocks In-Camera Forgery-Proof Technology

04 Aug, 2022

embedded certified
signing key sk

2

a

location
timestamp

signature

C2PA

)

verify metadata
by checking sig

|

A problem: post-processing

Newspapers often process the photos before publishing:
* Resize (1500 x 1000), Crop, Grayscale (AP lists allowed ops)

The problem: l|aptop cannot verify signature on processed photo

C2PA “solution”:
editing software will sign
processed photo to certify edits

277

A solution using ZK proofs (SNARKSs)

(with T. Datta)

Editing software attaches a proof m to (processed) photo that:

| know a triple (Orig, Ops, Sig) such that
1. Sigis avalid C2PA signature on Orig orocessed
2. photo is the result of applying Ops to Orig photo
3. metadata(photo) = metadata(Orig) a_?
location
= Laptop verifies m and shows metadata to user ti;;sztfa:p

Performance

Proof size: 200-400 bytes. Verification time: 2 ms.

(in browser)

Proof generation time by newspaper:

* Resize (3000X% 3000 — 1500 X 1500): 84 sec.

* Crop (3000%3000 — 1500 X 1500): 60 sec.

* Grayscale (2.25M pixels):

What about video??

25 sec.

See also: PhotoProof by Naveh & Tromer (2016)

Many more topics ...

Many more topics to cover ...

(1) Maximal extractable value (MEV)
(2) Blockchain interoperability (bridging)

(3) Project governance: (see our Spring course on DAOs)

* How to decide on updates to Uniswap, Compound, ... ???
(4) Insurance: against bugs in Dapp code and other hacks

(5) Many more cryptography techniques (see slides at end)

* Where can | learn more?
e (CS255 and CS355: Cryptography (Winter and Spring)
 EE374: Scaling blockchains with fast consensus (Winter)
» Stanford blockchain conference (SBC): Aug. 28-30, 2023.

e Stanford blockchain club

A career in blockchains? Where to start? [link]

https://portfoliojobs.a16z.com/jobs?jobTypes=Engineer&markets=Web3

Maximal Extractable Value (MEV)

Ethereum gives rise to a new type of business: searchers

* Arbitrage: Uniswap DAI/USDC exchange rate is 1.001

whereas at Sushiswap the rate is 1.002
= a searcher posts Tx to equalize the markets and profits

Liquidation: suppose there is a liquidation opportunity on Aave
= a searcher posts a liquidation Tx and profits

Many other examples ... often using a sequence of Tx (a bundle)

The MEV problem

What happens when a searcher posts a Tx to the mempool?

* Validator: create a new Tx” with itself as beneficiary, and
place it before Sam’s Tx in the proposed block

* Another searcher: create a new Tx’ with itself as beneficiary,
and posts it with a higher maxPrioriyFee

= this action is now mostly automated by bots @

o
)

q&

The result harms honest users

Price Gas Auctions (PGA): two or more searchers compete

* Repeatedly submit a Tx with higher and higher maxPriorityFee
until a validator chooses one ... happens within a few seconds

= causes congestion (lots of Tx in mempool) and high gas fees

The result harms consensus

Undercutting attack on longest-chain consensus:

Rational miner: can cause a re-org by taking one MEV Tx for
itself and leave two for other miners

m Miners incentivized
) to build here

miner #1 miner #2 miner #3

The problem: MEV Tx generate extra revenue for miners, higher than block rewards

The result causes centralization

Validators can steal MEV Tx from searchers = Private mempools

Searchers only send Tx to a validator they trust
(have a business relation with)
These validators do not propagate Tx to the network,

but put them in blocks themselves

In the long run: a few validators will handle the bulk of all Tx

How big are MEV rewards?

Weekly MEV amount paid to validators (in ETH):

13.0k

4.1k 4.3k
37k 3.6k 4.0k

2.8k 2.7k

2.5k
2.1k >

749.39

source: transparency.flashbots.net

Proposer Builder Separation (PBS)

Goals:
* Eliminate price gas auctions in the public mempool

* Instead, create an open market for searchers to compete
on the position of their bundles in a block

* Prevent validator concentration: make it possible for every
validator to earn MEV payments from searchers

Current PBS implementation: MEV-boost

The participants in PBS (asin MEV-boost)

Users have Tx and searchers have bundles (sequence of Tx)

* searcher wants its bundle posted in a block unmodified
build block from

searchers Tx and bundles choose best block
__bundie, block blockHdr
\O\md\e I c,\k signature
0 signed
bundle . -
block
proposer)

send block to
eth network

3 ~b/o
Ck W

USGI’

MEV-boost

Builder: collects bundles and Tx and builds a block
* includes a MEV offer to validator (feeRecipient)

Relay: collects blocks, chooses block with max MEV offer
* sends block header (and MEV offer) to block proposer
 Can’t expose Tx in block to proposer (or proposer could steal Tx)

Proposer: chooses best offer and signs header with its staking key
= Then Relay reveals block contents; proposer sends to network
(if bad block, proposer can build a block locally from mempool)

https://writings.flashbots.net/searching-post-merge

Operating relays

Flashbots: Filters out OFAC sanctioned addresses,
aims to maximize validator payout
(so that many validators will work with it)

BloXroute: no censorship

aims to maximize validator payout

An example: flashbots relay

Recently Delivered Payloads fee to validator

Epoch Slot Block number Value (ETH) W Num tx
165,046 5,281,503 16,115,184 0.0759673152 186
165,046 5,281,501 16,115,182 0.05098935853 142
165,046 5,281,499 16,115,180 0.1902791095 167
165,046 5,281,498 16,115,179 0.103438972 295
165,046 5,281,496 16,115,177 0.07159735143 199
165,046 5,281,495 16,115,176 0.04034671944 125

An example: flashbots relay

Epoch:

Slot:

Block Number:

MEV Reward Recipient:

MEV Block Reward:

165,046 &

5,281,503 &

16115184 |k

Oxebec795c9c8bbd61ffc14a6662944748f299cacf

0.07596 Ether

address of validator who proposed the block

Are we done? Not quite ...

Over the last 30 days: five block builders built 80% of all blocks !!

e (Clear centralization in the builder market

* Enables censorship by builders

MEV-boost is not designed for cross-chain MEV
* For cross-chain arbitrage, no atomicity guarantee for bundle

A solution: SUAVE (not yet deployed)

https://www.relayscan.io/

Interoperability between blockchain

How to bridge chains

Many L1 blockchains

Bitcoin: Bitcoin scripting language (with Taproot)
Ethereum: EVM. Currently: high Tx fees (better with Rollups)

EVM compatible blockchains: Celo, Avalanche, BSC, ...
 Higher Txrate = lower Tx fees
* EVM compatibility = easy project migration and user support

Other fast non-EVM blockchains: Solana, Flow, Algorand, ...
 Higher Txrate = lower Tx fees

The problem: siloes

Osmosis
DEX

D

Can | use
Osmosis??

Polkadot

@ 20 DOT

Interoperability

Interoperability:

e User owns funds or assets (NFTs) on one blockchain system
Goal: enable user to move assets to another chain

Composability:
e Enable a DAPP on one chain to call a DAPP on another

Both are easy if the entire world used Ethereum
* Inreality: many blockchain systems that need to interoperate
 The solution: bridges

A first example: BTC in Ethereum

How to move BTC to Ethereum ?? Goal: enable BTC in DeFi.
— need new ERC20 on Ethereum pegged to BTC
(e.g., use it for providing liquidity in DeFi projects)

The solution: wrapped coins
* Asset X on one chain appear as wrapped-X on another chain

 For BTC: several solutions (e.g., wBTC, tBTC, ...)

wBTC and tBTC: a lock-and-mint bridge

Let’s start with wBTC: moving 1 BTC to Ethereum

>

v Alice on
Alice 1 fied Ethereum
18 : FSI\; 0 mint 1 wBTC
6 1B ERC20 | credit Alice’s address a
18 custodian’s bridge contract 1 WBTC
(lock 1 BTC) BTC address to use in DeFi

_~" BANK

(watch for deposits) "' l custodian

Alice wants her 1 BTC back

Moving 1 wBTC back to the Bitcoin network:

deduct 1 wBTC ‘
from Alice N4 Alice on
Bitcoinl Tx Ethereum
signad) . burn my 1 wBTC
(signed)

bridge contract

Alice

1B
£ -

18 custodian’s
BTC address

(1 BTC unlocked)

e~ BANK

(watch for burns)
“ll

custodian

Example BTC — Ethereum:

(Bitcoin Tx: =4,000 BTC)

Nov 26 2021 - 07:36 FUNDS SENT TO CUSTODIAN

Ethereum Tx:
Nov 26 2021 - 09:50 MINT COMPLETED BY CUSTODIAN ()

Why two hours? ... make sure no Bitcoin re-org

The problem: trusted custodian

Can we do better?

tBTC: no single point of trust

Alice requests to mint tBTC:

random three registered custodians are selected and
they generate P2PKH Bitcoin address for Alice

signing key is 3-out-of-3 secret shared among three
(all three must cooperate to sign a Tx)
Alice sends BTC to P2PKH address, and received tBTC.

Custodians must lock 1.5x ETH stake for the BTC they manage
e |flocked BTC is lost, Alice can claim staked ETH on Ethereum.

Bridging smart chains (with Dapp support)

A very active area:

Many super
interesting ideas

Application-

Asset-specific Chain-specific o Generalized
specific
(AR) () Avalanche any AM)(EI.AR
- BTC) Biconomy O Chainlink
] INTERLAY - 5
= (516} = CELER &: ChainSafe
TIDL
46 Harmony HH
i
% (PoS Bridge)
®wsTc - Gateway 2 connext
e @@ liquality 5
@®| WRAPPED Rainbow ¥ e
_ Bridge Sied deBridge
% redo
m Ronin J 1BC
(S resizh 3 Ren Q Loyerzere
5 Synapsel
@(SnowBridge)
THORCHAIN OPTICS
A
uttie] i
bl TokenBridge
I J PolyNetwork
WRAP @irbu:
o Poxc) R

@dberenzon

https://medium.com/1kxnetwork/blockchain-bridges-5db6afac44f8

Two types of bridges

Type 1: alock-and-mint bridge
e SRC — DEST: user locks funds on SRC side,
wrapped tokens are minted on the DEST side

e DEST — SRC: funds are burned on the DEST side,
and released from lock on the SRC Side

Type 2: a liquidity pool bridge
e Liquidity providers provide liquidity on both sides

e SRC — DEST: user sends funds on SRC side,
equivalent amount released from pool on DEST side

Bridging smart chains (with Dapp support)

Step 1 (hard): a secure cross-chain messaging system

Source messagetoY (contract)
. = contrac

Chain S on chain T: data

)

f

i

i

v

[| believe it

AN

Target ~ message from X
Chain T onchainS: data

Step 2 (easier): build a bridge using messaging system

(contract)

Bridging smart chains (with Dapp support)

Step 1 (hard): a secure cross-chain messaging system

Source l . Target
Chain S Chain T

Step 2 (easier): build a bridge using messaging system
* DAPP-X — DAPP-Y: “lreceived 3 CELO, ok to mint 3 wCELO”
 DAPP-Y — DAPP-X: “l burned 3 wCELO, ok to release 3 CELO”

If messaging system is secure, no one can steal locked funds at S

Primarily two types of messaging systems

(1) Externally verified: external parties verify message on chain S

verify sig and dispatch

collect msgs D] to recipients
Relayer on S received
Source messages D[] (signed) Target
Clains H Chain T

RelayerT dispatches only if all trustees signed
— if DAPP-Y trusts trustees, it knows DAPP-X sent message

Trustees (watch relayerS)

Primarily two types of messaging systems

(1) Externally verified: external parties verify message on chain S

verify sig and dispatch

collect msgs D] to recipients
Relayer on S received
Source messages D[] (signed) Target
Clains H Chain T

What if trustees sign and post a fake message to relayerT?
e off-chain party can send trustee’s signature to relayerS = trustee slashed

Trustees (watch relayerS)

Activity

LayerZero Messages By Source Chain
Nov 2022

Arbitrum
Optimism
Polygon
Ethereum
BNB
Aptos
Avalanche
Harmony
Fantom

Swimmer

0.0K 50.0K

100.0K

LayerZero Messages By Destination Chain
Nov 2022

Optimism
Arbitrum
Polygon
Aptos
BNB
Ethereum
Avalanche
DFK
Fantom
Harmony

Swimmer

0.0K 25.0K 50.0K

75.0K

Primarily two types of messaging systems

(2) On-chain verified: chain T verifies block header of chain S
send messages D[] to relayerT,
along with finalized

verify and dispatch
recelve msgs
block header on chain S,

Source and consensus data Target
Chain S Cham T

> oracle

no trustees

relayerT runs a (light) client for chain S to verify assumes security
that relayerS received messages D] of light client

Primarily two types of messaging systems

SNARK prover
(proof of state on chain S)

verify SNARK proof

A — MSES DH%W 5 and dispatch
- [], BH
W
Source Target
Chain S chain S block header (BH) Chain T

and consensus data

oracle

Problem: high gas costs on chain T to verify state of source chain S.
Solution: zkBridge: use SNARK to reduce work for relayerT

Primarily two types of messaging systems

SNARK prover
(proof of state on chain S)

verify SNARK proof

msgs D[Lw) and dispatch
- [], BH
W
Source Target
Chain S chain S block header (BH) ChainT

and consensus data

oracle

... being built by Succinct Labs

Bridging: the future vision

User can hold assets on any chain
* Assets move cheaply and quickly from chain to chain
* A project’s liquidity is available on all chains

e Users and projects choose the chain that is best suited for their
application and asset type

We are not there yet ...

END OF LECTURE

Next lecture: super cool final guest lecture

Fun crypto tricks

BLS signatures

Tx1:

Tx2:

Tx3:

Tx4:

one Bitcoin block

iInputs outputs

~sig-"sig

L...w.L...w.L.N.IL_JA
L.F;A
L.,J;.,.I_g

Signatures make up
most of Tx data.

Can we compress
signatures?

* Yes: aggregation!
* not possible for ECDSA

BLS Signatures

Used in modern blockchains: Ehtereum 2.0, Dfinity, Chia, etc.

The setup:

e G={1,g, ..,g9"} acyclic group of prime order q

* H:M X G— G a hash function (e.g., based on SHA256)

BLS Signatures

KeyGen(): choose random «a in {1,...,q}

output | sk=a , pk=g% €G

Sign(sk, m): output | sig=H(m,pk)* €G

Verify(pk, m, sig): output accept if Iogg(pk) = IogH(mlpk)(sig)

Note: signature on mis unique! (no malleability)

How does verify work?

A pairing: an efficiently computable function e:GXG— G’

such that

e(g% gP) = e(g, 9)*

and is not degenerate: e(g,g) # 1

Observe: Iogg(pk) = IogH(mipk)(sig)

forall a,B € {1, ...q}

if and only if

/

e(g, sig) = e(pk, H(m,pk)) <

e(g, HI

m,pk)*) = e(g% H(m,pk))

Properties: sighature aggregation s

Anyone can compress n signatures into one

pk, , m;y — 0 Verify(pk, m, ¢*) = “accept”

aggregate| — 0~ | convinces verifier that
fori=1,...,n:
user i sighed msg m,

pkn , My — Oy

single short signature

Aggregation: how

user1: pk,=g*, m; — 01=H(m1,pk1)a1\>

: Gholooo Gn
] /

usern: pk,=g*, m, — o.,=H(m,pk)%"

Verifying an aggregate signature: (incomplete)

n_ e(H(mipki), g) = e(o,g)
/4 \}

1y e(H(mizpki)ai; g) = e(Hi=1H(mi1pki)aiz g)

Tx1:

Tx2:

Tx3:

Tx4:

Compressing the blockchain with BLS

one Bitcoin block

inputs outputs Lelgen
~sig-"sig "

L...w.L...w.L.N.IL_JA
L.F;A
L.,J;.,.I_g

if needed:

compress all
signatures in a block
into a single
aggregate signatures

= shrink block

or: aggregate in smaller
batches

Reducing Miner State

UTXO set size

=/70M UTXOs

ction Outputs (UTXOs)

Unspent Transa

«r Blockchain

Miners need to keep all UTXOs in memory to validate Txs

Can we do better?

Recall: polynomial commitments

* commit(pp, f, r) > com; commitmenttof € [Fz(fd) | X]

* eval: goal: foragivencom; and x,y € [F,,

construct a SNARK to prove that f(x) =Y.

Homomorphic polynomial commitment

A polynomial commitment is homomorphic if

there are efficient algorithms such that:

* commit(pp, f;, r;) - comy commit(pp, f,, r,) = com,
Then:
(i) forall a,beF, : comy ,coms, — €COMyuspes

(ii) comg; —> COMyxpy

Committing to a set (of UTXOs)

let §={Uy,..,Un}€F, beasetof UTXOs (accumulator)

Define: f(X) =X —Uy) - (X—Un) €FSV[X]

Set: com;=commit(pp, f,7) — short commitmentto S

For UET,: ueS ifandonlyif f(U)=0

Toadd UtoS: comy = comysxq ¢ < short commitmentto S U {U}

How does this help?

Miners maintain two commitments:
(i) commitment to set T of all UTXOs } < 1KB
(ii) commitment to set S of spent TXOs B

comy;, Comg
Tx format: ’

 everyinput U includes a proof (U€ET && U &)
Two eval proofs: T(U) =0 && S(U) #0 (short)

Tx processing: miners check eval proofs, and if valid,
add inputs to set S and outputstosetT. That’s it!

Does this work ??

Problem: how does a user prove that her UTXO U satisfies

T(U)=0 && S(U)#0 ???

This requires knowledge of the entire blockchain

= user needs large memory and compute time

=

... can be outsourced to an untrusted 39 party

UTXO U , fee

-
«

spend U

proof i

I .
‘' polynomials

Sand T

The proof factory

Is this practical?

Not quite ...

* Problem: the factory’s work per proof is linear in the
number of UTXOs ever created

 Many variations on this design:
* can reduce factory’s work to log,(# current UTXOs) per proof

e Factory’s memory is linear in (# current UTXOs)

End result: outsource memory requirements to a
small number of 37 party service providers

Taproot: semi-private

scripts in Bitcoin

Taproot is here ...

Bitcoin's long-anticipated
Taproot upgrade is activated

November 14, 2021, 12:49AM EST - 1 min read

Script privacy

Currently: Bitcoin scripts must be fully revealed in spending Tx

Can we keep the script secret?

Answer: Yes, easily! when all goes well ...

How?

ECDSA and Schnorr public keys:
 KeyGen(): sk=a, pk=g% €G for a in {1,..,q}

Suppose sky,=a , skz=p.
* Alice and Bob can sign with respectto pk=pk, - -pkg =g
= an interactive protocol between Alice and Bob

a+f

(note: much simpler with BLS)

= Alice & Bob can imply consent to Tx by signing with pk = g“+3

How?

S: Bitcoin script that must be satisfied to spend a UTXO U
Sinvolves only Alice and Bob. Let pksp = pk, - pkpg

Goal: keep S secret when possible.

How: modify S so that a signature with respect to
pk o pkAB . gH(pkAB »S)

is sufficient to spend UTXO, without revealing S !!

The main point

e |If parties agree to spend UTXO,
= sign with respect to pk 45 and spend while keeping S secret

* If disagreement, Alice can reveal S
and spend UTXO by proving that she can satisfy S.

Taproot pk compactly supports both ways to spend the UTXO

