
Scaling the blockchain part II:
Rollups

CS251 Fall 2023
(cs251.stanford.edu)

Dan Boneh

Scaling the blockchain: the problem
Transaction rates (Tx/sec):

• Bitcoin: can process about 7 (Tx/sec)

• Ethereum: can process about 15 (Tx/sec)

• The visa network: can process up to 24,000 (Tx/sec)

Can we scale blockchains to visa speeds? … with low Tx fees

Tx Fees fluctuate:
 2$ to 60$ for simple Tx

How to process more Tx per second

Many ideas:

• Use a faster consensus protocol

• Parallelize: split the chain into independent shards

• Today: Rollups, move the work somewhere else

• Payment channels: reduce the need to touch the chain
• Requires locking up funds; mostly designed for payments.

reduces
composability

Recall: a basic layer-1 blockchain
A layer-1 blockchain

(e.g., Ethereum)

current world state

updated world state

updated world state

TxA

TxB

⋮
World state: balances, storage, etc.

Can handle 15 Tx/sec …

Rollup idea 1: batch many Tx into one
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

TxA

TxB

Rollup
coordinator

TxC Rollup state:
 Alice’s balance
 Bob’s balance
 …

updated Rollup state root, and Tx list

(Tx list)

Rollup idea 1: batch many Tx into one
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

Key point:

• Hundreds of transactions
on Rollup state are batched into
a single transaction on layer-1

 ⇒ 100x speed up in Tx/sec

• Let’s see how … Rollup state:
 Alice’s balance
 Bob’s balance
 …

(Tx list)

Rollup operation (simplified)

Rollup coordinator

Alice:
 5 DAI
 3 ETH

Bob:
 2 ETH

… Zoe:
 1 ETH
 3 USDC

Merkle Tree

Rollup state root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔!

[B⇾Z: 1 ETH]
[Z⇾B: 2 USDC]
𝑠𝑖𝑔"	 𝑠𝑖𝑔#

atomic swap:

Tx

Rollup operation (simplified)

Rollup coordinator

Alice:
 5 DAI
 1 ETH

Bob:
 3 ETH
 2 USDC

… Zoe:
 2 ETH
 1 USDC

Merkle Tree

new Rollup root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔!

[B⇾Z: 1 ETH]
[Z⇾B: 2 USDC]
𝑠𝑖𝑔"	 𝑠𝑖𝑔#

atomic swap:

Tx

block 361

new root, Tx list

In more detail

Layer-1 blockchain (L1)

Alice:
 state

Bob:
 state

Uniswap:
 state

Rollup contract:
 root

…

Rollup contract on
layer-1 holds assets
of all Rollup accounts
(and Merkle state root)

7 ETH, 3 DAI,

Rollup state (L2)

Alice:
 4 ETH, 1 DAI

Bob:
 3 ETH, 2 DAI

…

(coordinator stores state)

Transfers inside Rollup are easy (L2 ⇾ L2)

Alice:
 state

Bob:
 state

Alice:
 4 ETH, 1 DAI

Bob:
 3 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
7 ETH, 3 DAI,

[A⇾B: 2 ETH], 𝑠𝑖𝑔!
(with hundreds of Tx)

root

Rollup state (L2)

Layer-1 blockchain (L1)

Transfers inside Rollup are easy (L2 ⇾ L2)

Alice:
 state

Bob:
 state

Alice:
 2 ETH, 1 DAI

Bob:
 5 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
7 ETH, 3 DAI,

new Merkle root,
Tx list

[A⇾B: 2 ETH], 𝑠𝑖𝑔!
(with hundreds of Tx)

Coordinator updates root on Rollup contract

root

Rollup state (L2)

Layer-1 blockchain (L1)

Transferring funds into Rollup (L1 ⇾ L2)

Alice:
 state

Bob:
 state

Alice:
 2 ETH, 1 DAI

Bob:
 5 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
7 ETH, 3 DAI,

[2 ETH], 𝑠𝑖𝑔
!

Alice issues an L1 Tx: slow and expensive

root
2 ETH

Rollup state (L2)

Layer-1 blockchain (L1)

Transferring funds into Rollup (L1 ⇾ L2)

Alice:
 state

Bob:
 state

Alice:
 4 ETH, 1 DAI

Bob:
 5 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
9 ETH, 3 DAI,

new Merkle root,
Tx list

[2 ETH], 𝑠𝑖𝑔
!

Alice issues an L1 Tx: slow and expensive

root
2 ETH

Rollup state (L2)

Layer-1 blockchain (L1)

Transferring funds out of Rollup (L2 ⇾ L1)

Alice:
 state

Bob:
 state

Rollup state

Alice:
 4 ETH, 1 DAI

Bob:
 5 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
9 ETH, 3 DAI,

Requires extra gas on L1 to process transfer

root

[withdraw 4 ETH], 𝑠𝑖𝑔!
(plus hundreds of Tx)

Layer-1 blockchain (L1)

Transferring funds out of Rollup (L2 ⇾ L1)

Alice:
 state

Bob:
 state

Rollup state

Alice:
 0 ETH, 1 DAI

Bob:
 5 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
5 ETH, 3 DAI,

new Merkle root,
Tx list

Requires extra gas on L1 to process transfer

root
4 ETH

[withdraw 4 ETH], 𝑠𝑖𝑔!
(plus hundreds of Tx)

Layer-1 blockchain (L1)

Summary: transferring Rollup assets
Transactions within a Rollup are easy:
• Batch settlement on L1 network (e.g., Ethereum)

Moving funds into or out of Rollup system (L1 ⟺ L2) is expensive:
• Requires posting more data on L1 network ⟹ higher Tx fees.

Moving funds from one Rollup system to another (L2 ⟺ L2)
• Either via L1 network (expensive),

or via a direct L2 ⟺ L2 bridge (cheap)

Running contracts on a Rollup?

Alice:
 state

Bob:
 state

Alice:
 4 ETH, 1 DAI

Bob:
 3 ETH, 2 DAI

Uniswap:
 state

Rollup contract:
 root

…

…
7 ETH, 3 DAI,

Uniswap:
 state

Two copies of Uniswap

⇒ Rollup users can cheaply interact with Uniswap on Rollup

Rollup state (L2)

Layer-1 blockchain (L1)

Running contracts on a Rollup?

Alice:
 4 ETH, 1 DAI

Bob:
 3 ETH, 2 DAI

…Uniswap:
 state

Coordinator maintains state of all contracts on Rollup system:

• It updates the Uniswap Merkle leaf after every Tx to Uniswap

• Writes updated Rollup state Merkle root to L1 chain

Rollup state (L2)

Running contracts on a Rollup?

Alice:
 4 ETH, 1 DAI

Bob:
 3 ETH, 2 DAI

…Uniswap:
 state

Rollup functions as Ethereum, but …

• It relies on the L1 chain to attest to the current Rollup state

Rollup state (L2)

How to send Tx to the coordinator

Enduser configures its
wallet to send Tx to the RPC
points of the selected Rollup.

(by default Metamask sends Tx to the
 Ethereum Mainnet RPC points)

The role of the Coordinator

The Coordinator has multiple tasks:

• Sequence incoming Tx from Rollup users into a stream of Tx
⇒ can extract MEV from searchers, in addition to Tx fees
⇒ very profitable to be a Rollup coordinator

• Execute the stream of Tx on the latest Rollup state

• Push updates to the L1 chain

Shared coordinator: one coordinator for multiple Rollups (not today)

Coordinator architectures

A centralized coordinator:
• availability and censorship concerns,

… but cannot steal assets (as we will see)

A decentralized coordinator:
• a set of parties that run a fast consensus protocol
• At every epoch one party is chosen to sequence, execute, and

push updates to the L1

Importantly: L1 provides ground truth of the Rollup state

Tx rate on L2 is higher than on L1

L2 block

Finalize on L1 Finalize on L1

L1 chain

L2 chain

An example (StarkNet -- using validity proofs)

Source: starkscan.co

Block

…

Tx posted on L1 (Ethereum) about every eight hours

Not so simple …

Problems …

Problem 1: what if coordinator is dishonest?
• It could steal funds from the Rollup contract
• It could issue fake Tx on behalf of users

Problem 2: what if coordinator stops providing service?
• If Rollup state is lost, how can users issue Tx?

… can’t compute updated Rollup Merkle root.

Problem 1: what if coordinator is dishonest?

Can coordinator steal funds from Rollup users?

No! L1 chain verifies that Rollup state updates are valid.
⇒ all Tx are valid and properly signed by the Rollup users

Challenge: how to do this cheaply ?? (with little gas on L1)

Alice:
 state

Bob:
 state

Rollup contract:

…
7 ETH, 3 DAI, root

Layer-1 blockchain (L1)

Verifying Rollup state updates
Approach 1: validity proofs (called a zk-Rollup)

TxA

TxB

Rollup
coordinator

Layer 1 blockchain
(e.g. Ethereum)

Rollup contract
updated

state
root

SNARK
proof of
valid Tx

Tx list

accept new root
only if valid proof

Succinct proof proves that a
batch of hundreds of Tx is valid

What the SNARK proof proves
SNARK proof is short and fast to verify:

⇒ Cheap to verify proof on the slow L1 chain (with EVM support)
(usually not a zero knowledge proof)

Public statement: (old state root, new state root, Tx list)
Witness: (state of each touched account pre- and post- batch,
 Merkle proofs for touched accounts, user sigs)
SNARK proof proves that:
 (1) all user sigs on Tx are valid, (2) all Merkle proofs are valid,
 (3) post-state is the result of applying Tx list to pre-state

zkEVM
When a contract (e.g. Uniswap) runs on a Rollup:
• coordinator builds a SNARK proof of correct execution of

an EVM program ⇒ called a zkEVM
• Generating proof is a heavyweight computation

… verifying proof is fast
Rollup

coordinator

(lots of GPUs)

Flavors of a zkEVM:
• Prove that EVM bytecode ran correctly

(Polygon zkEVM, Scroll)

• Compile Solidity to a SNARK-friendly circuit
(MatterLabs)

The end result

Rollup contract on L1 ensures coordinator cannot cheat:

• all submitted Tx must have been properly signed by users

• all state updates are valid

⇒ Rollup contract on L1 will accept any update with a valid proof

⇒ Anyone can act as a coordinator (with enough compute power)

Verifying Rollup state updates

Approach 2: fault proofs (called an optimistic Rollup)
• Coordinator deposits stake in escrow on L1 Rollup contract

• Operation: Coordinator submits state updates to L1 w/o a proof
• If update is invalid: anyone has seven days to submit a fault proof

• Successful fault proof means coordinator gets slashed on L1
• Unsuccessful fault proof costs complainer a fee

Challenge: how to prove a fault to the Rollup contract on L1 ??
Naively: L1 can re-execute all Tx in batch ⇒ expensive and slow

Fault Proof game

fault claim

claimed
post-root

coordinator
different
post-root

Coordinator computes Merkle
tree of all states.
Sends Merkle root to L1

break computation into small steps
post-
state

pre-
state

pre-root Tx list

Fault Proof game

pre-root

fault claim

Tx list

claimed
𝑠𝑡𝑎𝑡𝑒!

coordinator
different
𝑠𝑡𝑎𝑡𝑒!"

𝑠𝑡𝑎𝑡𝑒# 𝑠𝑡𝑎𝑡𝑒!𝑠𝑡𝑎𝑡𝑒!/%

we know 𝑠𝑡𝑎𝑡𝑒! ≠ 𝑠𝑡𝑎𝑡𝑒!"

Merkle root

hash[0⇾n/2] hash[n/2⇾n]

hash[0⇾n/4] hash[n/4⇾n/2]

Fault Proof game: binary search

pre-root

fault claim

Tx list

claimed
𝑠𝑡𝑎𝑡𝑒!

coordinator
different
𝑠𝑡𝑎𝑡𝑒!"

𝑠𝑡𝑎𝑡𝑒!𝑠𝑡𝑎𝑡𝑒!/%

Suppose 𝑠𝑡𝑎𝑡𝑒!/% ≠ 𝑠𝑡𝑎𝑡𝑒!/%"

𝑠𝑡𝑎𝑡𝑒#

Merkle root

hash[0⇾n/2] hash[n/2⇾n]

hash[0⇾n/4] hash[n/4⇾n/2]

Fault Proof game: binary search

pre-root

fault claim

Tx list

claimed
𝑠𝑡𝑎𝑡𝑒!

coordinator
different
𝑠𝑡𝑎𝑡𝑒!"

𝑠𝑡𝑎𝑡𝑒!/%

Suppose 𝑠𝑡𝑎𝑡𝑒!/% ≠ 𝑠𝑡𝑎𝑡𝑒!/%"

Coordinator sends hash[0⇾n/2] to L1
Alice sends “left” to L1 𝑠𝑡𝑎𝑡𝑒#

Merkle root

hash[0⇾n/2] hash[n/2⇾n]

hash[0⇾n/4] hash[n/4⇾n/2]

Fault Proof game: binary search

pre-root

fault claim

Tx list

claimed
𝑠𝑡𝑎𝑡𝑒!

coordinator
different
𝑠𝑡𝑎𝑡𝑒!"

𝑠𝑡𝑎𝑡𝑒!/%

Suppose 𝑠𝑡𝑎𝑡𝑒!/& = 𝑠𝑡𝑎𝑡𝑒!/&"

Coordinator sends hash[n/4⇾n/2] to L1
Alice sends “right” to L1 𝑠𝑡𝑎𝑡𝑒!/&𝑠𝑡𝑎𝑡𝑒#

Merkle root

hash[0⇾n/2] hash[n/2⇾n]

hash[0⇾n/4] hash[n/4⇾n/2]

Fault Proof game: binary search

pre-root

fault claim

Tx list

claimed
𝑠𝑡𝑎𝑡𝑒!

coordinator
different
𝑠𝑡𝑎𝑡𝑒!"

𝑠𝑡𝑎𝑡𝑒!/%

Suppose 𝑠𝑡𝑎𝑡𝑒!/& = 𝑠𝑡𝑎𝑡𝑒!/&"

Coordinator sends hash[n/4⇾n/2] to L1
Alice sends “right” to L1 𝑠𝑡𝑎𝑡𝑒!/&

Merkle root

hash[0⇾n/2] hash[n/2⇾n]

hash[0⇾n/4] hash[n/4⇾n/2]

Fault Proof game: binary search

pre-root Tx list

coordinator After log% 𝑛 rounds:
• L1 has 𝑠𝑡𝑎𝑡𝑒' and 𝑠𝑡𝑎𝑡𝑒'() from coordinator
• 𝑠𝑡𝑎𝑡𝑒' = 𝑠𝑡𝑎𝑡𝑒'" and 𝑠𝑡𝑎𝑡𝑒'() ≠ 𝑠𝑡𝑎𝑡𝑒'()"

or game times out because one player defects

⇒ Now L1 can verify fault proof by checking one computation step!

A simpler alternative

pre-root Tx list

claimed
𝑠𝑡𝑎𝑡𝑒!

different
𝑠𝑡𝑎𝑡𝑒!"

• Alice submits to L1 contract a SNARK proof that 𝑠𝑡𝑎𝑡𝑒! is invalid

• L1 verifies SNARK, and if valid, slashes coordinator

 ⇒ SNARK is only needed in a rare fault event

Some difficulties with optimistic approach

(1) Transactions only settle after 7 days (after fault window expires)

• Alice needs to wait 7 days to withdraw funds from Rollup
(Rollup contract will only send her the funds after 7 days)

(2) Suppose a successful fault proof 4 days after batch is posted
 ⇒ all subsequent Tx need to be reprocessed

For fungible tokens, a 3rd party can advance the funds to Alice after checking
validity of Alice’s withdraw Tx. Does not apply to non-fungible tokens.

The end result

Can easily port any smart contract to an optimistic Rollup
• The Rollup EVM can be enhanced with new features (opcodes)

High Tx throughput: in principle, up to 4000 tx/s
• No need for special hardware at the coordinator

Anyone can act as a coordinator and a verifier

Downside: 7 day finality delay

Solution: setup a new coordinator
… but need the latest Rollup state

Where to get state?? The data availability problem

Problem 2: centralized coordinator,
what if it stops providing service?

… ok, so coordinator cannot submit invalid Tx.

Ensuring Rollup state is always available
The definition of a Rollup:

Rollup state can always be reconstructed from
data on the L1 chain

coordinator

Layer 1 blockchain
(e.g. Ethereum)

Rollup contract

updated
state
root Tx list

state rootSent to Rollup contract on L1 as
part of state update message

Ensuring Rollup state is always available
To reconstruct current Rollup state:
• Read all Rollup update messages and re-execute Tx.

⇒ anyone can become a coordinator
• Rollups use L1 for data storage

What to store?
• For zk-Rollup: send Tx summary to L1, without user signatures

(SNARK proof proves validity of signatures)
• For optimistic: need to send Tx summary *and* signatures to L1

Ensuring Rollup state is always available

The downside: expensive
• Tx list is sent as calldata: 16 gas per non-zero byte

(EIP-4844: store Tx list as a cheap blob)

Can we do better?

Data Availability Committee (DAC)
To further reduce Tx fees:

• Store L2 state root (small) on the L1 chain

• Store Tx data (large) with a Data Availability Committee (DAC):
• a set of nodes trusted to keep the data available
• cheaper than storage on L1
• L1 accepts an update only if all DAC members sign it

⇒ ensures that all DAC members accepted Tx data

Setting up a new coordinator depends on availability of the DAC

Validium

Validium: an L2 using a DAC and validity proofs (SNARKs)

• Well suited for lower value assets.
• Potential privacy benefits … only DAC members see Tx data

An example: StarkEx uses a five member DAC
• Users can choose between Validium or Rollup modes

(Tx data off-L1-chain vs. Tx data on-L1-chain)
cheaper Tx fees,

but only secure as DAC
More expensive Tx,

but same as L1 security

Summary: types of L2

Scaling the blockchain: Payment channels and Rollups (L2 scaling)

SNARK
validity proofs Fraud proofs

Tx data
on L1 chain zkRollup optimistic Rollup,

7 day finality

Tx data
in a DAC

Validium
(reduced fees, but

higher risk)
”Plasma”

availability

security

Volume of some L2 systems

Tx Volume/day average fee/tx (on Nov. 27, 2023)

• Ethereum: 1077K Tx 7.8 USD/Tx

• Arbitrum: 676K Tx 0.30 USD/Tx (optimistic Rollup)

• Optimism: 284K Tx 0.26 USD/Tx (optimistic Rollup)

• StarkNet: 537K Tx 0.56 USD/Tx (zkRollup)

Can coordinator censor a Tx?

What if coordinators refuse to process a Tx?

What to do? One option:
• enduser can post Tx directly to the L1 Rollup contract
• The L1 Rollup contract will then refuse to accept updates until

an update includes that Tx
⇒ censorship will cause the entire Rollup to freeze

Layer 3 and beyond …

SNARK recursion

SNARK recursion
Two level recursion: proving knowledge of a proof

public: 𝑥

witness: 𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)

π

proves 𝑃 knows w s.t.
𝐶(𝑥,𝑤) = 0

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′

𝑥

proves 𝑃′ knows 𝜋 s.t.
𝑉(𝑥, 𝜋) = 𝑦𝑒𝑠𝑣𝑝,

Use V’(x, 𝜋’) to verify final proof 𝜋’𝑣𝑝′,

Application 1: proof compression

public: 𝑥

witness: 𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)

π

fast prover, but
outputs a large proof

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′

𝑥

slower prover,
small final proof

prove 𝑉(𝑥, 𝜋) = 𝑦𝑒𝑠𝑣𝑝,prove 𝐶(𝑥, 𝑤) = 0

Use V’(x, 𝜋’) to verify final short proof 𝜋’𝑣𝑝′,

Application 2: Layer three and beyond

Alice:
 2 ETH, 1 DAI

Bob:
 5 ETH, 2 DAI

Uniswap:
 state

Rollup contract:

…

…
7 ETH, 3 DAI, root

L2 Rollup state

Layer-1 blockchain (L1)

Alice:
 state

L3 Rollup contract:
 state root

Alice:
 state

Bob:
 state

… L3 Rollup state (any VM)

Layer three and beyond
One L2 coordinator can support many L3s
• each L3 can run a custom VM with its own features
• L3 chains can communicate with each other through L2

Each L3 coordinator submits Tx list and SNARK proof to L2
• L2 coordinator: collects batch of proofs,
• builds a proof 𝜋 that it has a batch of valid proofs, and
• submits the single proof 𝜋 and updated root to L1 chain.

END OF LECTURE

Next lecture: final topics

