
Scaling the blockchain part I:
Payment Channels and State Channels

CS251 Fall 2023
(cs251.stanford.edu)

Dan Boneh

… but first, last words on SNARKs (for now)

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,
Noir,

…

compiler

SNARK
friendly
format
circuit,
R1CS,

EVM code,
assembly

code,
RISC-V

SNARK
backend
prover

𝑥, witness

𝜋

heavy
computation

domain
specific
language

(circuit)

…

Polynomial
Relations

<latexit sha1_base64="D23aFyPR+r1r5aPeOJrZMZh25KM=">AAACPHicbVBNS8NAFNz4bfyqevTysCh6KYmIiiAIgnhUtFZoStlsX3TpZhN3N0II/WFe/BHePHnxoIhXz25rDlodWBhm3uPtTJgKro3nPTkjo2PjE5NT0+7M7Nz8QmVx6VInmWJYZ4lI1FVINQousW64EXiVKqRxKLARdo/6fuMOleaJvDB5iq2YXksecUaNldqV83UIokRRISCHgEs4gUBnoUaDtxDE1NyEYXHc24cgcO3obUY7ELX9jXwTDsD7rW6VartS9WreAPCX+CWpkhKn7cpj0ElYFqM0TFCtm76XmlZBleFMYM8NMo0pZV16jU1LJY1Rt4pB+B6sWcVeT5R90sBA/blR0FjrPA7tZD+OHvb64n9eMzPRXqvgMs0MSvZ9KMoEmAT6TUKHK2RG5JZQprj9K7Abqigztm/XluAPR/5LLrdq/k5t+2y7erhX1jFFVsgq2SA+2SWH5ISckjph5J48k1fy5jw4L8678/E9OuKUO8vkF5zPLyqHqSE=</latexit>

8y 2 H ✓ F :

f1(y) = 0

f2(y) = 0

𝑥, witness
circuit

𝜋

arithm
etization

proves
polynomial

rela3ons

… but first, last words on SNARKs (for now)

𝜋𝑥, witness
circuit

Scaling the blockchain

Bitcoin Tx per second

⇒ max: 7 Tx/sec

≈4200 Tx/block
1 block / 10 mins

Ethereum Tx per second

Simple Tx: 21k Gas
max 30M Gas per block
 ⇒ max 1428 tx/block

1 Block/12s
 ⇒ max 119 tx/s

Ethereum avg Tx per second:

≈ 15 Tx/sec

In comparison …

Visa: up to 24,000 Tx/sec (regularly 2,000 Tx/sec)

PayPal: 200 Tx/sec

Ethereum: 15 Tx/sec

Bitcoin: 7 Tx/sec

Goal: scale up blockchain Tx speed

How to process more Tx per second

Many ideas:

• Use a faster consensus protocol

• Parallelize: split the chain into independent shards

• Rollup: move work somewhere else (next lecture)

• Today: payment channels, reduce the need to touch the chain

reduced
composability

Payment Channels: the basic idea

☕

Tx1: 0.01 ETH
Tx2: 0.01 ETH
Tx3: 0.01 ETH

☕☕

Instead can do this:
 Alice deposits 1 ETH with Bob.
 At the end of the month, Bob
 refunds unused deposit to Alice.

Tx fee
per purchase!

only two Tx,
hundreds of
coffees

Unidirectional Payment Channel

Tx1: send 0.99 to Alice / 0.01 to Bob from Contract A
signed by Alice

Bob does not post on chain
Contract A:

1 ETH

Tx2: send 0.98 to Alice / 0.02 to Bob from Contract A
signed by Alice

Tx3: send 0.97 to Alice / 0.03 to Bob from Contract A
signed by Alice

Post Tx3 on
Blockchain
(close channel)

Problem: Alice could post Tx1 before Bob
even though she bought three coffees.

Alice
creates:

A solu@on?

Tx1: send 0.99 to Alice / 0.01 to Bob from Contract A
signed by Alice

Contract A:
1 ETH

Tx2: send 0.98 to Alice / 0.02 to Bob from Contract A
signed by Alice

Tx3: send 0.97 to Alice / 0.03 to Bob from Contract A
signed by Alice

Post Tx3 on
Blockchain
(close channel)

Problem: What if Bob never publishes Tx3?
⇒ Alice never gets her 0.97 ETH back !!

Alice
creates: Only Bob can close the channel

Unidirec@onal Payment Channel
Alice needs a way to ensure refund if Bob disappears

Solu_on: create a channel that can be closed in one of two ways

• Normal close Tx: Sends 0.97 to Alice / 0.03 to Bob
… requires signatures by both Alice and Bob.

• Timelock Tx: Sends 1 ETH to Alice
… requires signature by Alice,

but is accepted 7 days a:er channel is created

Unidirec@onal Payment Channel

Aaer 6 days:
• Bob can close channel by signing and pos_ng Tx3.

Aaer 7 days:
• Alice can close channel using _melock Tx, gets back her 1 ETH.

• Timelock period determines the lifespan of channel

• Once Alice sends the full 1 ETH to Bob, the Channel is ”exhausted”

Payment Channel in Solidity

verify Alice’s signature on
final amount.
Only Bob can call close() !!

send all funds to sender aLer Mmelock

Alice creates contract with funds,
specifies Mmelock and recipient

Bidirec@onal Payment Channel
Alice and Bob want to move funds back and forth

Two Unidirec_onal Channels?

Not as useful because Channels get exhausted

Bidirectional Payment Channel

A: 0.5 ETH, B: 0.5 ETH, Nonce=0

A: 0.6, Bob: 0.4, Nonce=1
 Alice sig, Bob sig

On Ethereum: create a shared contract, each contributes 0.5 ETH:

Off chain: Bob sends 0.1 ETH to Alice by both signing new state:

channel
state:

new
state:

Bidirec@onal Payment Channel

balance: 1 ETH, Nonce=0

On chain contract does not change:

A: 0.3, Bob: 0.7, Nonce=7
 Alice sig, Bob sig

Off chain: Alice and Bob can move funds back and forth
 by sending updated state sigs to each other:

(7th transfer)

Eventually: Alice wants to close payment channel

if Bob does nothing for 3 days:
 ⇒ funds disbursed according to Alice’s submiged state
if Bob submits signed state with a higher nonce (e.g., nonce=9)
 ⇒ funds disbursed according to Bob’s submiged state

A: 0.3 ETH, B: 0.7 ETH, Nonce=7

Alice does: sends latest balances and signatures to contract
 ⇒ starts challenge period (say, 3 days)

(pending close)on chain:

Watchtowers

Bidirec_onal channel requires Bob
to constantly check that Alice did
not try to close the channel with an
old stale state
 ⇒ post latest state if she did

Watchtowers outsource this task Trusted for availability

Bob sends latest state to watchtower.

Main points: summary

Payment channel between Alice and Bob:

• One on-chain Tx to create channel (deposit funds);

• Alice & Bob can send funds to each other off-chain
… as many Tx as they want;

• One on-chain Tx to close channel and disburse funds

⇒ only two on-chain Tx

A more general concept: State Channels
Smart contract that implements a game between Alice and Bob.

Begin game & end game: on chain. All moves are done off-chain.

State Channels
Can be used to implement any 2-party contract off chain!

two Tx on-chain: contract crea_on and termina_on

The Lightning Network

Bidirec'onal channels on Bitcoin

Bidirectional payment channels on Bitcoin

Problem: no updatable state in UTXOs ⇒
much harder to implement a bidirectional channel

SoluGon:
• When updaGng the channel to Alice’s benefit,
 Alice gets TX that invalidates Bob’s old state

UTXO payment channel concepts
Will create UTXO that can be spent in one of two ways: (using IF opcode)

• Rela@ve @me-lock: UTXO contains a posi_ve number t.
A properly signed Tx can spend this UTXO
𝑡 blocks (or more) aaer it was created (CLTV opcode)

• Hash lock: UTXO contains a hash image X.
A properly signed Tx can spend this UTXO immediately
by presen_ng x s.t. X = SHA256(x).

(x is called a hash preimage of X)

Example script

OP_IF // Alice can redeem UTXO any ;me using a preimage
OP_HASH256 <digest> OP_EQUALVERIFY // redeem by providing <digest> preimage,
DUP HASH256 <AlicePKhash> EQVERIFY CHECKSIG // and Alice’s signature

OP_ELSE // Bob can redeem UTXO only aVer ;melock
<num> OP_CLTV OP_DROP // redeem <num> blocks aVer UTXO created,
DUP HASH256 <BobPKhash> EQVERIFY CHECKSIG // and Bob’s signature

OP_ENDIF

Example lock_me redeem script: two ways to redeem UTXO

This is called a hash-timelock contract (HTLC).

UTXO Payment Channel
2-of-2 mul_sig address AB

Value: 10 BTC

Random x Random y

X=H(x)

Y=H(y)

TX1: input: UTXO for address AB
Out1: pay 7 ⇾ A
Out2: either 3 ⇾ B, 7 day 3melock
 or 3 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX2: input UTXO for address AB
pay 3 -> B
either 7 ⇾ A, 7 day timelock
or 7 ⇾ B now, given x s.t. H(x)=X
Bob sig

7 3

address AB:

Alice can sign and post Tx2, wait 7 days, and get her funds back

spending requires
sigs by Alice and Bob

Payment Channel Update: Alice pays Bob
2-of-2 Mul_sig UTXO AB

Value: 10 BTC

Random x’

X’=H(x’)

TX3 input: UTXO for address AB
Out1: pay 6 ⇾ A
Out2: either 4 ⇾ B, 7 day 3melock
 or 4 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX4 input: UTXO for address AB
pay 4 ⇾ B
either 6 ⇾ A, 7 day 3melock
or 6 ⇾ B now, given x’ s.t. H(x’)=X’
Bob sig

x

Alice sends 1BTC to Bob (off chain)

☕

Security: ways to close the channel?

TX3: (current state)
pay 6 ⇾ A
either 4 ⇾ B, 7 day timelock
or 4 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX4: (current state)
pay 4 ⇾ B
either 6 ⇾ A, 7 day timelock
or 6 ⇾ B now, given x’ s.t. H(x’)=X’
Bob sig

TX1: (stale stale)
pay 7 ⇾ A
either 3 ⇾ B, 7 day _melock
or 3 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX2: (stale state)
pay 3 ⇾ B
either 7 ⇾ A, 7 day _melock
or 7 ⇾ B now, given x s.t. H(x)=X
Bob sig

Alice has TX2,TX4, x, x’ Bob has TX1,TX3, y, x

Security: ways to close the channel?

TX3: (current state)
pay 6 ⇾ A
either 4 ⇾ B, 7 day _melock
or 4 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX4: (current state)
pay 4 ⇾ B
either 6 ⇾ A, 7 day timelock
or 6 ⇾ B now, given x’ s.t. H(x’)=X’
Bob sig

TX1:
pay 7 ⇾ A
either 3 ⇾ B, 7 day timelock
or 3 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX2:
pay 3 ⇾ B
either 7 ⇾ A, 7 day _melock
or 7 ⇾ B now, given x s.t. H(x)=X
Bob sig

Alice has TX2,TX4, x, x’ Bob has TX1,TX3, y, x

The good case:
Alice can post Tx4 or Bob can post Tx3 to chain and

close channel aaer 7 days
A gets 6, B gets 4

Security: ways to close the channel?

TX3:
pay 6 ⇾ A
either 4 ⇾ B, 7 day _melock
or 4 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX4:
pay 4 ⇾ B
either 6 ⇾ A, 7 day timelock
or 6 ⇾ B now, given x’ s.t. H(x’)=X’
Bob sig

TX1: (stale state)
pay 7 ⇾ A
either 3 ⇾ B, 7 day timelock
or 3 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX2: (stale state)
pay 3 ⇾ B
either 7 ⇾ A, 7 day _melock
or 7 ⇾ B now, given x s.t. H(x)=X
Bob sig

Alice has TX2,TX4, x, x’ Bob has TX1,TX3, y, x

The bad case (Alice cheats):
if Alice posts the stale Tx2 then Bob will use x to take all 10 BTC

⇒ sending x to Bob revokes the stale Tx2 held by Alice

Payment Channel Update: Bob pays Alice
2-of-2 Mul_sig Address C:

Value: 10 BTC

Random y’

Y’=H(y’)

TX5 input: UTXO for address AB
pay 8 ⇾ A
either 2 ⇾ B, 7 day _melock
or 2 ⇾ A now, given y s.t. H(y’)=Y’
Alice sig

TX6 input: UTXO for address AB
pay 2 ⇾ B
either 8 ⇾ A, 7 day _melock
or 8 ⇾ B now, given x s.t. H(x’)=X’
Bob sig

y

Bob sends 2BTC to Alice (off chain)

Security: ways to close the channel?

TX3:
pay 6 ⇾ A
either 4 ⇾ B, 7 day _melock
or 4 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX2:
pay 3 ⇾ B
either 7 ⇾ A, 7 day timelock
or 7 ⇾ B now, given x s.t. H(x)=X
Bob sig

TX5:
pay 8 ⇾ A
either 2 ⇾ B, 7 day timelock
or 2 ⇾ A now, given y s.t. H(y’)=Y’
Alice sig

TX6:
pay 2 ⇾ B
either 8 ⇾ A, 7 day _melock
or 8 ⇾ B now, given x s.t. H(x’)=X’
Bob sig

Bob has TX3,TX5, y, y’, x Alice has TX2,TX6, x, x’, y

Security: ways to close the channel?

TX3:
pay 6 ⇾ A
either 4 ⇾ B, 7 day _melock
or 4 ⇾ A now, given y s.t. H(y)=Y
Alice sig

TX2:
pay 3 ⇾ B
either 7 ⇾ A, 7 day _melock
or 7 ⇾ B now, given x s.t. H(x)=X
Bob sig

TX5:
pay 8 ⇾ A
either 2 ⇾ B, 7 day timelock
or 2 ⇾ A now, given y s.t. H(y’)=Y’
Alice sig

TX6:
pay 2 ⇾ B
either 8 ⇾ A, 7 day timelock
or 8 ⇾ B now, given x s.t. H(x’)=X’
Bob sig

Bob has TX3,TX5, y, y’, x Alice has TX2,TX6, x, x’, y

The bad case (Bob cheats):
Bob posts the stale Tx3 ⇒ Alice will use y to take all 10 BTC

Watchtowers again

Bidirec_onal channel requires Bob
to constantly check that Alice did
not try to close the channel with an
old stale state
 ⇒ use hashlock value if she did

Trusted for availability

Bob needs to always send latest hashlock value to watchtower.

Multihop payments

Mul@-hop payments

Alice wants to pay Carol 1 BTC through untrusted intermediary Bob

Alice has channel
with bank Bob

Carol has channel
with bank Bob

How: (i) Alice pays Bob 1.01 BTC, (ii) Bob pays Carol 1 BTC

The challenge: steps (i) and (ii) need to be atomic

Multi-hop payments (briefly)

Random r

R=H(r)

Pay 1.01 BTC to B:
 Hashlocked to B with R,
 Timelock to A for refund

Pay 1 BTC to C:
 Hashlocked to C with R,
 Timelock to B for refund

C can claim 1 BTC on-chain with r
 ⇒ r is publicly known

Then B can claim 1.01 BTC with r

if Carol never claims, Alice & Bob get funds back aaer _melock

Alice sig Bob sig

send to B: send to C:

A B C

The lightning network

Many extensions possible: multi currency hubs, credit hubs, …

The network: lots of open bi-directional payment channels.

Alice wants to pay Bob: she finds a route to Bob through the graph

Stats
nodes in lightning network (Nov. 2023)

16,150

Number of channels: 63K

Network capacity: ≈$205M

Next lecture: scaling via Rollups

END OF LECTURE

