CS251 Fall 2023 (cs251.stanford.edu)

Building a SNARK

Dan Boneh

Recap: zk-SNARK applications

Private Tx on a public blockchain: Zcash, IronFish

Compliance:

- Proving that a private Tx are in compliance with banking laws
- Proving solvency in zero-knowledge

Scalability: privacy in a zk-SNARK Rollup (next week)

Bridging between blockchains: zkBridge

(preprocessing) NARK: Non-interactive ARgument of Knowledge

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

Preprocessing (setup): $S(C) \rightarrow \text{public parameters } (pp, vp)$

NARK: requirements (informal)

Prover P(pp, x, w)

Verifier V (vp, x, π)

proof
$$\pi$$
 accept or reject

Complete:
$$\forall x, w$$
: $C(x, w) = 0 \Rightarrow Pr[V(vp, x, P(pp, x, w)) = accept] = 1$

Adaptively **knowledge sound**: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0 (an extractor E can extract a valid w from P)

Optional: **Zero knowledge**: (C, pp, vp, x, π) "reveal nothing new" about **w** (witness exists \Rightarrow can simulate the proof)

SNARK: a Succinct ARgument of Knowledge

A <u>succinct</u> preprocessing NARK is a triple (S, P, V):

- $S(C) \rightarrow \text{public parameters } (pp, vp)$ for prover and verifier
- $P(pp, x, w) \rightarrow \underline{short} \operatorname{proof} \pi$; $\operatorname{len}(\pi) = O_{\lambda}(\underline{polylog}(|C|))$

$$len(\pi) = O_{\lambda}(\mathbf{polylog}(|C|))$$

• $V(vp, x, \pi)$ fast to verify;

time(V) =
$$O_{\lambda}(|x|, \mathbf{polylog}(|C|))$$

short "summary" of circuit

A simple PCP-based SNARK

[Kilian'92, Micali'94]

A simple construction: PCP-based SNARK

The PCP theorem: Let C(x, w) be an arithmetic circuit.

there is a proof system that for every x proves $\exists w : C(x, w) = 0$ as follows:

V always accepts valid proof. If no w, then V rejects with high prob.

size of proof π is poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Verifier sees $O(\lambda \log |C|)$ data \Rightarrow succinct proof.

Problem: interactive

Making the proof non-interactive

The **Fiat-Shamir transform**:

 public-coin interactive protocol ⇒ non-interactive protocol public coin: all verifier randomness is public (no secrets)

Making the proof non-interactive

Fiat-Shamir transform: $H: M \rightarrow R$ a cryptographic hash function

• idea: prover generates random bits on its own (!)

Fiat-Shamir: certain secure interactive protocols \implies non-interactive

Are we done?

Simple transparent SNARK from the PCP theorem

- Use Fiat-Shamir transform to make non-interactive
- We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = $\tilde{O}(|C|)$

Building an efficient SNARK

General paradigm: two steps

(1) A polynomial commitment scheme (cryptographic object)

(2) A polynomial interactive oracle proof (Poly-IOP)

(info. theoretic object)

SNARK for general circuits

Let's explain each concept ...

Recall: commitments

Two algorithms:

- $commit(m, r) \rightarrow com$ (r chose at random)
- $verify(m, com, r) \rightarrow accept or reject$

Properties:

- binding: cannot produce two valid openings for com
- hiding: com reveals nothing about committed data

(1) Polynomial commitment scheme (PCS)

Notation: $\mathbb{F}_p^{(\leq d)}[X]$ is all polynomials in $\mathbb{F}_p[X]$ of degree \leq d.

Prover commits to a polynomial f(X) in $\mathbb{F}_p^{(\leq d)}[X]$ (univariate)

• *eval*: for public $u, v \in \mathbb{F}_p$, prover can convince the verifier that committed poly satisfies

$$f(u) = v$$
 and $\deg(f) \le d$. verifier has (d, com_f, u, v)

• Eval proof size and verifier time should be $O_{\lambda}(\log d)$

f

(1) Polynomial commitment scheme (PCS)

- $\underline{setup}(d) \rightarrow pp$, public parameters for polynomials of degree $\leq d$
- $\underline{commit}(pp, f, r) \rightarrow com_f$ commitment to $f \in \mathbb{F}_p^{(\leq d)}[X]$
- <u>eval</u>: goal: for a given com_f and $x, y \in \mathbb{F}_p$, prove that f(x) = y.

```
Formally: eval = (s, P, V) is a SNARK for: statement st = (pp, com_f, x, y) with witness = w = (f, r) where C(st, w) = 0 iff  [f(x) = y \ and \ f \in \mathbb{F}_p^{(\leq d)}[X] \ and \ commit(pp, f, r) = com_f ]
```

(1) Polynomial commitment scheme (PCS)

Properties:

- Binding: cannot produce two valid openings (f_{1}, r_{1}) , (f_{2}, r_{2}) for com_{f} .
- eval is knowledge sound (can extract (f, r) from a successful prover)
- optional:
 - commitment is hiding
 - eval is zero knowledge

Note: poly. commitments have many applications beyond SNARKs

Constructing a PCS

Not today ... (see readings or CS355)

Properties of the most widely used in practice (called KZG):

- trusted setup: secret randomness in setup. $|pp| = O_{\lambda}(d)$
- com_f: constant size (one group element)
- eval proof size: constant size (one group element)
- eval verify time: constant time. Prover time: $O_{\lambda}(d)$

General paradigm: two steps

A polynomial (1)commitment scheme (cryptographic object) **SNARK** for general circuits A polynomial interactive oracle proof (Poly-IOP) (info. theoretic object) What is a Poly-IOP?

Component 2: Polynomial IOP

Let C(x, w) be some arithmetic circuit. Let $x \in \mathbb{F}_p^n$.

Poly-IOP: a proof system that proves $\exists w : C(x, w) = 0$ as follows:

Setup(C) \rightarrow public parameters pp and $vp = ([f_0], [f_{-1}], ..., [f_{-s}])$

Polynomial IOP

query f_{-s}, \dots, f_t at a few points

send values (and eval proofs)

→ accept/reject

The Plonk poly-IOP

Goal: construct a poly-IOP called **Plonk** (eprint/2019/953)

[Gabizon – Williamson – Ciobotaru]

Plonk + PCS ⇒ SNARK

(and also a zk-SNARK)

[PCS = Polynomial Commitment Scheme]

Proving properties of committed polynomials

Goal: succinct proofs

Proving properties of committed polynomials

Prover P(f, g)

Verifier V(f, g)

Goal: convince verifier that $f, g \in \mathbb{F}_p^{(\leq d)}[X]$ satisfy some properties

Proof systems presented as a Poly-IOP:

A simple example: polynomial equality testing

Prover

 $m{f}$, $m{g} \in \mathbb{F}_p^{(\leq d)}[X]$

Goal: convince verifier that f = g

query f(X) and g(X) at r

Verifier

 $f \mid g \mid$

 $r \stackrel{\$}{\leftarrow} \mathbb{F}_p$

learn f(r), g(r)

accept if:

$$f(r) = g(r)$$

Why is this sound?

Why is this sound?

A key fact: for non-zero
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$

for
$$r \leftarrow \mathbb{F}_p$$
: $\Pr[f(r) = 0] \le d/p$ (*)

- \Rightarrow suppose $p \approx 2^{256}$ and $d \le 2^{40}$ then d/p is negligible
- \Rightarrow for $r \leftarrow \mathbb{F}_p$: if f(r) = 0 then f is identically zero w.h.p
 - \Rightarrow a simple test if a committed poly. is the zero poly.

SZDL lemma: (*) also holds for **multivariate** polynomials (where d is total degree of f)

Why is this sound?

Suppose $p \approx 2^{256}$ and $d \le 2^{40}$ so that d/p is negligible

Let
$$f, g \in \mathbb{F}_p^{(\leq d)}[X]$$
.

For
$$r \leftarrow \mathbb{F}_p$$
, if $f(r) = g(r)$ then $f = g$ w.h.p

$$f(r) - g(r) = 0 \quad \Rightarrow \quad f - g = 0 \quad \text{w.h.p}$$

⇒ a simple equality test for two committed polynomials

The polynomial equality testing protocol

Lemma: complete and sound assuming d/p is negligible

Review: the compiled proof system

 $oldsymbol{f}$, $oldsymbol{g} \in \mathbb{F}_p^{(\leq d)}[X]$

$$y \leftarrow f(r)$$
$$y' \leftarrow g(r)$$

Make non-interactive using Fiat-Shamir

r

proof that y = f(r)

y, π_f

proof that y' = g(r)

y', π_g

Verifier

 $f \mid g$

$$r \stackrel{\$}{\leftarrow} \mathbb{F}_p$$

learn f(r), g(r)

accept if:

(i)
$$y = y'$$
 and

(ii) π_f , π_g are valid

Important proof gadgets for univariates

Let Ω be some subset of \mathbb{F}_p of size k.

Let
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$
 $(d \geq k)$ Verifier has f

Let us construct efficient Poly-IOPs for the following tasks:

Task 1 (**ZeroTest**): prove that f is identically zero on Ω

Task 2 (**SumCheck**): prove that $\sum_{a \in \Omega} f(a) = 0$

Task 3 (**ProdCheck**): prove that $\prod_{a \in \Omega} f(a) = 1$

The vanishing polynomial

Let Ω be some subset of \mathbb{F}_p of size k.

Def: the **vanishing polynomial** of
$$\Omega$$
 is $Z_{\Omega}(X) \coloneqq \prod_{a \in \Omega} (X - a)$ $\deg(Z_{\Omega}) = k$

Let $\omega \in \mathbb{F}_p$ be a primitive k-th root of unity (so that $\omega^k = 1$).

- if $\Omega = \{1, \omega, \omega^2, ..., \omega^{k-1}\} \subseteq \mathbb{F}_p$ then $Z_{\Omega}(X) = X^k 1$
- \Rightarrow for $r \in \mathbb{F}_p$, evaluating $Z_{\Omega}(r)$ takes $2 \log_2 k$ field operations

(1) ZeroTest on Ω

$$(\Omega = \{ 1, \omega, \omega^2, ..., \omega^{k-1} \})$$

Prover P(f)

$$q(X) \leftarrow f(X)/Z_{\Omega}(X)$$

$$q \in \mathbb{F}_p^{(\leq d)} \left[X \right]$$

query q(X) and f(X) at r

Lemma: f is zero on Ω if and only if f(X) is divisible by $Z_{\Omega}(X)$

Verifier V(

$$r \stackrel{\$}{\leftarrow} \mathbb{F}_p$$

learn q(r), f(r)

accept if $f(r) \stackrel{?}{=} q(r) \cdot Z_{\Omega}(r)$

(implies that $f(X) = g(X) \cdot Z_{\Omega}(X)$ w.h.p)

this protocol is complete and sound, assuming d/p is negligible.

(1) ZeroTest on Ω

$$(\Omega = \{ 1, \omega, \omega^2, ..., \omega^{k-1} \})$$

Prover P(f)

 $q \in \mathbb{F}_p^{(\leq d)}[X]$ $q(X) \leftarrow f(X)/Z_{\Omega}(X)$

query q(X) and f(X) at r

Lemma: f is zero on Ω if and only if f(X) is divisible by $Z_{\Omega}(X)$

learn q(r), f(r)accept if $f(r) \stackrel{?}{=} q(r) \cdot Z_{\Omega}(r)$

(implies that $f(X) = q(X) \cdot Z_{\Omega}(X)$ w.h.p)

Verifier time: $O(\log k)$ and two poly queries (but can be batched)

Prover time: dominated by time to compute q(X) and commit to q(X)

(4) Another useful gadget: permutation check

Let f, g polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has f, g.

Prover wants to prove that
$$(f(1), f(\omega), f(\omega^2), ..., f(\omega^{k-1})) \in \mathbb{F}_p^k$$
 is a permutation of $(g(1), g(\omega), g(\omega^2), ..., g(\omega^{k-1})) \in \mathbb{F}_p^k$

 \Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, just permuted

(4) Another useful gadget: permutation check

Prover
$$P(f,g)$$

Let $\hat{f}(X) = \prod_{a \in \Omega} (X - f(a))$ and $\hat{g}(X) = \prod_{a \in \Omega} (X - g(a))$

Then: $\hat{f}(X) = \hat{g}(X) \iff g(\Omega)$ is a permutation of $f(\Omega)$
 $r \qquad r \Leftrightarrow \mathbb{F}_p$

prove that $\hat{f}(r) = \hat{g}(r)$

prod-check: $\frac{\hat{f}(r)}{\hat{g}(r)} = \prod_{a \in \Omega} \left(\frac{r - f(a)}{r - g(a)}\right) = 1$

implies $\hat{f}(X) = \hat{g}(X)$ w.h.p

[Lipton's trick, 1989]

(5) final gadget: prescribed permutation check

$$W:\Omega \to \Omega$$
 is a **permutation of** Ω if $\forall i \in [k]: W(\omega^i) = \omega^j$ a bijection example $(k=3): W(\omega^0) = \omega^2$, $W(\omega^1) = \omega^0$, $W(\omega^2) = \omega^1$

Let f,g polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has f, g, W.

Goal: prover wants to prove that
$$f(y) = g(W(y))$$
 for all $y \in \Omega$

 \Rightarrow Proves that $g(\Omega)$ is the same as $f(\Omega)$, permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove f(y) - g(W(y)) = 0 on Ω

The problem: the polynomial f(y) - g(W(y)) has degree k^2

- ⇒ prover would need to manipulate polynomials of degree k²
- ⇒ quadratic time prover !! (goal: linear time prover)

Can reduce this to a prod-check on a poly of degree $2k \pmod{k^2}$

Summary of proof gadgets

polynomial equality testing

zero test on Ω

product check, sum check

permutation check

prescribed permutation check

The PLONK Poly-IOP for general circuits

eprint/2019/953

PLONK: widely used in practice

PLONK: a poly-IOP for a general circuit C(x, w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

Encoding the trace as a polynomial

$$|C|\coloneqq \operatorname{total} \# \operatorname{of} \operatorname{gates} \operatorname{in} C \ , \qquad |I|\coloneqq |I_x|+|I_w|=\# \operatorname{inputs} \operatorname{to} C$$
 let $d\coloneqq 3 \ |C|+|I| \ \ (\operatorname{in} \operatorname{example}, d=12) \ \ \operatorname{and} \ \ \Omega\coloneqq \{\,1,\,\omega,\,\omega^2,...,\,\omega^{d-1}\,\}$

The plan:

prover interpolates a poly. $T \in \mathbb{F}_p^{(\leq d)}[X]$ that encodes the entire trace.

Let's see how ...

inputs:	5,	6,	1_
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

The plan: Prover interpolates $T \in \mathbb{F}_p^{(\leq d)}[X]$ such that

- (1) **T** encodes all inputs: $T(\omega^{-j}) = \text{input } \#j$ for j = 1, ..., |I|
- (2) T encodes all wires: $\forall l = 0, ..., |C| 1$:
 - $T(\omega^{3l})$: left input to gate #l
 - $T(\omega^{3l+1})$: right input to gate #l
 - $T(\omega^{3l+2})$: output of gate #l

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:

inputs:
$$T(\omega^{-1}) = 5$$
, $T(\omega^{-2}) = 6$, $T(\omega^{-3}) = 1$, gate 0: $T(\omega^{0}) = 5$, $T(\omega^{1}) = 6$, $T(\omega^{2}) = 11$, gate 1: $T(\omega^{3}) = 6$, $T(\omega^{4}) = 1$, $T(\omega^{5}) = 7$, gate 2: $T(\omega^{6}) = 11$, $T(\omega^{7}) = 7$, $T(\omega^{8}) = 77$

degree(T) = 11

Prover can use FFT to compute the coefficients of T in time $O(d \log d)$

inputs:	5,	6, 1	_
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Step 2: proving validity of T

$$\frac{\text{Prover P}(S_p, \mathbf{X}, \mathbf{w})}{\text{build T}(X) \in \mathbb{F}_p^{(\leq d)}[X]}$$

Verifier $V(S_v, x)$

Prover needs to prove that T is a correct computation trace:

- (1) T encodes the correct inputs,
- (2) every gate is evaluated correctly,
- (3) the wiring is implemented correctly,
- (4) the output of last gate is 0

Proving (4) is easy: prove $T(\omega^{3|C|-1}) = 0$

(wiring constraints)

inputs:	5 ,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7 ,	77

Proving (1): Tencodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) = \text{input } \#j$

In our example: $v(\omega^{-1}) = 5$, $v(\omega^{-2}) = 6$. (v is linear)

constructing v(X) takes time proportional to the size of input x

⇒ verifier has time do this

Proving (1): Tencodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) = \text{input } \#j$

Let
$$\Omega_{\text{inp}} \coloneqq \{ \omega^{-1}, \omega^{-2}, ..., \omega^{-|I_{\chi}|} \} \subseteq \Omega$$
 (points encoding the input)

Prover proves (1) by using a ZeroTest on Ω_{inp} to prove that

$$T(y) - v(y) = 0 \quad \forall y \in \Omega_{inp}$$

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

define
$$S(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 such that $\forall l = 0, ..., |C| - 1$: $S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate $S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

inputs:	5,	6,	1	S(X)	
Gate 0 (ω^0):	5 ,	6,	11	1	(+)
Gate 1 (ω^3):	6 ,	1,	7	1	(+)
Gate 2 (ω^6):	11,	7 ,	77	0	(×)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

left input right input

```
define S(X) \in \mathbb{F}_p^{(\leq d)}[X] such that \forall l = 0, ..., |C| - 1: S(\omega^{3l}) = 1 if gate \#l is an addition gate S(\omega^{3l}) = 0 if gate \#l is a multiplication gate
```

```
Then \forall y \in \Omega_{\text{gates}} \coloneqq \{1, \omega^3, \omega^6, \omega^9, ..., \omega^{3(|C|-1)}\}:
S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) = T(\omega^2 y)
```

left input right input

output

Proving (2): every gate is evaluated correctly

Setup(C)
$$\rightarrow pp := S$$
 and $vp := (S)$

$$\frac{\text{Prover P}(pp, \textbf{\textit{x}}, \textbf{\textit{w}})}{\text{build } T(X) \in \mathbb{F}_p^{(\leq d)}[X]} \xrightarrow{\text{Verifier V}(vp, \textbf{\textit{x}})}$$

Prover uses ZeroTest to prove that for all $\forall y \in \Omega_{gates}$:

$$S(y)\cdot[T(y)+T(\omega y)] + (1-S(y))\cdot T(y)\cdot T(\omega y) - T(\omega^2 y) = 0$$

Proving (3): the wiring is correct

Step 4: encode the wires of C:

$$\begin{cases} T(\omega^{-2}) = T(\omega^{1}) = T(\omega^{3}) \\ T(\omega^{-1}) = T(\omega^{0}) \\ T(\omega^{2}) = T(\omega^{6}) \\ T(\omega^{-3}) = T(\omega^{4}) \end{cases}$$

Define a polynomial W: $\Omega \rightarrow \Omega$ that implements a rotation:

$$W(\omega^{-2},\,\omega^{1}\,,\,\omega^{3})=(\omega^{1},\,\,\omega^{3},\,\omega^{-2}\,)\ ,\quad W(\omega^{-1},\,\omega^{0})=(\omega^{0}\,,\,\omega^{-1})\,,\,\,\ldots$$

<u>Lemma</u>: $\forall y \in \Omega$: $T(y) = T(W(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): the wiring is correct

Step 4: encode the wires of C:

$$T(\omega^{-2}) = T(\omega^{1}) = T(\omega^{3})$$

$$T(\omega^{-1}) = T(\omega^{0})$$

$$T(\omega^{2}) = T(\omega^{6})$$

example: $x_1 = 5$, $x_2 = 6$, $w_1 = 1$ $\omega^{-1}, \ \omega^{-2}, \ \omega^{-3}$: **5**, **6**, **1**0: $\omega^0, \ \omega^1, \ \omega^2$: **5**, **6**, **11**1: $\omega^3, \ \omega^4, \ \omega^5$: **6**, **1**, **7**

Proved using a prescribed permutation check

Define a polynon

$$W(\omega^{-2}, \omega^1, \omega^3)$$

 $\rightarrow \Omega$ that implements a rotation:

$$(\omega^{3}, \omega^{-2})$$
, $W(\omega^{-1}, \omega^{0}) = (\omega^{0}, \omega^{-1})$, ...

<u>Lemma</u>: $\forall y \in \Omega$: $T(y) \stackrel{?}{=} T(W(y)) \Rightarrow$ wire constraints are satisfied

The complete Plonk Poly-IOP (and SNARK)

Setup(
$$C$$
) $\rightarrow pp \coloneqq (S,W)$ and $vp \coloneqq (S \text{ and } W)$ (untrusted)

Prover $P(pp, x, \mathbf{w})$ build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$ T build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

Prover proves:

gates: (1)
$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0$$
; $\forall y \in \Omega_{gates}$

inputs: (2)
$$T(y) - v(y) = 0$$
 $\forall y \in \Omega_{inp}$

wires: (3)
$$T(y) - T(W(y)) = 0$$
 (using prescribed perm. check) $\forall y \in \Omega$

output: (4)
$$T(\omega^{3|C|-1}) = 0$$
 (output of last gate = 0)

The complete Plonk Poly-IOP (and SNARK)

Setup(
$$C$$
) $\rightarrow pp \coloneqq (S,W)$ and $vp \coloneqq (S \text{ and } W)$ (untrusted)

Prover $P(pp, x, w)$
build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$

$$T$$
build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

<u>Thm</u>: The Plonk Poly-IOP is complete and knowledge sound, assuming 7|C|/p is negligible

(eprint/2019/953)

Many extensions ...

- Plonk proof: a short proof (O(1) commitments), fast verifier
- The SNARK can be made into a zk-SNARK

Main challenge: reduce prover time

- **Hyperplonk**: replace Ω with $\{0,1\}^t$ (where $t = \log_2 |\Omega|$)
 - The polynomial T is now a multilinear polynomial in t variables
 - ZeroTest is replaced by a multilinear SumCheck (linear time)

END OF LECTURE

Next lecture: scaling the blockchain