CS251 Fall 2023
(cs251.stanford.edu)

Building a SNARK

Dan Boneh

Recap: zk-SNARK applications

Private Tx on a public blockchain: Zcash, IronFish

Compliance:
* Proving that a private Tx are in compliance with banking laws
* Proving solvency in zero-knowledge

Scalability: privacy in a zk-SNARK Rollup (next week)

Bridging between blockchains: zkBridge

reprocessingg NARK: Non-interactive ARgument of Knowledge

Public arithmetic circuit: C(x, w) — [F

)

public statement in F" secret witness in F™"

Preprocessing (setup): S(C) — public parameters (pp, vp)

pp, X, W vp, X

proof T that C(x,w) =0

accept or
reject

NARK: requirements (informal)

Prover P(pp, x, w) Verifier V (vp, x, 1)

proof 1t » accept or reject

Complete: Vx,w: C(x,w) =0 = Pr[V(vp, x, P(pp, x, W)) = accept | =1

Adaptively knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

(an extractor E can extract a valid w from P)

Optional: Zero knowledge: (C,pp,vp,x, m) “reveal nothing new” about w
(witness exists = can simulate the proof)

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

* S(C) — public parameters (pp, vp) for prover and verifier

* P(pp, x,w) — short proof m ; | len(m) = 0;(polylog(|C|))

 V(vp, x,) fastto verify ; time(V) = 0,(|x|, polylog(|C|))

k- short “summary” of circuit

A simple PCP-based SNARK

[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK

The PCP theorem: Let C(x,w) be an arithmetic circuit.

there is a proof system that for every x proves Iw: C(x,w) =0

as follows:
Prover P(pp, X, W) Verifier V(vp, X)
long proof T read only 0(2) bits of 7,
output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

size of proof wis poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Prover P(pp, X, W) Verifier V(vp, X)

@?
m (TTTTITITTI11] Merkleroot A |,
open k positions of T (k. = 0(1))

» O(klog|C]|) hashes
k opening and Merkle proofs

output accept or reject

Verifier sees 0(1log|C|) data = succinct proof. | Problem: interactive

Making the proof non-interactive

The Fiat-Shamir transform:

* public-coin interactive protocol = non-interactive protocol
public coin: all verifier randomness is public (no secrets)

Prover P(pp, x, w) Verifier V(vp, x)
msgl
r choose random bits r
msg?2
accept or reject

Making the proof non-interactive

Fiat-Shamir transform: H: M — R a cryptographic hash function

* idea: prover generates random bits on its own (!)

Prover P(pp, x, W) Verifier V(vp, x)

generate msgl

r «— H(x, msgl) 1 = (msgl, msg2) |re H(x, msgl)

generate msg2 | = O(A log |C|) accept or reject

Fiat-Shamir: certain secure interactive protocols = non-interactive

Are we done?

Simple transparent SNARK from the PCP theorem
e Use Fiat-Shamir transform to make non-interactive

* We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = O(|C|)

Building an efficient SNARK

(1)

(2)

General paradigm: two steps

A polynomial
commitment scheme

(cryptographic object)

A polynomial interactive
oracle proof (Poly-IOP)

(info. theoretic object)

SNARK for
general circuits

[Let’s explain each concept ... }

Recall: commitments

Two algorithms:

commit(m, r) - com (r chose at random)

verify(m, com, r) —= accept or reject

Properties:

binding: cannot produce two valid openings for com

hiding: com reveals nothing about committed data

(1) Polynomial commitment scheme (PCS)

Notation: IFz(fd) |X] is all polynomials in [F,,[X] of degree < d.

Prover commits to a polynomial f(X) in IFgfd) |X] (univariate)

e eval: for publicu,v € IFp, prover can convince the verifier
that committed poly satisfies

f(u)=v and deg(f) <d. ‘ verifier has (d, com¢, u, v)

g

* Eval proof size and verifier time should be 0;(logd)

(1) Polynomial commitment scheme (PCS)

« setup(d) = pp, public parameters for polynomials of degree < d

* commit(pp, f,r) » com; commitmenttof€ IFz(fd) |1 X]

* eval: goal: foragivencomy and x,y € I[F,,, prove that f(x) =y.

Formally: eval = (s, P, V) is a SNARK for:

statement st = (pp, comg, X, y) with witness =w = (f, r)

where C(st, w) =0 iff

[f(x)=y and fe IF;Sd) [X] and commit(pp, f, T) = com;]

(1) Polynomial commitment scheme (PCS)

Properties:

* Binding: cannot produce two valid openings (f; ry), (f, r,) for com,.
e evalis knowledge sound (can extract (f, r) from a successful prover)

e optional:
e commitment is hiding

* eval is zero knowledge

Note: poly. commitments have many applications beyond SNARKs

Constructing a PCS

Not today ... (see readings or CS355)

Properties of the most widely used in practice (called KZG) :

trusted setup: secret randomness in setup.

com; : constant size (one group element)

lpp| = 0;(d)

eval proof size: constant size (one group element)

eval verify time: constant time. Prover time: 0,(d)

(1)

(2)

General paradigm: two steps

A polynomial
commitment scheme

(cryptographic object)

A polynomial interactive
oracle proof (Poly-IOP)

(info. theoretic object)

SNARK for
general circuits

[What is a Poly-IOP? 1

Component 2: Polynomial IOP

Let C(x,w) be some arithmetic circuit. Letx € ;.

Poly-IOP: a proof system that proves Iw: C(x,w) = 0 as follows:

-
[
[
-

-

Setup(C) — public parameters pp and vp = (|f,!, |f-1 f—s1)

Polynomial IOP

Prover P(pp,x,w) Verifier V(| fol, .., o, x)
Ty ry « IFp

<d
fi€ Fo¥ [X]

commit

Tt

(=d)

fi€ FS

[X]

commit

query f_g, ..., f¢ atafew points

send values (z;nd eval proofs) — accept/reject

The Plonk poly-IOP

Goal: construct a poly-IOP called Plonk (eprint/2019/953)

[Gabizon — Williamson — Ciobotaru]

Plonk + PCS = SNARK

(and also a zk-SNARK)

[PCS = Polynomial Commitment Scheme]

Proving properties of
committed polynomials

Goal: succinct proofs

Proving properties of committed polynomials

Prover P(f, g) Verifier V(m [al)

g
Ll

Goal: convince verifier that f, g € IFz(fd) [X] satisfy some properties

Proof systems presented as a Poly-IOP:

q (a commitment to some poly. q)

query f(X), g(X),q(X) at some points in F,

accept or reject

A simple example: polynomial equality testing

Prover Goal: convince verifierthat f = g verifier
9 eF9x] fllg
query f(X)and g(X) atr r e« F

learn f(r), g(r)

accept if:

f(r) =g(r)

Why is this sound?

Why is this sound?

(=d)
p

for r I, : Prlf() =0]< d/p (*)

A key fact: for non-zero f € F | X]

= suppose p=22°% and d<2% then d/p isnegligible
= forreT,: if f(r) =0 then f isidentically zerow.h.p

= asimple test if a committed poly. is the zero poly.

{ SZDL lemma: (*) also holds for multivariate polynomials (where d is total degree of f) }

https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

Why is this sound?

Suppose p=22% and d<2% sothat d/p isnegligible

let f, g € IFz(fd) | X].

For r—F,, if f(r)=g(r) then f=g whp

L)

fa)—gr)=0 = f—-g=0 whp

= a simple equality test for two committed polynomials

The polynomial equality testing protocol

Prover Goal: convince verifierthat f = g verifier

9 eF9x] fllg
$

query f(X)and g(X) atr re I

learn f(r), g(r)

accept if:

f(r) =g(r)

Lemma: complete and sound assuming d /p is negligible

Review: the compiled proof system

Prover Verifier
Make non-interactive
f)9 e FEIIX] using Fiat-Shamir fll9
: r r & F),
y = f(r)
I/
y'e— g(r) y, m y, T, | learn f (1), g(r)
accept if:
proof that p’roof that ()y =y and
y = f(r) y =g())
(i) sy m,
are valid

Important proof gadgets for univariates

Let (0 be some subset of IFp of size k.

let f € IF;Sd) [X] (d=k) Verifier has | f

Let us construct efficient Poly-IOPs for the following tasks:

Task 1(ZeroTest): prove that f isidentically zero on ()
Task 2 (SumCheck): prove that), ,cqf(a) =0

Task 3 (ProdCheck): prove that [[,cqf(a) =1

The vanishing polynomial

Let (0 be some subset of IFp of size k.

Def: the vanlshlng polynomial of Qis Zq(X) =[1,eq(X — a)
deg(Zq) =

Let w € [F, be a primitive k-th root of unity (so that wk =1).
¢+ if 0={1, 0, w2 ., w"}CSF, then ZoX)=X"-1

= for r € F),, evaluating Zo(r) takes 2log, k field operations

(1) ZeroTest on ()

Prover P(f) Verifier V(E_)

a0 f(X0/Za0 [qe BED x]

$ verifier evaluates
r — [F
p [Zqo(7) by itself

_ Query q(X) and f(X) at r

learn q(r), f(r)
Lemma: f is zero on Q if and only if . .
F(X) is divisible by Zo,(X) acceptif f(r) = q(r)-Za(r)

(implies that F(X) = q(X) - Zq (X) w.h.p)

Thm: this protocol is complete and sound, assuming d/p is negligible.

(1) ZeroTest on ()

Prover P(f) Verifier V(E_)

a0 f(X0/Za0 [qe BED x]

$ verifier evaluates
r — [F
p [Zqo(7) by itself

_ Query q(X) and f(X) at r

learn q(r), f(r)
Lemma: f is zero on Q if and only if . .
F(X) is divisible by Zo,(X) acceptif f(r) = q(r)-Za(r)

(implies that F(X) = q(X) - Zq (X) w.h.p)

Verifier time: O(log k) and two poly queries (but can be batched)

Prover time: dominated by time to compute g(X) and commit to q(X)

(4) Another useful gadget: permutation check

Let f,g polynomialsin [F;Sd) | X]. Verifier has , @ .

Prover wants to prove that (f(1), f(w), f(w?), ..., f(w*™1)) € Fg

is a permutation of (g(1), g(w), g(w?), ..., g(w* 1)) € Fg

= Proves that g({) is the same as f({1), just permuted

(4) Another useful gadget: permutation check

Prover P(f, g) Verifier V(m , @)

Let f(X) = [lgeaX = f(@)) and GX) = [lgeaX — g(a))
Then: f(X) =4§(X) < g(Q)isa permutation of f()

r re&TF

prove that f(r) = §(r)

prod-check: 0 =TT (=21

g(r) Jeg \r—g(a)

I
[

<€

> implies f(X) = §(X) w.h.p
t ject
[Lipton’s trick, 1989] acceptorrejec

(5) final gadget: prescribed permutation check

W:Q — Qis a permutation of Qif Vi € [k]: W(w') = w’ a bijection

example (k =3): W(w?) = w?, Ww!)=w?, WWw?) =w!

Let f,g polynomialsin IFz(fd) |X]. Verifier has) El) :

forall y e

Goal: prover wants to prove that f(y) = g(W (y))

= Proves that g(Q) is the same as f (1), permuted by the prescribed W

Prescribed permutation check

How? Use a zero-test to prove | f(y) — g(W(y)) =0 on(

The problem: the polynomial f(y) — g(W(y)) has degree k2
= prover would need to manipulate polynomials of degree k2

= quadratic time prover !! (goal: linear time prover)

Can reduce this to a prod-check on a poly of degree 2k (not k?)

Summary of proof gadgets

polynomial equality testing

zero test on ()

product check, sum check

permutation check

prescribed permutation check

The PLONK Poly-10OP

for general circuits

eprint/2019/953

PLONK: widely used in practice

polynomial commitment scheme SNARK system
KZG’10 » Aztec, JellyFish
/ (pairings)
The Plonk
» Bulletproofs » Halo2
Pon-IOP (no pairings) (slow verifier)

(no trusted setup)

FRI » Plonky2, Redshift
(hashing) (no trusted setup)

PLONK: a poly-IOP for a general circuit C(x,w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

The computation trace (arithmetization):

(x1 + x2) (2 + wy)

/7 inputs: 5, 6, 1
@(Gatez)
> |Gateo: 5, 6, 11
6

11 7 6
(Gate 0) (Gate 1) Gate 1: , 1 , 7
5 }6 ')‘6 1 Gate2: 11, 7, |77

5 6 1 «— example input left right || outputs
inputs || inputs

Encoding the trace as a polynomial

|C| :=total # of gatesinC, |I|=|I,|+|[,| =#inputstoC

let d:=3|C|+ |I| (nexample,d =12) and Q:={1, w, w?.., w* 1}

The plan:
prover interpolates a poly. T € F; [x]

that encodes the entire trace.

Let’s see how ...

inputs: 5, 6,
Gate0: 5, 6, 11
Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

The plan: Prover interpolates T € IF;Sd)[X] such that
(1) T encodes allinputs: T(w™/) =input#j forj=1,.., |

(2) T encodes all wires: VI1=0,...,|C|—1:

e T(w3!): leftinput to gate #l

inputs: 5, 6, 1
e T(w3"1): right input to gate #l Gate0: 5, 6, 11
e T(w32): output of gate #l Gatel: 6, 1, 7
Gate2: 11, 7, 77

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:
inputs: T(w ™) =5, Tw™?)=6 T(w?3) =1,
gate0: T(w®) =5 Tw!)=6T(w? =11,
gatel: T(w3) =6 TwH=1 Tw>) =7,

gate2: T(w®) =11, T(w) =7 T(w® =77

degree(T) =11

inputs: 5, 6, 1

Gate0: 5, 6, 11
Prover can use FFT to compute the coefficients Gatel: 6, 1, 7
of Tin time O(d log d) Gate2: 11, 7, |77

Step 2: proving validity of T

Prover P(Sp, X, W)

build T(X) € F&V[X] :

Verifier V(S,, x)

Prover needs to prove that T is a correct computation trace:

P(l) T encodes the correct inputs,
(2) every gate is evaluated correctly,
(3) the wiring is implemented correctly,

(4) the output of last gate is O

Proving (4) is easy: prove T(w3!¢1=1) =0

(wiring constraints)

inputs: 5, g, 1
Gate0: 5, .6, 11
Gate 1: 6,/1 , 7

Gate2: 11, 7, 77

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IF;S“"D[X]
that encodes the x-inputs to the circuit:

for j=1,....|L|: v(w™7) =input #]

In our example: v(w 1) =5, v(w™?)=6. (v islinear)

constructing v(X) takes time proportional to the size of input x

= verifier has time do this

Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IF;S“"D[X]
that encodes the x-inputs to the circuit:

for j=1,....|L|: v(w™7) =input #]

Let Qi ={w L w2 .., 07 l}ca (points encoding the input)

Prover proves (1) by using a ZeroTest on Q,,, to prove that

inp
T(y) — v(y) =0 VYE Q'inp

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)
define S(X) € FSV[X] suchthat VI =0,..,|C| - 1:
S(w3) =1 if gate #l is an addition gate
S(w3!) =0 if gate #l is a multiplication gate

IOGate . inputs: 5, 6, 1 S(X)
GateO (w%): 5, 6, 11 1 (+)
(Gatec))ﬁ-{ Gate 1) Gatel(w3): 6, 1, 7 1 (+)
S &D/ Gate2 (wS): 11,7, 77 | 0 |(x)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)
define S(X) € FSV[X] suchthat VI =0,..,|C| - 1:
S(w3) =1 if gate #l is an addition gate
S(w3!) =0 if gate #l is a multiplication gate

Then Vy € Qe =11, &3 0 w’, .., w3UCI-1y .

S(y)-[T(y) + T(wy)] + (1-S(y))Tly) T(wy) = T(w?y)

czh diem cEhdrm &

Proving (2): every gate is evaluated correctly

Setup(C) — pp:=S and vp:=(|S|)

Prover P(pp, x, W) Verifier V(vp, x)

build T(X) € Fy; [x] :

Prover uses ZeroTest to prove that forall Vy € (4. :

S(y)-[T(y) + T(wy)] + (1=S(y))-T(y) T(wy) - T(w?y) =0

Proving (3): the wiring is correct

Step 4: encode the wires of C: example: x;=5, =6, w;=1
0: C()O, (1)1, Cl)2: 5, 6,
- T(w?) = T(wO) B oS 6/1 ;®
T(w?) = T(w®) 2 Wb, w!, ws: @ 7. 77
| T(w3) = T(w?)

Define a polynomial W: Q — Q0 that implements a rotation:
W(w?, wt, »?) = (w!, 0’ w?), Ww?, o%=(w’, o), ..

Lemma: V yeQ:T(y)=T(W(y)) = wire constraints are satisfied

Proving (3): the wiring is correct

example: x=5, x,=6, w;=1

Step 4: encode the wires of C:
[T(w?2) = T(w?!) = T(w3)

w!, w? w3 5, 9
0: w? !, w?: 5, 6, (11
1

1y = 0
- Tw™) = T(®) 1. w3, w?* wd: 6,/, 7
T(w?) = T(n)®) N 4
[Proved using a prescribed permutation check
Define a polyno — () that implements a rotation:
W(w?, w!, w3) w3, w?), Wwl =, wl), ..

Lemma: V yeQ:T(y)=T(W(y)) = wire constraints are satisfied

The complete Plonk Poly-IOP (and snark)

Setup(C) = pp:=(S,W) and vp:=(|S |and |W]) (untrusted)

Prover P(pp, x, w) Verifier V(vp, x)
build T(X) € FEP[X] I _ build v(x) € F&D [x]

Prover proves:
gates: (1) S(y)-[T(y) + T(wy)] +(1—=S(y))-T(y) T(wy) — T(w?y) = 0; VY € Qyates

inputs: (2) T(y) —v(y) =0 Vy€Q,
wires: (3) T(y) = T(W(y)) =0 (using prescribed perm. check) Vye€Q

output: (4) T(w3/¢I-1) =0 (output of last gate = 0)

The complete Plonk Poly-IOP (and snark)

Setup(C) = pp:=(S,W) and vp:=(S|and|W]) (untrusted)

Prover P(pp, x, w) Verifier V(vp, x)
build T(X) € FEP[X] I _ build v(x) € F&D [x]

Thm:The Plonk Poly-10OP is complete and knowledge sound,
assuming 7|C|/p is negligible

(eprint/2019/953)

Many extensions ...

* Plonk proof: ashort proof (O(1) commitments), fast verifier

e The SNARK can be made into a zk-SNARK

Main challenge: reduce prover time
* Hyperplonk: replace O with {0,1}t (where t = log,|Q|)
 The polynomial T is now a multilinear polynomial in t variables

» ZeroTest is replaced by a multilinear SumCheck (linear time)

END OF LECTURE

Next lecture: scaling the blockchain

