CS251 Fall 2023
(cs251.stanford.edu)

Using zk-SNARKs for Privacy on the Blockchain

Dan Boneh

The need for privacy in the financial system

Supply chain privacy:

e A manufacturer does not want to reveal
how much it pays its supplier for parts.

Payment privacy:
A company that pays its employees in crypto wants to keep list
of employees and salaries private.

* Endusers need privacy for rent, donations, purchases

Business logic privacy: Can the code of a smart contract be private?

Previous lecture

Neither Bitcoin nor Ethereum are private

Txn Hash Method &
etherscan.io:

® 0x0269eff8b4196558c07 ... Set Approval For...
Address 0x1654b0c3f62902d7A86237...

@ Oxa3dacb0e7c579a99cd... Cancel Order_
Balance: 1.114479450024297906 Ether

® 0x73785abcc7ccf030d6a... Set Approval For...
Ether Value: $4,286.34 (@ $3,846.05/ETH)

@ 0x1463293c495069d61c... Atomic Match_

Block

13426561

13397993

13387834

13387703

This lecture: general tools for privacy on the blockchain

What is a zk-SNARK?

Succinct zero knowledge proofs:
an important tool for privacy on the blockchain

What is a zk-SNARK ? (intuition)

SNARK: a succinct proof that a certain statement is true

Example statement: “l know an m such that SHA256(m) = 0”

* SNARK: the proofis “short” and “fast” to verify

[if m is 1GB then the trivial proof (the message m) is neither]

e zk-SNARK: the proof “reveals nothing” about m

Commercial interest in SNARKs

& STARKWARE & Aztec PATCUEEE O CShResso

C‘] RISC Zero %SCI‘O" % polygon

Many more building applications that use SNARKs

Blockchain Applications |

Outsourcing computation: (no need for zero knowledge)

L1 chain quickly verifies the work of an off-chain service

To minimize gas: need a short proof, fast to verify
Examples:

e Scalability: proof-based Rollups (zkRollup)
off-chain service processes a batch of Tx;

L1 chain verifies a succinct proof that Tx were processed correctly

e Bridging blockchains: proof of consensus (zkBridge)
Chain A produces a succinct proof about its state. Chain B verifies.

Blockchain Applications li

Some applications require zero knowledge (privacy):

* Private Tx on a public blockchain:

* zk proof that a private Tx is valid (Tornado cash, Zcash, IronFish, Aleo)

 Compliance:
* Proof that a private Tx is compliant with banking laws (Espresso)
* Proof that an exchange is solvent in zero-knowledge (Proven)

More on these blockchain applications in a minute

Many non-blockchain applications

Blockchains drive the development of SNARKSs

... but many non-blockchain applications benefit

Why is all this possible now?

The breakthrough: new fast SNARK provers

* Proof generation time is linear (or quasilinear) in computation size

* Many beautiful ideas ... next lecture

a large bibliography:

al6zcrypto.com/zero-knowledge-canon

What is a SNARK?

Review: arithmetic circuits

Fix a finite field F ={0,...,p — 1} for some prime p>2.

Arithmetic circuit: C: F* — [F

» directed acyclic graph (DAG) where

x1(x1 +x2+ 1)(x; — 1)

internal nodes are labeled +, —, or X
inputs are labeled 1, x4, ..., x,

e defines an n-variate polynomial
with an evaluation recipe BK

|C| =#gatesin(C

reprocessingg NARK: Non-interactive ARgument of Knowledge

Public arithmetic circuit: C(x, w) —

)

Preprocessing (setup): S(C) — public parameters (pp, vp)

public statement in F" secret witness in ™

pp, X, W vp, X

proof T that C(x,w) =0

accept or
reject

reprocessingg NARK: Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple (S, P, V):
 S(C) — public parameters (pp, vp) for prover and verifier
 P(pp, x, w) = proof m

 V(vp, x,1T) = accept or reject

all algs. and adversary have
access to a random oracle

NARK: requirements (informal)

Prover P(pp, x, w) Verifier V (vp, x, 1)

proof 1t » accept or reject

Complete: Vx,w: C(x,w) =0 = Pr[V(vp, x, P(pp, x, W)) = accept | =1

Adaptively knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

(an extractor E can extract a valid w from P)

Optional: Zero knowledge: (C,pp,vp,x, m) “reveal nothing new” about w
(witness exists = can simulate the proof)

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

* S(C) — public parameters (pp, vp) for prover and verifier

* P(pp, x,w) — short proof m ; | len(m) = 0;(polylog(|C|))

 V(vp, x,) fastto verify ; time(V) = 0,(|x|, polylog(|C|))

\- short “summary” of circuit

V has notimetoread C !!

[for some SNARKs, len(rr) = time(V) = 0,(1)]

SNARK: a Succinct ARgument of Knowledge

SNARK: a NARC (complete and knowledge sound) that is succinct

zk-SNARK: a SNARK that is also zero knowledge

Types of preprocessing Setup

Recall setup for circuit C: S(C;r) — public parameters (pp, vp)

random bits

Types of setup:

trusted setup per circuit:
prover learnsr = can prove false statements

S(C; r) random r must be kept secret from prover

trusted but universal (updatable) setup: secret r is independent of C
Sinit(4;7) = gp, Sindex(gp, C) = (pp, vD)

no secret data from prover

better

S = (Sinit> Sindex):

one-time

transparent setup: S(C) does not use secret data (no trusted setup)

v

Significant progress in recent years (partiallist)

~ 200 Bytes ~ 1.5ms trusted per
Groth’16 y
0,(1) 0,(1) circuit
. ~ 400 Bytes ~ 3ms universal
Plonk / Marlin y
/ Marl 0:(1) 0,(1) trusted setup no

(for a circuit with 22° gates)

Significant progress in recent years (partiallist)

Groth'16) Zga(()l?yms N trucﬁii.? y

Flenle /el | 42(()1?wes zoj)(ln)] S truusr;:evcf zeatlup no
Bulletproofs Z(}(;;CKS zoi(Tce‘f) transparent no
STARK ; (}(Sg? llé:?)’ Z (1102 l'?; transparent yes

(for a circuit with 22° gates)

Significant progress in recent years (partiallist)

Groth’16

Plonk / Marlin

Bulletproofs

STARK

A A

(for a circuit with 22° gates)

How to define “knowledge soundness”

and “zero knowledge”?

Definitions: (1) knowledge sound

Goal: if Vaccepts then P “knows” ws.t. C(x,w) =0
What does it mean to "know” w ??

informal def: P knows w, if w can be “extracted” from P

Definitions: (1) knowledge sound (simpiified)

Formally: a universal SNARK (S, P, V) is knowledge sound if

for every poly. time adversary A= (A, A;) there exists
a poly. time extractor Ext (thatuses A asa black box) s.t.

if gp < Sil), (G x, state) = Ag(gp), (PP, VP) = SingexlgP, C),
T+ Ay(pp, X, state), W\<1— Ext(gp, C, x)

extracted witnhess

Then

Pr[V(vp, x, Tr) = accept = C(x,w)=0]>1—€ (foranegle)

(2) Zero knowledge

INIKIoONS

Def

t.lnﬂ
"

N

|/

=]
/

Where is

20) ;ﬂ?lw .

1

<
v) / o 4+ -
IR 2
\ . W £ A :
YR S A (=] e 1
: :] =
\ {120 ! o~
):) . 3 o) \ ‘w .
§ ’ d <
.«) . _,) -
) > . : ¥ £ " A
A A g 3 50)
~ : S £ 2 s B
| .,« 2N {) a3 P & 2 = -
i A o X . RV s A A
) : { »

o
)

!

\
\

I\
A

o,

{

T

|

Definitions: (2) Zero knowledge qimitica)

(S, P, V) is zero knowledge if for every x € F"
proof T “reveals nothing” about w, other than its existence

What does it mean to “reveal nothing” ??

Informal def: ™ “reveals nothing” about w if the verifier can
generate T by itself — it learned nothing new from «

(S, P, V) is zero knowledge if there is an efficient alg. Sim
s.t. (pp, vp, ™) + Sim(C, x) “look like” the real pp,vp and m.

Main point: Sim(C,x) simulates m without knowledge of w

Definitions: (2) Zero knowledge imitica)

Formally: (S, P, V) is (honest veriier) Zero knowledge for a circuit C

if there is an efficient simulator Sim such that
forallx € F"* s.t. 3w:C(x,w) = 0 the distribution:

(C, pp, vp, x, ™): where (pp,vp) +S(C), @™+ P(pp,x, w)

is indistinguishable from the distribution:

(C, pp, vp, x,). where (pp,vp,) < Sim(C, x)

Main point: Sim(C,x) simulates m without knowledge of w

How to build a zk-SNARK?

Recall: prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Next lecture

Applications of SNARKSs:

(1) Tornado cash: a zk-based mixer

Launched on the Ethereum blockchain on May 2020 (v2)

Tornado Cash: a ZK-mixer

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

\MQQK
@ 277
B

1000 DAI » MIX 1000 DAI

«——DUy NFT > | NFT

privately market

account fresh
address

DN (1000 DAI)
1000 Tornado.cash

contract

The tornado cash contract (simpiified)

100 DAI pool:

each coin = 100 DAI

Currently:

three coins in pool
contract has 300 DAI
two nullifiers stored

Treasury: 300 DA

coins nf1
Merkle ¢

root nt,
(32 bytes)
next=4

nullifiers
contract state f
explicit list:

Hll HZ: R— {011}256

Coins
Merkle
root

C,C,C;0 0..0

public list of coins

one entry per spent coin

CRHF

Tornado cash: deposit (simplified)

Hll HZ: R— {011}256

100 DAI pool: Treasury: 300 DAI
each coin = 100 DAI . Coins
coins nf1 Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes)

100 DAI
> next = 4
C, , MerkleProof(4)
nullifiers ¢ G G0O0..0
Build Merkle proof for leaf #4: |contract state $! ,
MerkleProof(4) (leaf=0) public list of coins

choose random k, r in R explicit list:

set C4=Hyl(k, r) one entry per spent coin

Tornado cash: deposit (simplified)

H,, H,: R — {0,1}2°%
coins
C,, MerkleProof(4) Merkle
root root
(32 bytes)
Tornado contract does:
next =4
(1) verify MerkleProof(4) with
respect to current stored root
Tornado contract Cl Cz C3 0 0..0
(2) use C, and MerkleProof(4) to
compute updated Merkle root public list of coins

(3) update state

Tornado cash: deposit (simplified)

H,, H,: R — {0,1}2°%
coins
C,, MerkleProof(4) Merkle
rOOt root
(32 bytes)
Tornado contract does:
next =4
(1) verify MerkleProof(4) with
respect to current stored root
Tornado contract Cl Cz C3 C4 0..0
(2) use C, and MerkleProof(4) to
compute updated Merkle root public list of coins

(3) update state

Tornado cash: deposit (simpiified)

100 DAI pool: Treasury: 400 DAI
each coin = 100 DAI updated
! uPdatEd nfl Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes)

100 DAI
C, , MerkleProof(4)

> next =5

nullifiers C; (G CGC 0.0
—

updated contract state

|

note: (k, r)
Alice keeps secret
(one note per coin)

public list of coins

Every deposit: new Coin an observer sees who

owns which leaves

added sequentially to tree

Tornado cash: withdrawal (simpiified)

Hy, Hy: R — {0,1}2°®

100 DAI pool: Treasury: 400 DAI
. Merkle
each coin = 100 DAI coins nfl oot
Merkle ¢
nt,

Withdraw coin #3 root
to addr A: (82:bytes)

;) next=>5

@ has note= (k’, r’) ;G CCO0..0
nullifiers v
set nf=H,(k’) contract state public list of coins

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)

Tornado cash: withdrawal (simpiified)

Hy, Hy: R — {0,1}2°®

Withdraw coin #3 to addr A:

Merkle
root

has note= (k/, r’) set nf =H,(k’)

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (k’, r’, C3, MerkleProof(C;)) ;GG C,0...0
where Circuit(x,w)=0 iff:
(i) Cs;=(leaf #3 of root), i.e. MerkleProof(C;) is valid,
(ii) Cs3=Hy(k’, r’), and
(iii) nf =Hy(k’). (address A not used in Circuit)

Tornado cash: withdrawal (simpiified)

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:
adversary cannot use proof for x to build a proof " for some “related” x’
(e.g., where in x’ the address A is replaced by some A’)

C,C,C;C,0..0

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (k’, r’, Cs, MerkleProof(C;))

Tornado cash: withdrawal (simpiified)

Hll HZ: R— {011}256

100 DAI pool: Treasury: 400 DAI
each coin = 100 DAI . Merkle
coins nf1 root
Withdraw coin #3 Merkle f
to addr A: root 2

(32 bytes)
f, proofm, A
(over Tor) next =5
Bob’s ID and coin C;

are not revealed nullifiers -)
contract state public list of coins

C,C,C;C,0..0
l_'_'

Contract checks (i) proof m is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

Tornado cash: withdrawal

(simplified)

Hy, Hy: R — {0,1}2°®

Merkle
root

C,C,C;C,0..0
l_'_'

100 DAI pool: Treasury: 300 DA
each coin = 100 DAI .
coins nf !
Withdraw coin #3 Merkle f
to addr A: root 2
b
_of proofz. A , | ™ | nf
(over Tor) next =5
nullifiers
to address A contract state

nf and reveal nothing about which coin was spent.

public list of coins
... but observer does not
know which are spent

But, coin #3 cannot be spent again, because nf = H,(k’)

is now nullified.

Who pays the withdrawal gas fee?

Problem: how does Bob pay for gas for the withdrawal Tx?
* If paid from Bob’s address, then fresh address is linked to Bob

Tornado’s solution: Bob uses a relay

nf, proofm, A
> -
nf, proof, A and gas (100-gas) DAI .
(over Tor) to address A
relay
tornado
contract

Note: relay and Tornado also charge a fee

Tornado Cash: the Ul

Deposit / Withdraw Deposit \ Withdraw

Token Note 3

DAT enter note here

Amount 3 Recipient Address Donate
) (@)))
@, O @, @, address
100 DAI 1K DAI 10K DAI 100K DAI

After deposit: get a note Later, use note to withdraw

(wait before withdrawing)

Tornado trouble ... U.S. sanctions

The Ronin-bridge hack (2022):

* In late March: =600M USD stolen ... S80M USD sent to Tornado
e April: Lazarus Group suspected of hack
 August: “U.S. Treasury Sanctions Virtual Currency Mixer Tornado Cash”

e Lots of collateral damage ... and two lawsuits

/|
AT Tornado
The lesson: complete anonymity in the N \
payment system is problematic e

ELLIETIC .

“U.S. persons would not be prohibited by U.S. sanctions
regulations from copying the open-source code and making it
available online for others to view, as well as discussing, teaching
about, or including open-source code in written publications,
such as textbooks, absent additional facts”

U.S. Treasury FAQ, Sep. 2022

https://home.treasury.gov/policy-issues/financial-sanctions/faqs/added/2022-09-13

Desighing a compliant Tornado??

(1) deposit filtering: ensure incoming funds are not sanctioned

Chainalysis SanctionsList contract:

function isSanctioned(address addr) public view returns (bool) {
return sanctionedAddresses[addr] == true ;

}

Reject funds coming from a sanctioned address.

Difficulties: (1) centralization, (2) slow updates

Desighing a compliant Tornado??

(2) Withdrawal filtering: at withdrawal, require a ZK proof that
the source of funds is not currently on sanctioned list.

How?

* modify the way Tornado computes Merkle leaves during deposit
to include msg.sender.

in our example Alice sets: C, = [Hy(k, r), msg.sender |

* During withdrawal Bob proves in ZK that msg.sender in his leaf is
not currently on sanctions list.

Desighing a compliant Tornado??

(3) Viewing keys: at withdrawal, require nullifier to include an
encryption of deposit msg.sender under government public key.

How? Merkle leaf C, is computed as on previous slide.

 During withdrawal Bob sets nullifier nf =[H,(k’), ct, 7]

where (i) ct = Enc(pk, msg.sender) and
(i) m is ZK proof that ct is computed correctly

= As needed, government can trace funds through Tornado
* |ots of problems with this design ...

Other private Tx projects

Zcash / IronFISH: private payments
* L1 blockchains that extend Bitcoin, similar use of Nullifiers.
e Support for any value Tx and in-system transfers.

Aztec / Aleo:

e Support for private Tx interacting with a public smart contract.
 Aleo: an L1 blockchain. Aztec: runs on top of Ethereum.

END OF LECTURE

Next lecture: how to build a SNARK

Further topics

Privately communicating with the blockchain: Nym
* How to privately compensate proxies for relaying traffic

Next lecture: how to build a SNARK

