
Using zk-SNARKs for Privacy on the Blockchain

CS251 Fall 2023
(cs251.stanford.edu)

Dan Boneh

The need for privacy in the financial system

Supply chain privacy:
• A manufacturer does not want to reveal

how much it pays its supplier for parts.

Payment privacy:
• A company that pays its employees in crypto wants to keep list

of employees and salaries private.
• Endusers need privacy for rent, donations, purchases

Business logic privacy: Can the code of a smart contract be private?

Previous lecture

Neither Bitcoin nor Ethereum are private

Address 0x1654b0c3f62902d7A86237…

etherscan.io:

This lecture: general tools for privacy on the blockchain

Succinct zero knowledge proofs:
an important tool for privacy on the blockchain

What is a zk-SNARK?

What is a zk-SNARK ? (intuition)

SNARK: a succinct proof that a certain statement is true

Example statement: “I know an 𝑚 such that SHA256(𝑚) = 0”

• SNARK: the proof is “short” and “fast” to verify

 [if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK: the proof “reveals nothing” about 𝑚

Commercial interest in SNARKs

Many more building applications that use SNARKs

Blockchain Applications I

Outsourcing computation: (no need for zero knowledge)
 L1 chain quickly verifies the work of an off-chain service

Examples:
• Scalability: proof-based Rollups (zkRollup)
 off-chain service processes a batch of Tx;
 L1 chain verifies a succinct proof that Tx were processed correctly

• Bridging blockchains: proof of consensus (zkBridge)
 Chain A produces a succinct proof about its state. Chain B verifies.

To minimize gas: need a short proof, fast to verify

Blockchain Applications II

Some applications require zero knowledge (privacy):

• Private Tx on a public blockchain:
• zk proof that a private Tx is valid (Tornado cash, Zcash, IronFish, Aleo)

• Compliance:
• Proof that a private Tx is compliant with banking laws (Espresso)

• Proof that an exchange is solvent in zero-knowledge (Proven)

More on these blockchain applications in a minute

Many non-blockchain applications

Blockchains drive the development of SNARKs

 … but many non-blockchain applications benefit

Why is all this possible now?

The breakthrough: new fast SNARK provers

• Proof generation time is linear (or quasilinear) in computation size

• Many beautiful ideas … next lecture

a large bibliography: a16zcrypto.com/zero-knowledge-canon

What is a SNARK?

Review: arithmetic circuits
Fix a finite field 𝔽 = 0,… , 𝑝 − 1 for some prime p>2.

Arithmetic circuit: 𝐶: 	𝔽𝑛	 ⇾ 	𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled +, −, or ×
inputs are labeled 1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe

|𝐶| 	= # gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)

(preprocessing) NARK: Non-interactive ARgument of Knowledge

Preprocessing (setup): S(𝐶) ⇾ public parameters (𝒑𝒑, 𝒗𝒑)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) 	⇾ 	 𝔽
public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒑𝒑, 𝒙, 𝒘 𝒗𝒑, 𝒙

accept or
reject

proof 𝝅 that 𝐶(𝑥, 𝑤) = 0

(preprocessing) NARK: Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘) ⇾ proof 𝜋

• V(𝑣𝑝, 𝒙, 𝝅) ⇾ accept or reject

all algs. and adversary have
access to a random oracle

NARK: requirements (informal)
Prover P(𝑝𝑝, 𝒙,𝒘) Verifier V (𝑣𝑝, 𝒙, 𝝅)

proof 𝜋 accept or reject

Complete: ∀𝑥,𝑤: 	 𝐶(𝒙,𝒘) 	= 0 ⇒ Pr[V(𝑣𝑝, 𝑥, P(𝑝𝑝, 𝒙, 𝒘)) = accept] = 1

 Adaptively knowledge sound: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0
 (an extractor 𝐸 can extract a valid 𝒘 from P)

Optional: Zero knowledge: (𝐶, 𝑝𝑝, 𝑣𝑝	, 𝒙, 𝜋) “reveal nothing new” about 𝒘
 (witness exists ⇒ can simulate the proof)

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘) ⇾ short proof 𝜋 ; len(𝜋) = 𝑂+(𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪)

• V(𝑣𝑝, 𝒙, 𝝅) fast to verify ; time(V) = 𝑂+(𝑥 , 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪)

V has no time to read 𝐶 !!short “summary” of circuit

[for some SNARKs, len 𝜋 = time 𝑉 = 𝑂+ 1]

SNARK: a NARC (complete and knowledge sound) that is succinct

zk-SNARK: a SNARK that is also zero knowledge

SNARK: a Succinct ARgument of Knowledge

Types of preprocessing Setup
Recall setup for circuit 𝐶: S(𝐶; 𝑟) ⇾ public parameters (𝑝𝑝, 𝑣𝑝)

Types of setup:

 trusted setup per circuit: S(𝐶; 𝑟) random 𝑟 must be kept secret from prover

 prover learns 𝑟 ⇒ can prove false statements

 trusted but universal (updatable) setup: secret 𝑟 is independent of 𝐶

 𝑺 = 𝑆#!#$, 𝑆#!%&' : 	 𝑆#!#$ 𝜆; 𝑟 ⇾ 𝑔𝑝, 𝑆#!%&'(𝑔𝑝, 𝐶) ⇾ (𝑝𝑝, 𝑣𝑝)

 transparent setup: S(𝐶) does not use secret data (no trusted setup)

one-time no secret data from prover

be
tt

er

random bits

Significant progress in recent years (partial list)

size of
proof 𝜋 verifier time Setup

post-
quantum?

Groth’16 ≈ 200 Bytes
𝑂!(1)

≈ 1.5 ms
𝑂!(1)

trusted per
circuit no

Plonk / Marlin ≈ 400 Bytes
𝑂!(1)

≈ 3 ms
𝑂!(1)

universal
trusted setup no

Bulletproofs ≈ 1.5 KB
𝑂!(log |𝐶|)

≈ 3 sec
𝑂!(|𝐶|)

DLOG no

STARK ≈ 100 KB
𝑂!(log" |𝐶|)

≈ 10 ms
𝑂!(log |𝐶|)

collision
resistance yes

(for a circuit with 220 gates)

Significant progress in recent years (partial list)

size of
proof 𝜋 verifier time setup

post-
quantum?

Groth’16 ≈ 200 Bytes
𝑂!(1)

≈ 1.5 ms
𝑂!(1)

trusted per
circuit no

Plonk / Marlin ≈ 400 Bytes
𝑂!(1)

≈ 3 ms
𝑂!(1)

universal
trusted setup no

Bulletproofs ≈ 1.5 KB
𝑂!(log |𝐶|)

≈ 3 sec
𝑂!(|𝐶|)

transparent no

STARK ≈ 100 KB
𝑂!(log" |𝐶|)

≈ 10 ms
𝑂!(log |𝐶|)

transparent yes

⋮ ⋮(for a circuit with 220 gates)

Significant progress in recent years (partial list)

size of
proof 𝜋 verifier time setup

post-
quantum?

Groth’16 ≈ 200 Bytes
𝑂!(1)

≈ 1.5 ms
𝑂!(1)

trusted per
circuit no

Plonk / Marlin ≈ 400 Bytes
𝑂!(1)

≈ 3 ms
𝑂!(1)

universal
trusted setup no

Bulletproofs ≈ 1.5 KB
𝑂!(log |𝐶|)

≈ 3 sec
𝑂!(|𝐶|)

transparent no

STARK ≈ 100 KB
𝑂!(log" |𝐶|)

≈ 10 ms
𝑂!(log |𝐶|)

transparent yes

⋮ ⋮(for a circuit with 220 gates)

Prover time is almost
linear in |𝐶|

How to define “knowledge soundness”
and “zero knowledge”?

Definitions: (1) knowledge sound

Goal: if V accepts then P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) 	= 0

What does it mean to ”know” 𝒘 ??

informal def: P knows 𝒘, if 𝒘 can be “extracted” from P

P

Definitions: (1) knowledge sound (simplified)

Formally: a universal SNARK (S, P, V) is knowledge sound if

for every poly. time adversary A = (A0, A1) there exists
a poly. time extractor 𝐸𝑥𝑡 (that uses A as a black box) s.t.

 if 𝑔𝑝 ⇽ Sinit(), (C, 𝑥, state) ⇽ A0(𝑔𝑝), (𝑝𝑝, 𝑣𝑝) ⇽ Sindex(𝑔𝑝, 𝐶),

 𝜋 ⇽ A1(𝑝𝑝, 𝑥, state), 𝑤 ⇽ 𝐸𝑥𝑡(𝑔𝑝, 𝐶, 𝑥)

Then

 Pr[V(vp, 𝑥, 𝜋) = accept ⇒ 𝐶(𝑥,𝑤) = 0] ≥ 1 −	𝜖 (for a negl. 𝜖)

extracted witness

Definitions: (2) Zero knowledge

Where is
Waldo?

Definitions: (2) Zero knowledge (simplified)

(S, P, V) is zero knowledge if for every 𝑥 ∈ 𝔽, 	
 proof 𝜋 “reveals nothing” about 𝒘, other than its existence

What does it mean to “reveal nothing” ??

Informal def: 𝜋 “reveals nothing” about 𝒘 if the verifier can
 generate 𝜋 by itself ⟹ it learned nothing new from 𝜋

(S, P, V) is zero knowledge if there is an efficient alg. Sim
 s.t. (𝑝𝑝, 𝑣𝑝, 𝜋) ⇽ Sim(𝐶, 𝑥) “look like” the real 𝑝𝑝,𝑣𝑝 and 𝜋.

Main point: Sim(𝐶,x) simulates 𝜋 without knowledge of 𝒘

Definitions: (2) Zero knowledge (simplified)

Formally: (S, P, V) is (honest verifier) zero knowledge for a circuit 𝐶

 if there is an efficient simulator Sim such that

 for all 𝑥 ∈ 𝔽, s.t. ∃𝑤: 𝐶 𝑥,𝑤 = 0 the distribution:

 (𝐶, 𝑝𝑝, 𝑣𝑝 , 𝑥, 𝜋): where (𝑝𝑝,𝑣𝑝) ⇽ S(𝐶) , 𝜋 ⇽ P(𝑝𝑝 , 𝑥, 𝒘)

 is indistinguishable from the distribution:
 (𝐶, 𝑝𝑝, 𝑣𝑝, 𝑥, 𝜋): where (𝑝𝑝,𝑣𝑝, 𝜋) ⇽ Sim(𝐶, 𝑥)

Main point: Sim(𝐶,x) simulates 𝜋 without knowledge of 𝒘

How to build a zk-SNARK?
Recall: prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Next lecture

Launched on the Ethereum blockchain on May 2020 (v2)

Applications of SNARKs:
(1) Tornado cash: a zk-based mixer

Tornado Cash: a ZK-mixer

account

MIX

Tornado.cash
contract

fresh
address

(1000 DAI)

???

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

1000 DAI

The tornado cash contract (simplified)

nf1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf2
(32 bytes)Currently:

• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4

H1, H2: R ⇾ {0,1}256

C1 C2 C3 0 0 … 0

public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

CRHF

Tornado cash: deposit (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 0 0 … 0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins
Build Merkle proof for leaf #4:
 MerkleProof(4) (leaf=0)
choose random k, r in R
set C4 = H1(k, r)

H1, H2: R ⇾ {0,1}256

contract state

next = 4
100 DAI

 C4 , MerkleProof(4)

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

tree of
height 20

(220 leaves)

100 DAI
 C4 , MerkleProof(4)

Tornado contract does:

(1) verify MerkleProof(4) with
respect to current stored root

(2) use C4 and MerkleProof(4) to
compute updated Merkle root

(3) update state

next = 4

H1, H2: R ⇾ {0,1}256

Tornado contract C1 C2 C3 0 0 … 0

public list of coins

Coins
Merkle

root

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

100 DAI
 C4 , MerkleProof(4)

public list of coins

Tornado contract does:

(1) verify MerkleProof(4) with
respect to current stored root

(2) use C4 and MerkleProof(4) to
compute updated Merkle root

(3) update state

next = 4

H1, H2: R ⇾ {0,1}256

Tornado contract

Tornado cash: deposit (simplified)

nf1

nullifiers

updated
Merkle

root

Treasury: 400 DAI100 DAI pool:
 each coin = 100 DAI

nf2
(32 bytes)

100 DAI
C4 , MerkleProof(4)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coinsnote: (k, r)
Alice keeps secret
(one note per coin)

Every deposit: new Coin
added sequentially to tree

an observer sees who
owns which leaves

Alice deposits 100 DAI:

updated contract state

next = 5

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
 each coin = 100 DAI

nf2
(32 bytes)

Withdraw coin #3
to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H2(k’)

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof 𝜋 for
 public statement x = (root, nf, A)
 secret witness w = (k’, r’, C3 , MerkleProof(C3))
where Circuit(x,w)=0 iff:

(i) C3 = (leaf #3 of root), i.e. MerkleProof(C3) is valid,

(ii) C3 = H1(k’, r’), and

(iii) nf = H2(k’).

H1, H2: R ⇾ {0,1}256

(address A not used in Circuit)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof 𝜋 for
 public statement x = (root, nf, A)
 secret witness w = (k’, r’, C3 , MerkleProof(C3))

H1, H2: R ⇾ {0,1}256

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:
 adversary cannot use proof 𝜋 for x to build a proof 𝜋’ for some “related” x’
 (e.g., where in x’ the address A is replaced by some A’)

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
 each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins
Bob’s ID and coin C3

are not revealed

Contract checks (i) proof 𝜋 is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

nf, proof 𝜋, A
(over Tor)

Merkle
root

H1, H2: R ⇾ {0,1}256

contract state

next = 5

Withdraw coin #3
to addr A:

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
 each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf, proof 𝜋, A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because nf = H2(k’) is now nullified.

… but observer does not
 know which are spent

100 DAI
to address A

Merkle
root

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Withdraw coin #3
to addr A:

Who pays the withdrawal gas fee?
Problem: how does Bob pay for gas for the withdrawal Tx?
• If paid from Bob’s address, then fresh address is linked to Bob

Tornado’s solution: Bob uses a relay

nf, proof 𝜋, A
(over Tor)

(100-gas) DAI
to address A

relay

nf, proof 𝜋, A
and gas

tornado
contract

gas

Note: relay and Tornado also charge a fee

Tornado Cash: the UI

After deposit: get a note Later, use note to withdraw

enter note here

address

(wait before withdrawing)

Tornado trouble … U.S. sanctions

The Ronin-bridge hack (2022):
• In late March: ≈600M USD stolen … $80M USD sent to Tornado
• April: Lazarus Group suspected of hack
• August: “U.S. Treasury Sanctions Virtual Currency Mixer Tornado Cash”

• Lots of collateral damage … and two lawsuits

Tornado

The lesson: complete anonymity in the
 payment system is problematic

Sanctions

“U.S. persons would not be prohibited by U.S. sanctions
regulations from copying the open-source code and making it
available online for others to view, as well as discussing, teaching
about, or including open-source code in written publications,
such as textbooks, absent additional facts”
 U.S. Treasury FAQ, Sep. 2022

https://home.treasury.gov/policy-issues/financial-sanctions/faqs/added/2022-09-13

Designing a compliant Tornado??

(1) deposit filtering: ensure incoming funds are not sanctioned

 Chainalysis SanctionsList contract:

function isSanctioned(address addr) public view returns (bool) {
 return sanctionedAddresses[addr] == true ;
}

Reject funds coming from a sanctioned address.

Difficulties: (1) centralization, (2) slow updates

Designing a compliant Tornado??
(2) Withdrawal filtering: at withdrawal, require a ZK proof that

the source of funds is not currently on sanctioned list.

How?

• modify the way Tornado computes Merkle leaves during deposit
to include msg.sender.

 in our example Alice sets: C4 = [H1(k, r), msg.sender]
• During withdrawal Bob proves in ZK that msg.sender in his leaf is

not currently on sanctions list.

Designing a compliant Tornado??
(3) Viewing keys: at withdrawal, require nullifier to include an
encryption of deposit msg.sender under government public key.

How? Merkle leaf C4 is computed as on previous slide.

• During withdrawal Bob sets nullifier nf = [H2(k’), 𝑐𝑡, 𝜋]
where (i) 𝑐𝑡 = Enc(pk, msg.sender) and
 (ii) 𝜋 is ZK proof that 𝑐𝑡 is computed correctly

⇒ As needed, government can trace funds through Tornado
• lots of problems with this design …

Other private Tx projects

Zcash / IronFISH: private payments
• L1 blockchains that extend Bitcoin, similar use of Nullifiers.
• Support for any value Tx and in-system transfers.

Aztec / Aleo:
• Support for private Tx interacting with a public smart contract.
• Aleo: an L1 blockchain. Aztec: runs on top of Ethereum.

END OF LECTURE

Next lecture: how to build a SNARK

Further topics

Privately communicating with the blockchain: Nym
• How to privately compensate proxies for relaying traffic

Next lecture: how to build a SNARK

