
Decentralized Exchanges

CS251 Fall 2023
(cs251.stanford.edu)

Dan Boneh

… but first, flash loans

What is a flash loan?
A flash loan is taken and repaid in a single transaction

⟹ zero risk for lender ⟹ borrower needs no collateral

“Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit”

Flash
Loan

Provider

borrow $1MInitiating
contractdo stuff

with funds
return funds

(Tx is valid only if funds are returned in same Tx)

https://hackingdistributed.com/2020/03/11/flash-loans/

Use cases

• Risk free arbitrage

• Collateral swap

• DeFi attacks: price oracle manipulation

 ⋮

Risk free arbitrage

Aave (flash loan provider)

Flash loan 1M USDC

Uniswap
USDC⇾DAI

1M USDC

1.002M DAI

Curve
DAI⇾USDC

1.002M DAI

1.001M USDC
1USDC = 1.002DAI 1USDC = 1.001DAI

Repay 1M USDC loan

keep 0.001M USDC

Alice finds a USDC/DAI price difference in two pools

All in a single transaction

Collateral swap

-1000 DAI
+1 cETH

Alice @Compound

borrowed DAI using
ETH as collateral

-1000 DAI
+1500 cUSDC

Alice @Compound

borrowed DAI using
USDC as collateral

Take 1000 DAI flash loan
Repay 1000 DAI debt (@Compund)

Redeem 1 cETH (from Compound)

Swap 1 cETH for 1500 cUSDC
Deposit 1500 cUSDC as collateral
Borrow 1000 DAI
Repay 1000 DAI flash loan

(a single Ethereum transaction)

end goal:start:

Aave v1 implementation

function flashLoan(address _receiver, uint256 _amount) {
 …
 // transfer funds to the receiver
 core.transferToUser(_reserve, userPayable, _amount);

 // execute action of the receiver
 receiver.executeOperation(_reserve, _amount, amountFee, _params);
 …
 // abort if loan is not repaid
 require(availableLiquidityAfter == availableLiquidityBefore.add(amountFee),
 "balance inconsistent");
}

Flash loans amounts on Aave (in 2021)

(Dex)

Decentralized Exchanges

What is an exchange?
Many types of ERC-20 tokens on Ethereum:
• WETH: ETH wrapped as an ERC-20, stETH: staked ETH
• USDC, USDT, DAI: USD stablecoins
• Governance tokens (e.g., GTC for Gitcoin),
• Gaming tokens
 …

An exchange: used to convert one token to another (e.g., USDC ⇾ GTC)

• What is the exchange rate?
• How to connect sellers and buyers?

First approach: a centralized exchange (CeX)

CeX

1000: ETH
10000: USDC

Treasury

I want to exchange 2 ETH for USDC

The exchange rate: 1600 USDC/ETH

5 ETH

Ok. Sends 2 ETH to exchange

Sends 3200 USDC to Bob

10: GTC

First approach: a centralized exchange (CeX)

CeX

1002: ETH
6800: USDC

Treasury

I want to exchange 2 ETH for USDC

The exchange rate: 1600 USDC/ETH

3: ETH
1600: USDC

Ok. Sends 2 ETH to exchange

Sends 3200 USDC to Bob

10: GTC

First approach: a centralized exchange (CeX)

CeX

Example: Limit order:
 I am willing to buy
 1 ETH for up to 1700 USDC
 [for the next 24 hours]

Many order types

The exchange either ”fills” the order, or not.

A list of such buy/sell orders is called an order book

Some issues …

How is exchange rate determined?
• By supply and demand at the exchange (not transparent)
• Competition with other exchanges (bad user experience)

Security: What if exch. takes Bob’s 2 ETH, but never sends USDC?

Censorship: What if exchange refuses to do business with Bob?

A more trusted solution: DeX

What is a DEX?
• a marketplace where transactions occur directly between

participants, without a trusted intermediary

Properties:
• Programmable: can be used as a service by other contracts
• Transparent: code is available for everyone to see
• Permissionless: anyone can use
• Non-Custodial

How to build a DeX?

First idea: on-chain order book
• Liquidity providers place buy/sell orders on chain
• Users fill them on chain

Problem: gas inefficient.
• Orders cost gas: when placed, when filled, when canceled.
• Matching buy orders to sell orders takes lots of gas (but see here)
• Feasible on chains with cheap gas

https://www.youtube.com/watch?v=xUosFwSdVU0&t=3074s

How to build a DeX?

Next idea: off-chain order book
• Liquidity providers sign buy/sell orders off chain

• Post orders on a centralized web site
• User signs an order it wants to fill and submits it on chain.
• Examples: 0x Protocol, OpenSea

Problem: order book is not accessible to contracts (dAPPs)

How to build a DeX?

A very elegant idea: Automated Market Maker (AMM)
• Liquidity providers deposit assets into an on-chain pool
• Users trade with the on-chain pool

• exchange rate is determined algorithmically
• Examples: Uniswap, Balancer, Bancor, …

Benefits: Gas-efficient, accessible to contracts, easy to bootstrap

Over 90% of DeX volume on Ethereum

Automated Market Maker

Goal: People want to exchange USDC ⟺ WETH

Liquidity
providers

Uniswap
USDC-WETH pool

(dAPP)

𝑥 USDC
𝑦 WETH

(earn interest)

USDC, WETH

USDC, WETH

stable volitile

Automated Market Maker

Goal: People want to exchange USDC ⟺ WETH

Uniswap
USDC-WETH pool

(dAPP)

𝑥 USDC
𝑦 WETH

user
want to sell

12 WETH for USDC

18 USDC

Calculate
exchange

rate

say, 1 WETH = 1.5 USDC

Automated Market Maker

Goal: People want to exchange USDC ⟺ WETH

Uniswap
USDC-WETH pool

(dAPP)

𝑥 + 12 USDC
𝑦 − 18 WETH

user
want to sell

12 WETH for USDC

18 USDC

Calculate
exchange

rate

say, 1 WETH = 1.5 USDC

updated pool state

Def: marginal price.
 Suppose Alice sent 𝑑𝑥	(an infinitesimal) amount of X to pool;
 and the pool sent back 𝑑𝑦 amount of Y.
 (𝑑𝑥, change in X is positive; 𝑑𝑦, change in Y is negative)

 Then the marginal price is defined as 𝑝 = −𝑑𝑦/𝑑𝑥 (>0)

How to determine exchange rate?

Pool has (x units of X) and (y units of Y)

The price of a small amount Y in units of X

How to determine exchange rate?
A reasonable goal for the pool to maintain:
 (value of X in pool) = (value of Y in pool)

Let’s use the marginal price 𝑝 to estimate value of assets in pool:
• (value of X in pool) in units of Y: 𝑝 * 𝑥
• (value of Y in pool) in units of Y: 𝑦

So, goal above requires: 𝑝 * 𝑥	 = 	𝑦	

Plugging in the def for 𝑝 gives: − !"
!#
= 𝑦/𝑥

⇒ 𝑝 = 𝑦/𝑥

How to determine exchange rate?

−
𝑑𝑦
𝑑𝑥

= 𝑦/𝑥

or equivalently, the pool must maintain: 𝑥 * 𝑦 = 𝑘

… the famous constant product formula

The diff. eq. has a unique solution:

𝑦 = +
,

 , for a constant 𝑘 ∈ ℝ (− "#
"$ =

%
$! =

&
$ *

%
$ =

#
$)

indeed:

So what does 𝑥 " 𝑦 = 𝑘 mean ??

The constant product market maker:

• Say: 𝑥 = 10	WETH, 𝑦 = 12	USDC
 10 × 12 = 120

• Alice wants to buy 4 WETH from pool
 𝑥	 ⇾ 	𝑥 − 4 = 6

 To maintain 𝑥 ∗ 𝑦 = 120 Alice
 needs to send 8 USDC to pool
 𝑦	 ⇾ 	𝑦 + 8 = 20

𝑥 * 𝑦 = 120

WETH

U
SD

C

current
state of pool

new
state

More generally: Uniswap v2

𝑥 * 𝑦 = 𝑘 ; Alice wants to buy ∆𝑥 ∈ (0, 𝑥) from pool.
How much ∆𝑦 should she pay?

(𝑥 − ∆𝑥) * (𝑦 + ∆𝑦) = 𝑘 ⇒ ∆𝑦 = #'∆$
$)∆$ (solve for ∆𝑦	and simplify)

so: (𝑥 − ∆𝑥) * (𝑦 + 𝜙∆𝑦) = 𝑘 ⇒ ∆𝑦 = &
, *

#'∆$
$)∆$

But liquidity providers (LP’s) take a fee 𝜙 ∈ 0,1 (say 𝜙=0.97)

 Alice pays ∆𝑦: pool gets 𝜙∆𝑦, LP’s get (1 − 𝜙)∆𝑦

Buy and sell equations

(𝑥 ⇾ 𝑥 + ∆𝑥)

(𝑥 ⇾ 𝑥 − ∆𝑥)

gas efficient calculations

The marginal price as a tangent

current
state

tangent

𝑥 * 𝑦 = 𝑘 ⇒ 𝑦 = 𝑘/𝑥

The marginal price: 𝑝 = − "#
"$ =

.
/

 ⇒ −𝑝 is the slope of the tangent
 at the current state

A feature: automatic price discovery (assume 𝜙=1)

Thm: the marginal price 𝑦/𝑥 converges to the market exchange rate

current
state

Proof by example: say, 𝑥 = 12, 	𝑦 = 10

⇒ marginal price 𝑝 = 𝑦/𝑥 = 0.833

Suppose a CeX offers a different price
 𝑝012%34 = 1.875

𝑝 = 𝑦/𝑥 = 0.833

This point matches
the CeX price: 15/8=1.875

⇒ arbitrage opportunity!

A feature: automatic price discovery (assume 𝜙=1)

Thm: the marginal price 𝑦/𝑥 converges to the market exchange rate

current
state

𝑝 = 𝑦/𝑥 = 0.833

Arbitrageur will do:
• borrow 1 token of type Y from Compound
• send 1 Y to DeX, get 0.77 X tokens back
• send 0.77 X to CeX, get 077×1.875 = 1.44 Y
• repay 1 Y to Compound, keep 0.44 Y !!

Where did the 0.44 Y come from? Who lost money?
Answer: LP’s lost … we will see why

updated DeX state

Iterate until DeX marginal price = CeX price
⇒ Arb. is providing a service, and making a profit

A feature: automatic price discovery (assume 𝜙=1)

Thm: the marginal price 𝑦/𝑥 converges to the market exchange rate

To summarize:

• DeX state is below market rate
 ⇒ arbitrageurs will move DeX up

• DeX state is above market rate
 ⇒ arbitrageurs will move DeX down

CeX price

DeX below CeX

DeX above CeX

DeX marginal price matches market price,
without ever being told the market price !!

Problem 1: Slippage
Slippage:
• the larger the trade,

the worse the exchange rate
is for the user

current
state

state after
trade

effective price
= −slope

tangent

market
price

#Y user
pays

market price = −tangent slope

⇒ #Y user should pay = blue line

 … but user pays more

#X user
gets(uniswap bounds slippage at 0.5%)

Slippage: an example

∆𝑦 =
𝑦 * ∆𝑥
𝑥 − ∆𝑥

Note: if ∆𝑥 = 𝑥 (Alice wants to buy entire pool) then price is ∞

1785.5 USDC/ETH 1782.36 USDC/ETH

 ⇒ Pool will never run out of X or Y tokens.

https://app.uniswap.org/swap

>

Problem 2: the sandwich attack

Consider the WETH-USDC pool:
• User Alice submits a Tx to sell ∆𝑥 USDC to pool.
• Normally, she gets back ∆𝑦 = 𝑦	∆𝑥/(𝑥 − ∆𝑥) WETH

Sam monitors the mempool, and sees Alice’s Tx.
He immediately submits two of his own Tx:
• Tx1: Sam sells 5 USDC to pool, gets back 𝑠 WETH (high tip)

• Tx2: Sam sells 𝑠 WETH to pool, gets back 𝑠’ USDC (low tip)

timeSam’s
Tx1

Sam’s
Tx2

Alice’s
sandwiched Tx

Problem 2: the sandwich attack

Now, Alice gets back ∆𝑦′ = !"# ∆%
(%'()"∆%

 < ∆𝑦 WETH

 ⇒ she gets a worse exchange rate because of Sam’s Tx1

 ⇒ For Sam, 𝑠’ > 5 so he made (𝑠’ − 5) USDC off of Alice

This is a frontrunning attack:
• Also happens in regular financial markets (see flash boys).
• We will come back to this when we discuss MEV.

timeSam’s
Tx1

Sam’s
Tx2

Alice’s
sandwiched Tx

https://www.amazon.com/Flash-Boys-Wall-Street-Revolt/dp/0393351599

Incentives for liquidity providers

Recall: liquidity providers (LP’s)

LP

Uniswap
USDC-WETH pool

(dAPP)

𝑥 USDC
𝑦 WETH

𝑥’ USDC
𝑦’ WETH

When LP contributes to pool: 𝑦>/𝑥> = 𝑦/𝑥

⇒ does not change marginal price of pool, namely #?#
"

$?$"
= #

$

⇒ LP “owns” $>
$?$" of the pool

Recall: liquidity providers (LP’s)

LP

Uniswap
USDC-WETH pool

(dAPP)

𝑥 USDC
𝑦 WETH

𝑥’ USDC
𝑦’ WETH

When LP contributes to pool: 𝑦>/𝑥> = 𝑦/𝑥

⇒ does not change marginal price of pool, namely #?#
"

$?$"
= #

$

⇒ LP “owns” $>
$?$" of the pool

LP receives 𝑥’ newly minted UNI tokens,
indicating fractional ownership of pool

Note: LP contribution changes the constant 𝑘:

𝑥 + 𝑥> 𝑦 + 𝑦> = 𝑘> > 𝑘

LP withdrawal

LP

Uniswap
USDC-WETH pool

(dAPP)

𝑥 USDC
𝑦 WETH

𝑥′′ USDC
𝑦′′ WETH

(𝑥, 𝑦) is the current state of the pool. LP owns a 𝛽 fraction of pool.

When LP withdraws from pool they get:

• (𝑥’’, 𝑦’’) of (USDC,WETH) where 𝑦′′/𝑥′′ = 𝑦/𝑥 and 𝑥’’/𝑥 = 	𝛽	.

• LP also receives a 𝛽	fraction of the collected fees

Should LP’s contribute to pool?

Suppose LP has (𝑥>, 𝑦>) of (USDC,WETH).
• Should LP contribute them to USDC-WETH pool?
• Or is there a more profitable strategy for the LP?

AMM strategy:

 contribute (𝑥′, 𝑦′) to USDC-WETH pool at time 𝑡@,
 withdraw (𝑥′′, 𝑦′′) from pool at time 𝑡& > 𝑡@.

Loss vs. Hold (divergence loss)
HOLD Strategy: LP holds (𝑥*, 𝑦*) of (USDC,WETH) between time 𝑡+ and 𝑡,.

Let 𝑃(𝑡) be the market price of WETH/USDC at time 𝑡.

Fact: if 𝑃(𝑡+) = 𝑃(𝑡,) then at time 𝑡,, LP’s portfolio value is:
 HOLD strategy: 𝑃 t, 3 𝑥* +𝑦′ WETH.
 AMM strategy: 𝑃 t, 3 𝑥* +𝑦′ + fees WETH.

Fact: Let ∆	= 𝑃 𝑡, /𝑃 𝑡+ . At time 𝑡,, LP’s portfolio value:
 HOLD strategy: 𝑃 t, 3 𝑥* +𝑦′ WETH.
 AMM strategy: [𝑃 t, 3 𝑥* +𝑦′] 3 𝑴(∆ − 1) + fees WETH,
 where 𝑴(0) = 0	and 𝑴(𝑥) increases with |𝑥|.

Loss vs.
Hold

Loss vs. Hold (divergence loss)

HOLD Strategy: LP holds (𝑥*, 𝑦*) of (USDC,WETH) between time 𝑡+ and 𝑡,.

(1) Loss-vs-Hold increases as ∆	= 𝑃 𝑡& /𝑃 𝑡@ deviates from 1.

 ⇒ the greater the change in price, the greater the LP’s losses

(1) AMM vs. HOLD strategy makes sense only if fees > Loss-vs-Hold.

 ⇒ determines the pool’s fee needed to attract liquidity

(3) Who gets the LP’s losses? Arbitrageurs

Loss vs. Rebalancing (LVR)

Rebalancing Strategy:
• LP maintains its portfolio outside of the DeX
• LP does the same rebalancing on its portfolio as the DeX,

but it does so by trading with a CeX.

https://arxiv.org/pdf/2208.06046.pdf

A strategy that more accurately predicts LP’s losses
 when providing liquidity to DeX

⇒ more accurately determines the fee needed to attract liquidity

https://arxiv.org/pdf/2208.06046.pdf

Other functions

Constant Function Market Maker (CFMM)

Pool maintains 𝑓(𝑥, 𝑦) = 𝑘 for some function 𝑓(*, *)

Examples:
• constant product: 𝑓 𝑥, 𝑦 = 𝑥 * 𝑦

• constant weighted product: 𝑓 𝑥, 𝑦 = 𝑥A# * 𝑦A$
• Maintains an imbalanced portfolio val(𝑋)/val(𝑌) = 𝑤$/𝑤#

• constant sum: 𝑓 𝑥, 𝑦 = 𝑤 * 𝑥 + 𝑦 for some constant 𝑤.
• marginal price is always −𝑑𝑦/𝑑𝑥 = 𝑤 (never changes)

• used when X-to-Y exchange rate does not change

val 𝑋 = val(𝑌)

Uniswap v3: concentrated liquidity

In v2, LP’s liquidity is used on the entire price range.

In v3, LP can specify a price range where their
liquidity will be used

⇒ protects LP from price swings. Results in a
deeper pool when price is in the allowed range.

https://uniswap.org/whitepaper-v3.pdf

Uniswap v4: hooks

Enables pool creator to specify hooks at pool creation time:
• code that executes at certain points during trade:

 e.g., BeforeSwap, AfterSwap hooks

Hooks enable: (more examples here)
• Dynamic trade fee (𝜙) based on state of the pool
• Limit orders (e.g., acceptable price for the next 24 hours)

• More sophisticated pricing strategies (e.g., average over last hour)

https://blog.uniswap.org/uniswap-v4

https://youtu.be/lBntkdgoHr8

Summary: AMMs

• AMM is implemented as a simple smart contract (proj #4)

• Automatic price discovery (no off-chain oracles)

• No dependence on a central point of control

• Fully composable with other dAPPs

Next lecture: MEV

END OF LECTURE

