CS251 Fall 2023
(cs251.stanford.edu)

Decentralized Exchanges

Dan Boneh

... but first, flash loans

What is a flash loan?

A flash loan is taken and repaid in a single transaction

—> zero risk for lender = borrower needs no collateral

borrow S1M

do stuff

with fund

(Tx is valid only if funds are returned in same Tx)

”Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit”

https://hackingdistributed.com/2020/03/11/flash-loans/

* Risk free arbitrage
e Collateral swap

* DeFi attacks: price oracle manipulation

Risk free arbitrage

Alice finds a USDC/DAI price difference in two pools

Aave (flash loan provider)

Flash loan 1M usDC | | Repay 1M usDC loan
1.002M DAl .| Curve

Uniswap . 1M uUsDC
USDC—>DAI . :
1.002M DAl 1.00IM UspC o 2900

1USDC = 1.002DAI u 1USDC = 1.001DAI

_ All in a single transaction

Collateral swap

start: end goal:

Alice @Compound Alice @Compound
Take 1000 DAI flash loan

Repay 1000 DAI debt (@Compund)

Redeem 1 cETH (from Compound)
Swap 1 cETH for 1500 cUSDC
Deposit 1500 cUSDC as collateral
Borrow 1000 DAI
_ Repay 1000 DAI flash loan _
borrowed DAl using (3 single Ethereum transaction) borrowed DAl using
ETH as collateral USDC as collateral

Aave vl implementation

function flashLoan(address _receiver, uint256 _amount) {

// transfer funds to the receiver
core.transferToUser(_reserve, userPayable, amount);

// execute action of the receiver
receiver.executeOperation(_reserve, amount, amountFee, params);

// abort if loan is not repaid
require(availableLiquidityAfter == availableLiquidityBefore.add(amountFee),
"balance inconsistent");

Flash loans amounts on Aave (in2021)

Top 5 Days - Loan Amount

FALSHLOAN_USD ~

624.5M
520.9M
515.0M

265.7M

163.7M

Decentralized Exchanges

(Dex)

What is an exchange?

Many types of ERC-20 tokens on Ethereum:

e WETH: ETH wrapped as an ERC-20, StETH: staked ETH
 USDC, USDT, DAI: USD stablecoins

* Governance tokens (e.g., GTC for Gitcoin),

* Gaming tokens

An exchange: used to convert one token to another (e.g., USDC — GTC)

* What is the exchange rate?
* How to connect sellers and buyers?

First approach: a centralized exchange (ceX)

@ | want to exchange 2 ETH for USDC

" BANK
~ The exchange rate: 1600 USDC/ETH ' ' '
Ok. Sends 2 ETH to exchange l
CeX

Sends 3200 USDC to Bob

1000: ETH

5 ETH 10000: USDC
10: GTC Treasury

First approach: a centralized exchange (ceX)

@ | want to exchange 2 ETH for USDC

" BANK
~ The exchange rate: 1600 USDC/ETH ' ' '
Ok. Sends 2 ETH to exchange l
CeX

Sends 3200 USDC to Bob

1002: ETH

3:ETH 6800: USDC
1600: USDC 10: GTC Treasury

First approach: a centralized exchange (cex)

Many order types
. . "\ " BANK
Q Example: Limit order: |
| am willing to buy ' ' ' l
1 ETH for up to 1700 USDC
S [for the next 24 hours] y CeX

The exchange either “fills” the order, or not.

A list of such buy/sell orders is called an order book

Some issues ...

How is exchange rate determined?
* By supply and demand at the exchange (not transparent)
 Competition with other exchanges (bad user experience)

Security: What if exch. takes Bob’s 2 ETH, but never sends USDC?

Censorship: What if exchange refuses to do business with Bob?

A more trusted solution: DeX

What is a DEX?

a marketplace where transactions occur directly between
participants, without a trusted intermediary

Properties:

Programmable: can be used as a service by other contracts
Transparent: code is available for everyone to see
Permissionless: anyone can use

Non-Custodial

How to build a DeX?

First idea: on-chain order book

Liquidity providers place buy/sell orders on chain

Users fill them on chain

Problem: gas inefficient.

Orders cost gas: when placed, when filled, when canceled.
Matching buy orders to sell orders takes lots of gas (but see here)
Feasible on chains with cheap gas

https://www.youtube.com/watch?v=xUosFwSdVU0&t=3074s

How to build a DeX?

Next idea: off-chain order book

 Liquidity providers sign buy/sell orders off chain
* Post orders on a centralized web site
* User signs an order it wants to fill and submits it on chain.

 Examples: Ox Protocol, OpenSea

Problem: order book is not accessible to contracts (dAPPs)

How to build a DeX?

A very elegant idea: Automated Market Maker (AMM)
* Liquidity providers deposit assets into an on-chain pool
e Users trade with the on-chain pool

* exchange rate is determined algorithmically

 Examples: Uniswap, Balancer, Bancor, ...

Benefits: Gas-efficient, accessible to contracts, easy to bootstrap

Over 90% of DeX volume on Ethereum

Automated Market Maker

Goal: People want to exchange USDC < WETH

Liquidity
providers

@u&m&ﬂﬂ,
@ USDC, WETH,

(earn interest)

Uniswap

USDC-WETH pool
(dAPP)

x USDC
y WETH

ey iy

Automated Market Maker

Goal: People want to exchange USDC < WETH

Uniswap
USDC-WETH pool user
(dAPP)
. want to sell
12 WETH for USDC
say, 1 WETH = 1.5 USDC x USDC
y WETH 18 USDC

Automated Market Maker

Goal: People want to exchange USDC < WETH

Uniswap
USDC-WETH pool user
(dAPP)
. want to sell
12 WETH for USDC
say, lWETH=1.5USDC | x + 12 USDC
y — 18 WETH 18 USDC

updated pool state

How to determine exchange rate?

Pool has (x units of X) and (y units of Y)

Def: marginal price.
Suppose Alice sent dx (an infinitesimal) amount of X to pool;
and the pool sent back dy amount of Y.

(dx, change in X is positive; dy, change inY is negative)

Then the marginal price is definedas p = —dy/dx (>0)
S

[The price of a small amount Y in units of X }

How to determine exchange rate?

A reasonable goal for the pool to maintain:

(value of X in pool) = (value of Y in pool)

Let’s use the marginal price p to estimate value of assets in pool:

e (value of X in pool) in units of Y: DX

e (value of Y in pool) in units of Y: y

So, goal above requires: p-x =y = p=y/x
Plugging in the def for p gives: —% =y/x

How to determine exchange rate?

d
The diff. eq. _d_ic, =y/x has a unique solution:
indeed:
k
y ==, foraconstantk € R (—d—y=£=1.5=2)
b dx x? x x x

or equivalently, the pool must maintain: x-y =k

... the famous constant product formula

So what does x - y = k mean ??

x-y =120
The constant product market maker: Y
* Say: x = 10 WETH, 7y = 12 usDC new
10 X 12 =120 . / state

* Alice wants to buy 4 WETH from pool
x > x—4=6

. UsDC

___——current
state of pool

To maintain x * y = 120 Alice
needs to send 8 USDC to pool

y > y+8=20 WETH

More generally: Uniswap v2

x-y=k; Alice wants to buy Ax € (0,x) from pool.
How much Ay should she pay?

y-Ax
x—Ax

(x—Ax)-(y+Ay)=k = Ay=

(solve for Ay and simplify)

But liquidity providers (LP’s) take a fee ¢ € [0,1] (say $=0.97)
Alice pays Ay: poolgets @Ay, LP’sget (1—¢)Ay

sO: (x—Ax)-(y+dAy) =k = Ay==.2Z

1
¢ x—Ax

Buy and sell equations

.
Sellln for (x 3 Ax) // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
(uint amountIn, uint reserveIn, uint reserveQut) (uint amountOut) {
(amountIn 0, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT');
(reserveln 0 reserveOut 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
uint amountInWithFee = amountIn.mul(997);
uint numerator = amountInWithFee.mul(reserveOut);
uint denominator = reserveIn.mul(1000).add(amountInWithFee);

amountOut numerator / denominator;

// given an output amount of an asset and pair reserves, returns a required input amount of the other asset
(uint amountOut, uint reserveIn, uint reserveOut) (uint amountIn) {
(amountOut 0, 'UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT');
(reserveln 0 reserveQut 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');
uint numerator = reserveIn.mul(amountOut).mul(1000);
uint denominator = reserveOut.sub(amountOut).mul(997);
amountIn (numerator / denominator).add(1);

gas efficient calculations

The marginal price as a tangent

x-y=k = y=k/x

: . d
The marginal price: p = —d—i' - 3;'

current

/ state

= —p is the slope of the tangent
at the current state

A feature: automatic price discovery (assume ¢-1)

Thm: the marginal price y/x converges to the market exchange rate

This point matches
the CeX price: 15/8=1.875

Proof by example: say, x =12, y =10
= marginal price p = y/x = 0.833

current

e

= arbitrage opportunity! . p=y/x=0.833

Suppose a CeX offers a different price
Pmarket = 1.875

A feature: automatic price discovery (assume ¢-1)

Thm: the marginal price y/x converges to the market exchange rate

34

Arbitrageur will do: "
 borrow 1 token of type Y from Compound i
e send1YtoDeX, get0.77 X tokens back i

24

e send0.77 Xto CeX, get 077x1.875=1.44Y |-=

20

e repay 1Y toCompound, keep0.44Y !!)

updated DeX state
current
/ state

Where did the 0.44 Y come from? Who lost money? © p =y/x = 0.833
Answer: LP'S IOSt cee We Wi“ See Why 0o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

16

14

Iterate until DeX marginal price = CeX price
= Arb. is providing a service, and making a profit

12

10

8

A feature: automatic price discovery (assume ¢-1)

Thm: the marginal price y/x converges to the market exchange rate

To summarize:

DeX above CeX

/CeX price

DeX below CeX

e DeX state is below market rate
= arbitrageurs will move DeX up

 DeX state is above market rate
= arbitrageurs will move DeX down

DeX marginal price matches market price,
without ever being told the market price !! .

Problem 1: Slippage

Slippage:
* the larger the trade,

the worse the exchange rate
is for the user

effective price
= —slope

state after

/trade

market price = —tangent slope

= #Y user should pay = blue line

... but user pays more

#X 'user

o N A OO

(uniswap bounds slippage at 0.5%)

current

/ state

tang ent

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Slippage: an example

You pay

1000

$1.79M

Yo

® usDC v 1782360 ® usDC v

1785.5 USDC/ETH > 1782.36 USDC/ETH

Note: if Ax = x (Alice wants to buy entire pool) then price is oo
= Pool will never run out of X or Y tokens.

https://app.uniswap.org/swap

Problem 2: the sandwich attack

Consider the WETH-USDC pool:
e User Alice submits a Tx to sell Ax usbc to pool.
* Normally, she gets back Ay =y Ax/(x — Ax) WETH

Sam monitors the mempool, and sees Alice’s Tx.

He immediately submits two of his own Tx:

e Tx1: Sam sells 5 usbc to pool, gets back s WETH (high tip)
e Tx2: Sam sells s WETH to pool, gets back s’ UsDC (low tip)

Sam’s | Alice’s | Sam’s . time
Tx1 | sandwiched Tx | Tx2

Problem 2: the sandwich attack

(y—s)Ax
(x+5)—Ax

Now, Alice gets back Ay’ = < Ay WETH

= she gets a worse exchange rate because of Sam’s Tx1

= ForSam, s’ > 5 sohe made (s’ —5) usbc off of Alice

This is a frontrunning attack:
* Also happens in regular financial markets (see flash boys).
 We will come back to this when we discuss MEV.

Sam’s | Alice’s | Sam’s . time
Tx1 | sandwiched Tx | Tx2

https://www.amazon.com/Flash-Boys-Wall-Street-Revolt/dp/0393351599

Incentives for liquidity providers

Recall: liquidity providers (LP’s)

When LP contributes to pool: y'/x' = y/x

= does not change marginal price of pool, namely i:z’ = i—/
= LP “owns” - of the pool
X+Xx
Uniswap
USDC-WETH pool
(dAPP)
LP
@ ¥ usbc | x USDC
y WETH | ¥ WETH

Recall: liquidity providers (LP’s)

When LP contributes to pool: y'/x' = y/x

LP withdrawal

(x,7y) isthe current state of the pool. LP owns a 5 fraction of pool.

When LP withdraws from pool they get:
* (x”,y”) of (USDC,WETH) where y"/x" =y/x and x"/x = .

* LP also receives a § fraction of the collected fees :
Uniswap
USDC-WETH pool
(dAPP)
LP
@ ~x"" USDC x USDC
¥y WETH y WETH

Should LP’s contribute to pool?

Suppose LP has (x', y") of (USDC,WETH).
e Should LP contribute them to USDC-WETH pool?
* Oristhere a more profitable strategy for the LP?

AMM strategy:

contribute (x’, y") to USDC-WETH pool at time t,,
withdraw (x", y'") from pool at time t; > t,.

Loss vs. Hold (divergence loss)

HOLD Strategy: LP holds (x’, y") of (USDC,WETH) between time t, and t;.

Let P(t) be the market price of WETH/USDC at time t.

Fact: if P(ty,) = P(t;) then at time t;, LP’s portfolio value is:
HOLD strategy: P(t;) - x' +y' WETH.
AMM strategy: P(t;) - x' +y’ +fees WETH.

Fact: Let A = P(t;)/P(ty). Attime t,, LP’s portfolio value:
HOLD strategy: P(t;) - x' +y' WETH.

AMM strategy: [P(ty) - x" +y']- M(A—1) +fees WETH,
where M(0) = 0 and M(x) increases with |x]|.

Loss vs. Hold (divergence loss)

HOLD Strategy: LP holds (x’,y") of (USDC,WETH) between time t, and t;.
y 0

(1) Loss-vs-Hold increases as A = P(ty)/P(ty) deviates from 1.

= the greater the change in price, the greater the LP’s losses

(1) AMM vs. HOLD strategy makes sense only if fees > Loss-vs-Hold.

= determines the pool’s fee needed to attract liquidity

(3) Who gets the LP’s losses? Arbitrageurs

Loss vs. Rebalancing (LVR)

Rebalancing Strategy:
e LP maintains its portfolio outside of the DeX

* LP does the same rebalancing on its portfolio as the DeX,
but it does so by trading with a CeX.

A strategy that more accurately predicts LP’s losses
when providing liquidity to DeX

= more accurately determines the fee needed to attract liquidity

https://arxiv.org/pdf/2208.06046.pdf

https://arxiv.org/pdf/2208.06046.pdf

Other functions

Constant Function Market Maker (CFMM)

Pool maintains f(x,y) = k for some function f(-, *)

Examples: val(X) = val(Y)
* constant product: f(x,y) =x-y

* constant weighted product: f(x,y) = x"x . y"»
* Maintains an imbalanced portfolio val(X)/val(Y) = wy/w,,

e constantsum: f(x,y)=w-x+7y forsome constant w.
* marginal price is always —dy/dx = w (never changes)
* used when X-to-Y exchange rate does not change

Uniswap v3: concentrated liquidity

In v2, LP’s liquidity is used on the entire price range.

In v3, LP can specify a price range where their
liquidity will be used

= protects LP from price swings. Resultsin a
deeper pool when price is in the allowed range.

https://uniswap.org/whitepaper-v3.pdf

* Liqudiity spread

across the full
price curve

-

* Concentrated liquidity
between $1000 <> $2500

Uniswap v4: hooks

Enables pool creator to specify hooks at pool creation time:

code that executes at certain points during trade:
e.g., BeforeSwap, AfterSwap hooks

Hooks enable: (more examples here)

Dynamic trade fee (¢) based on state of the pool
Limit orders (e.g., acceptable price for the next 24 hours)
More sophisticated pricing strategies (e.g., average over last hour)

https://blog.uniswap.org/uniswap-v4

https://youtu.be/lBntkdgoHr8

Summary: AMMs

* AMM is implemented as a simple smart contract (proj #4)

e Automatic price discovery (no off-chain oracles)

 No dependence on a central point of control

* Fully composable with other dAPPs

END OF LECTURE

Next lecture: MEV

