
CS251: Cryptocurrencies and Blockchain Technologies Fall 2023

Assignment #2
Due: 11:59pm on Tue., Oct. 24, 2023
Submit via Gradescope (each answer on a separate page) code: 7DVJKY

Problem 1. Suppose two groups independently implement the Bitcoin protocol. Some miners run
implementation A and other miners run implementation B. At some point an attacker finds
a vulnerability in implementation A that causes miners running that implementation to accept
transactions that double spend a UTXO. Implementation B treats such transactions as invalid.

a. Suppose 80% of the mining power runs the buggy implementation and 20% runs the non-
buggy one. What will happen to the blockchain once a block containing a double-spending
transaction is submitted to the network?

b. What will happen to the blockchain in the reverse situation where 20% of the mining power
runs the buggy implementation and 80% runs the non-buggy one? That is, what will happen
to the blockchain once a block containing a double-spending transaction is submitted to the
network?

Problem 2. In lecture 5 we discussed Nakamoto’s private attack (starting on slide 22). The attack
shows that if the adversary controls more than half the miners (or more accurately, more than
half the hashing power) then they can cause, say, one year worth of transactions to be deleted
from the tip of the chain and replaced with one year of transactions that effectively do nothing
(for example, a sequence of blocks that only contain the coinbase Tx and nothing else). This
means that everyone who was paid during the year loses their income; the UTXOs holding their
assets simply disappear and the funds go back to the UTXOs from which they came. Recall that
the fraction of the hashing power controlled by the adversary at time t is denoted by β(t) ∈ [0, 1].

a. Suppose β(t) is equal to exactly 1/2 for all t. Can the attacker still replace about a year
worth of transactions with transactions that effectively do nothing?

b. Explain why when β(t) = 0.2 for all t, the attack will not work, with high probability.

Problem 3. Consider again the simple PoS consensus protocol from Lecture 6 (starting on slide 12).
Suppose there are n validators in the system. The confirmation rule we discussed in the lecture
says that once at least 2n/3 of the validators vote for the block (i.e., they sign the block using
their secret signing key), the block is confirmed. We argued that if two blocks are confirmed at
a single position in the chain then at least n/3 validators must be malicious. Therefore, if there
are fewer than n/3 malicious validators, then safety is maintained.

a. Suppose we change the confirmation rule so that a block is confirmed once at least 3n/4
of the validators vote for the block. What is the upper bound on the number of malicious
validators (as a function of n) for safety to be maintained?

b. In part (a) you showed that the modified protocol ensures safety against more malicious
validators than the protocol from the lecture. This comes at the cost of liveness. In the

1



modified protocol, explain why (n/4) + 1 malicious validators can cause the chain to halt and
confirm no new blocks. Recall that the protocol from the lecture guaranteed liveness up to
n/3 malicious validators.

Problem 4. Reliable broadcast. Consider n parties, where n ≥ 3, and where one of the parties
is designated as a sender. The sender has a bit b ∈ {0, 1}. A broadcast protocol is a protocol
where the parties send messages to one another, and eventually every party outputs a bit bi, for
i = 1, . . . , n, or outputs nothing.

• We say that the protocol has safety if for every two honest parties, if one party outputs b
and the other outputs b′, then b = b′.

• We say that the protocol has validity if when the sender is honest, the output of all honest
parties is equal to the sender’s input bit b.

• We say that the protocol has totality if whenever some honest party outputs a bit, then
eventually all honest parties output a bit.

A reliable broadcast protocol (RBC) is a broadcast protocol that satisfies all three properties.

Let us assume that there is a public key infrastructure (PKI), meaning that every party has a
secret signing key, and every party knows the correct public signature verification key for every
other party.

In a synchronous network, consider the following broadcast protocol:

• step 0: The sender sends its input bit b (along with its signature) to all other parties. The
sender then outputs its bit b and terminates.

• step 1: Every non-sender party i echoes what it heard from the sender to all the other
non-sender parties (with i’s signature added). If the party heard nothing from the sender,
it does nothing in this step. Similarly, the party does nothing in this step if the sender’s
message is malformed: for example, if the sender’s signature is invalid, or the message is
not a single bit.

• step 2: Every non-sender party collects all the messages it received (up to n− 1 messages,
with at most one from the sender in step 0 and at most one from each non-sender party in
step 1). If some two of the received messages contain a valid signature by the sender, but
for opposite bits (i.e., in one signed message the bit is 0 and in the other signed message the
bit is 1) then the sender is dishonest and the party outputs 0 and terminates. Otherwise,
all the properly signed bits are the same, and the party outputs that bit. If the non-sender
received no messages, it outputs nothing.

For each of the following questions, describe an attack or explain why there is no attack. Recall
that a dishonest party (or parties) does not have to follow the protocol and can send whatever
messages it wants, or perhaps not send a message at all.

a. If there is at most one dishonest party, does the protocol have safety?

b. If there is at most one dishonest party, does the protocol have validity?

c. If there are at most two dishonest parties, show that the protocol does not have safety.

d. If there are at most two dishonest parties, does the protocol have validity?

e. Does the protocol have totality (for any number of dishonest parties)?

2



Problem 5. Bob posts the following wallet contract to Ethereum to manage his personal finances:

contract BobWallet {

function pay(address dest, uint amount) {

if (tx.origin == HardcodedBobAddress) dest.send(amount);

} }

The function pay lets Bob send funds to anyone he wants. Suppose Mallory can trick Bob into
calling a method on a contract she controls. Explain how Mallory can transfer all the funds out
of Bob’s wallet into her own account.

Hint: Make sure you understand the semantics of tx.origin.

3


