CS251 Final Exam 2021

Due Wednesday, Dec. 8, 2021, 11:59pm on gradescope

Instructions:

You may use any (non-human) resource to answer

the questions. You may not collaborate with others.

Your Name:

SUNet ID: @stanford.edu

In accordance with both the letter and the spirit
of the Stanford Honor Code, I neither received nor
provided any assistance on this exam.

Signature:

e The exam has 6 questions totaling 100 points.
e You have until the deadline to complete them.
e Please submit your answers on Gradescope (D5GKRX)

e Keep your answers concise.
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Problem 1. [18 points]:  Questions from all over.

A) Briefly explain why a Rollup system stores all transaction data on chain? What would
go wrong if transaction data were discarded and not stored anywhere?

B) Consider the following Solidity code:

pragma solidity ~0.8.0;
contract ERC20 is IERC20 {
mapping(address => uint256) private _balances;
event Transfer(address indexed from, address indexed to, uint256 value);
function _transfer(address sender, address recipient, uint256 amount) {
emit Transfer(sender, recipient, amount);

1}

Suppose this code is deployed in two contracts: a contract at address X and a contract
at address Y. Which of the following can read the state of _balances in contract X7
Circle the correct answer(s).

A Code in the _transfer() function in contract ERC20 at address X
B Code in the _transfer () function in contract ERC20 at address Y

C An enduser using web3. js

C) Continuing with part (B), which of the following can read the log entry Transfer
emitted when the function _transfer() is called? Circle the correct answer(s).

A Code in the function getBalance() defined in contract ERC20 at address X
B Code in the function getBalance() defined in contract ERC20 at address Y

C An enduser using web3. js
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D) Two Ethereum transactions, tr; and tz,, are submitted to the network at the same time.
Transaction tx; has maxPriorityFee set to y and transaction tx, has maxPriorityFee
set to 2y. WIll tx, necessarily be executed on chain before tz;? Justify your answer. You
can assume that maxFee for both tz; and ¢, is greater than baseFee + maxPriorityFee.

E) Alice wants to buy a car from dealer Bob. She sends 1 BTC to Bob’s Bitcoin address.
Bob waits for a transaction where (i) the input is from Alice’s address, and (ii) one of
the outputs is a UTXO bound to Bob’s address with a value of 1 BTC. As soon as Bob
sees this transaction on the Bitcoin blockchain, he gives Alice the keys, and she drives
away. Is this safe? Could Alice get the car for free? If so, explain why. If not, explain
what Bob should do to ensure that he gets paid.

F) Alice owns a brand new Tesla Model Y. Can she currently use her car as collateral for
a loan in the Compound system? (without selling the car) If yes; explain how. If no,
explain why not.
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Problem 2. [20 points|: Byzantine broadcast.

Consider n parties, where n > 3, and where one of the parties is designated as a sender.
The sender has a bit b € {0,1}. A broadcast protocol is a protocol where the parties send
messages to one another, and eventually every party outputs a bit b;, for + = 1,...,n, or
outputs nothing.

e We say that the protocol has consistency if for every two honest parties, if one party
outputs b and the other outputs ¥, then b =¥'.

e We say that the protocol has validity if when the sender is honest, the output of all
honest parties is equal to the sender’s input bit b.

e We say that the protocol has totality if whenever some honest party outputs a bit,
then eventually all honest parties output a bit.

A reliable broadcast protocol (RBC) is a broadcast protocol that satisfies all three properties.

Let us assume that there is a public key infrastructure (PKI), meaning that every party has
a secret signing key, and every party knows the correct public signature verification key for
every other party.

In a synchronous network, consider the following broadcast protocol:

e step 0: The sender sends its input bit b (along with its signature) to all other parties.
The sender then outputs its bit b and terminates.

e step 1: Every non-sender party i echoes what it heard from the sender to all the other
non-sender parties (with i’s signature added). If the party heard nothing from the
sender, it does nothing in this step. Similarly, the party does nothing in this step if the
sender’s message is malformed: for example, if the sender’s signature is invalid, or the
message is not a single bit.

e step 2: Every non-sender party collects all the messages it received (up to n—1 messages,
with at most one from the sender in step 0 and at most one from each non-sender party
in step 1). If some two of the received messages contain a valid signature by the
sender, but for opposite bits (i.e., in one signed message the bit is 0 and in the other
signed message the bit is 1) then the sender is dishonest and the party outputs 0 and
terminates. Otherwise, all the properly signed bits from the sender are the same, and
the party outputs that bit. If the non-sender received no messages, it outputs nothing.

For each of the following questions, describe an attack or explain why there is no attack.

A) If there is at most one dishonest party, does the protocol have consistency?
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B) If there is at most one dishonest party, does the protocol have validity?

C) If there are at most two dishonest parties, show that the protocol does not have con-
sistency.

D) If there are at most two dishonest parties, does the protocol have validity?

E) Does the protocol have totality (for any number of dishonest parties)?
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Problem 3. [20 points]: An automated market maker (AMM).

Suppose that 1 ETH is worth 1000 DAI. You act as a liquidity provider for Uniswap V2
and contribute 5 ETH and 5000 DAI to the DAI/ETH pool. The combined value of your
contributed assets is 10K USD, assuming 1 DAI is worth 1 U.S. dollar.

A) A few months later the price of 1 ETH goes up to 2000 DAI. After the DAI/ETH pool
stabilizes to accommodate this new exchange rate, you decide to withdraw your entire
position as a liquidity provider. How much ETH and how much DAI will you receive,
assuming no fees are charged in the system (¢ = 1)7

B) If you had held on to your 5 ETH and 5000 DAI yourself, your assets would now have a
value of 15K DAI, a profit of 5K DAI over the starting point. What is the loss that you
experienced compared to the “hold yourself” strategy, as a result of being a liquidity
provider for Uniswap V2 for these few months? Express the loss as an absolute number
of U.S. dollars, assuming 1 DAT = 1 USD. This is called impermanent loss, although in
this case the loss is quite permanent.

C) If you lost x USD as a result of acting as a liquidity provider for Uniswap V2, where z
was calculated in part (b), where did those funds go? Specifically, who gained z USD
in this process?
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D) Let us now turn to using the Uniswap V2 exchange. Suppose Bob performs a large

exchange selling DAI for ETH using the DAI/ETH pool. When the transaction is
completed, the amount of DAI in the DAI/ETH pool is a bit higher than before, and
the amount of ETH is a bit lower. As a result, the ratio of assets in the DAI/ETH pool
is a bit off its equilibrium point.
Alice the arbitrager spots this opportunity and wants to issue an exchange in the oppo-
site direction that will re-balance the pool. She stands to profit from this transaction,
and wants to make sure that her transaction is executed immediately after Bob’s trans-
action. This strategy is called back-running.

How can Alice implement a back-running strategy? Suggest an approach that has a
reasonable chance of making Alice’s transaction execute immediately after Bob’s.

E) Suppose ten different arbitragers execute the same back-running strategy at the same
time in order to capture the arbitrage opportunity created by Bob’s transaction. They
all use the exact same mechanism you described in part (D). Which one of the ten will
win?
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Problem 4. [16 points]: The Hashmasks re-entrency bug.

In Lecture 8 and in Section 3 we discussed solidity re-entrency bugs. In this question we
will look at an interesting real world example. Consider the following solidity code snippet
used in a drop of 16384 NFTs. A user can claim up to twenty NFTs at a time by calling the
mintNFT() function on this NFT contract. You may assume that all the internal variables
are initialized properly by the constructor (not shown).

function mintNFT (uint256 number0fNfts) public payable {
require(totalSupply() < 16384, "Sale has already ended");
require (numberQ0fNfts > 0, "number0fNfts cannot be 0");
require (numberOfNfts <= 20, "You may not buy more than 20 NFTs at once");
require (totalSupply () .add (numberOfNfts) <= 16384, "Exceeds NFT supply");
require(getNFTPrice () .mul (numberOfNfts) == msg.value, "Value sent is not correct");

for (uint i = 0; i < numberOfNfts; i++) {
uint mintIndex = totalSupply(); // get number of NFTs issued so far
_safeMint (msg.sender, mintIndex); // mint the next one

)

function _safeMint(address to, uint256 tokenId) internal virtual {
// Mint one NFT and assign it to address(to).
require(!_exists(tokenId), "ERC721: token already minted");
_data = _mint(to, tokenId); // mint NFT and assign it to address to
_totalSupply ++; // increment totalSupply() by one

if (to.isContract()) {
// Confirm that NFT was recorded properly by calling
// the function onERC721Received() at address(to).
// The arguments to the function are not important here.
// If onERC721Received is implemented correctly at address(to) then
// the function returns _ERC721_RECEIVED if all is well.

bytes4 memory retval =
IERC721Receiver(to) .onERC721Received (to, address(0), tokenlId, _data);

require(retval == _ERC721_RECEIVED, "NFT Rejected by receiver");
I

Let’s show that _safeMint is not safe at all (despite its name).
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A) Suppose 16370 NFTs were already minted, so that totalSupply() == 16370. Explain
how a malicious contract can cause more than 16384 to be minted. What is the maxi-
mum number of NFTs that the attacker can cause to be minted?

Hint: what happens if onERC721Received at the calling address is malicious? Examine
the minting loop carefully and think of re-entrency bugs.

B) Write the code for a malicious Solidity contract that implements your attack from
part (a), assuming the current value of totalSupply () is 16370.

C) What single line of Solidity would you add or change in the code on the previous page
to prevent your attack? Note that a single transaction should not mint more than 20

NFTs.
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Problem 5. [15 points|: Bitcoin questions.

A) The benefit of the Lightning Network proposal is executing payments without posting
a transaction to the Bitcoin network. Can Lightning Network payments eventually
replace all Bitcoin transactions completely, making the blockchain unnecessary?

B) Recall that a Bitcoin transaction has a set of input addresses and a set of output
addresses. Usually, each input address signs the entire transaction (excluding the sig-
natures) to authorize payment. This signature type is called SIGHASH_ALL.

Suppose that instead, the secret key of each input address is used to sign the entire
Txin (the input part of the transaction, excluding the signatures) and nothing else.
That is, the Txout (the output part of the transaction) is not signed. (this signature
type is called SIGHASH NONE).

Can a miner steal funds from an input address of a transaction that uses the SIGHASH_NONE
method, once the transaction is submitted to the Bitcoin network? If so, explain how;
if not, explain why not.

C) How would Bitcoin be affected if someone discovered a way to forge an ECDSA signature
on an arbitrary message just given an ECDSA public key? Assume it takes 30 minutes
of computation to forge one signature, and this cannot be sped up.
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Problem 6. [11 points]: Tornado cash.

In Lecture 14 we looked at the Tornado Cash mixer. Recall that the Tornado cash contract
needs to store a large list of nullifiers, one nullifier for each withdrawal from the tree. During
withdrawal the contract needs to ensure that the nullifier of the note being withdrawn is not
in the set of already withdrawn nullifiers. If so, the contract adds this nullifier to the set.
The tornado cash contract implements this as a mapping:

mapping(bytes32 => bool) public nullifierHashes;

During withdrawal the contract verifies the provided zk-SNARK proof, and if valid the
contract does:

bytes32 _nullifierHash; // nullifier of note being withdrawn
require(!nullifierHashes[_nullifierHash], "The note has been spent");
nullifierHashes[_nullifierHash] = true;

Suppose k successful withdrawal from the tree have been processed. Consider a miner
that is verifying Ethereum transactions. As a function of k&, how much storage space will
this miner need to allocate to storing the mapping nullifierHashes? You may assume
the Tornado contract requires no other long term storage beyond this nullifierHashes

mapping.

It would be better if we could store the set of withdrawn nullifiers Sy off-chain, say
somewhere in the cloud. The Tornado contract would only store a short commitment
to the current nullifier set S;. When calling the withdrawal function, the user would
provide all the current arguments to that function, and in addition, the user would
provide

e a proof 7 that the nullifier nf of the coin being withdrawn is not in the committed
set of nullifiers, namely nf & Sy, and

e enough information to enable the Tornado contract to calculate the commitment
to the updated nullifier set Sk := Sk U {nf}.

The contract would verify the proof 7 that nf & S, compute the commitment to Sy 1,
and replace the current commitment to Sy with the updated commitment to Sg1.
There are several data structures that provide these capabilities where the commitment
to Sk is a single 32-byte hash value, and the proof 7 contains only 2[log, k] 32-byte
hashes. Moreover, this short proof 7 enables the Tornado contract to calculate the short
commitment to Sii1. One example can be obtained by adapting the Merkle Patricia
Tree presented in Lecture 7, but we will leave this as a puzzle for another time.

Page 11 of 12



While this approach will greatly reduce the size of the contract’s storage array, it is only
worth implementing if it will reduce the gas needed to call the withdrawal function.
Consider the following gas costs:

e writing to a zero entry in the storage array: 20K gas,
e writing to a non-zero entry in the storage array: 5K gas,
e calldata (the string containing the function arguments): 16 gas per byte.

Suppose we only count the gas consumed by the three items above. For what values of
k will this change save gas when calling withdrawal over the current implementation?
Recall that the proof m comes out to 32 x 2[log, k| bytes that must be supplied as part
of calldata to the withdrawal function.

Recall that Tornado cash provides a compliance tool that enables a user to de-anonymize
their coin: the tool generates a document that links the user’s deposit to a specific
withdrawal. This document may need to be presented to a centralized exchange (like
Coinbase) before the exchange can accept the funds.

Suppose n people deposit one coin each into a single Tornado pool, so that the anonymity
set for that pool is of size n (say, n = 1000). Later, all n withdraw their coins into n
fresh Ethereum addresses (one coin goes into each fresh address). An observer cannot
tell which fresh Ethereum address corresponds to which of the n people, so that the
anonymity set has size n.

However, suppose n — 1 of the people use the compliance tool and send the resulting
document to Coinbase. What does this mean for the privacy of the last remaining
person who wanted to have a private address?
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