CS251 Fall 2022
(cs251.stanford.edu)

Solidity

Dan Boneh

World state: set of accounts identified by 32-byte address.

Two types of accounts:
(1) owned accounts: address = H(PK)

(2) contracts: address = H(CreatorAddr, CreatorNonce)

Recap: Transactions

To: 32-byte address (0 — create new account)
From: 32-byte address
Value: # Wei being sent with Tx
Tx fees (eip 1559): gasLimit, maxFee, maxPriorityFee
data: what contract function to call & arguments
if To=0: create new contract code = (init, body)

[signature]: if Tx initiated by an owned account

Recap: Blocks

Validators collect Tx from users:

= run them sequentially on current world state

= new block contains updated world state, Tx list, log msgs

The Ethereum blockchain: abstractly

|

accts. accts.
Q - A

JUd
updated TX log updated TX log
world messages world messages

state state

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

= compile to EVM bytecode
(other projects use WASM or BPF bytecode)

= validators use the EVM to execute contract bytecode
in response to a Tx

The EVM

The EVM

Stack machine (like Bitcoin) but with JUMP

max stack depth = 1024
program aborts if stack size exceeded; block proposer keeps gas
contract can create or call another contract

In addition: two types of zero initialized memory

Persistent storage (on blockchain): SLOAD, SSTORE (expensive)

* Volatile memory (for single Tx): MLOAD, MSTORE (cheap)

LOGO(data): write data to log

see https://www.evm.codes

Every instruction costs gas, examples:

SSTORE addr (32 bytes), value (32 bytes)
* zero — non-zero: 20,000 gas
* Nnon-zero — non-zero: 5,000 gas

* non-zero — zero: 15,000 gas

(for a cold slot)

refund (example)

Refund is given for reducing size of blockchain state

CREATE : 32,000 + 200 X (code size) gas;

CALL gas, addr, value, args

SELFDESTRUCT addr: kill current contract (5000 gas)

Gas calculation

Why charge gas?
* Tx fees (gas) prevents submitting Tx that runs for many steps.

* During high load: block proposer chooses Tx from mempool
that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)

* Every Tx contains a gasPrice 'bid” (gas = Wei conversion price)

* Producer chooses Tx with highest gasPrice (max sum(gasPrice X gasLimit))
= not an efficient auction mechanism (first price auction)

Gas prices spike during congestion

600.00

GasPrice in Gwei: popular project launch
20 Gwei =20 X 10° ETH /

400.00

200.00

JAN 22 APR 22 JUL 22 0CT 22

24.00

Average Tx fee in USD

MWMW | -

JAN 22 APR '22 JUL 22 0CT "22

Gas calculation: EIP1559

Every block has a “baseFee”: the minimum gasPrice for Tx in the block

baseFee is computed from total gas in earlier blocks:

» earlier blocks at gas limit (30M gas) = base fee goes up 12.5% | | croojate

" in between

e earlier blocks empty = base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) = baseFee does not change

Gas calculation

A transaction specifies three parameters:
e gasLimit: max total gas allowed for Tx

bid

* maxFee: maximum allowed gas price
 maxPriorityFee: additional “tip” to be paid to block proposer

Computed gasPrice bid (in Wei = 108 ETH):

gasPrice — min(maxFee, baseFee + maxPriorityFee)

Max Tx fee: gasLimit X gasPrice

Gas calculation

) if gasPrice < baseFee: abort
) If gasLimit X gasPrice > msg.sender.balance: abort
(3) deduct gasLimit X gasPrice from msg.sender.balance
)
)

set Gas + gasLimit
execute Tx: deduct gas from Gas for each instruction
if at end (Gas < 0): abort, Tx is invalid (proposer keeps gasLimit X gasPrice)

(6) Refund Gas X gasPrice to msg.sender.balance (leftover change)

(7) gasUsed « gasLimit — Gas M(x\
(7a) BURN gasUsed X baseFee .
(7b) Send gasUsed X (gasPrice — baseFee) to block producer

Example baseFee and effect of burn

15763570
15763569
15763568
15763567
15763566
15763565

21,486,058
14,609,185
25,239,720
29,976,215
14,926,172
1,985,580

baseFee < 16Gwei
baseFee > 16Gwei

16.92
(<15M) 16.97
15.64
(>15M) 13.90
(<15M) 13.91
(<15M) 15.60

beacon chain

< >

0.363
0.248
0.394
0.416
0.207
0.031

-

= gasUsed X baseFee

= hew issuance > burn = ETH inflates
= new issuance <burn = ETH deflates

Eth total supply (since merge)

120.53M

120.52M
SEP 19 SEP 26 0CT3 0CT 10 0CT 17

Why burn ETH ???

EIP1559 goals (informal):
e users incentivized to bid their true utility for posting Tx,

* block proposer incentivized to not create fake Tx, and

* disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to block producer):

= in periods of low Tx volume proposer would try to increase
volume by offering to refund the baseFee off chain to users.

Let’s look at the Ethereum blockchain

Latest Blocks From To Value
15778674 Fee Recipient Fee Recipient: 0x6d2...766 0x39feb77c9f90fae6196... - [© 0x52de8d3febd3a06d3c... 0.088265 Ether
Bk 7 secs ago 138 txns in 12 secs
() areyougay.eth - 0x404f5a67{72787a6dbd... 0.2 Ether
Bk 15778673 Fee Recipient Lido: Execution Layer Re...
19 secs ago 111 txns in 12 secs Optimism: State Root Pr... -~ [3 Optimism: State Commit... 0 Ether
Bk 15778672 Fee Recipient Flashbots: Builder 0xb3336d324ed828dbc8... - [Uniswap V3: Router 2 0 Ether
31 secs ago 313 txns in 12 secs
0x1deaf9880c1180b023... - [® Uniswap V3: Router 2 0.14 Ether
Bk 15778671 Fee Recipient Lido: Execution Layer Re...
43 secs ago 34 bxns In 12 secs 0x10c5a61426b506dcba... - @ Uniswap V2: Router 2 0 Ether
() defiantplatform.eth - [0x617dee16b86534a5d7... 0 Ether

Let’s look at a transaction ...

Transaction ID: 0x14b1a03534ce3c460b022185b4 ...

From: 0x1deaf9880c1180b02307e940c1e8ef936e504b6a

To: Contract 0x68b3465833fb72a70ecdf485e0e4c7bd8665fc45
(Uniswap V3: Router 2)

Value: 0.14 Ether ($182)

Data: Function: multicall() [calls multiple methods in a single call]

Contract generated a call to Contract 0xC02aaA39b22 ... (value:0.14)

Let’s look at the To contract ...

Contract 0xC02aaA39b223FE8D0OAOe5C4F27eAD9083C756Cc?2
(Wrapped ETH: called from Uniswap V3: Router 2)

Balance: 4,133,236 Ether

Code: 81 lines of solidity

function withdraw(uint wad) public {
require(balanceOf[msg.sender] >= wad);
balanceOf[msg.sender] —= wad;
msg.sender.transfer(wad);
Withdrawal(msg.sender, wad); // emit log event

=

- anyone can read

code snippet

Remember: contracts cannot keep secrets!

Contract 0xC02aaA39b223FES8D0OAOe5C4F27eAD9083C756Cc2
(Wrapped ETH) etherscan.io

Code Read Contract Write Contract

(storage) (see API)

AnyOne can read contract [Read Contract Information
state in Storage array 1 name

— never store secrets Wrapped Ether string
in ContraCt! 2. totalSupply

4133296938185062975508724 uint256

Solidity variables stored in S[] array

Solidity

docs: https://solidity.readthedocs.io/

Several IDE’s available

Contract structure

interface IERC20 {
function transfer(address to, uint256 value) external returns (bool);

function totalSupply() external view returns (uint256);

}

contract ERC20 is IERC20 { // inheritance
address owner;
constructor() public { owner = msg.sender; }
function transfer(address _to, uint256 _value) external returns (bool) {
.. implentation ...

Value types

e Uuint256
e address (bytes32)
o _address.balance, address.send(value), _address.transfer(value)

o call: send Tx to another contract
bool success = _address.call{value: msg.value/2, gas: 1000}(args);
o delegatecall: load code from another contract into current context
o bytes32

e bool

struct Person {
Reference types ctperson
uint128 balance;
» structs address addr;
e arrays }
e bytes Person[10] public people;
e strings

e Mappings:
e Declaration: mapping (address => unit256) balances;

e Assignment: balances[addr] = value;

Globally available variables

block: .blockhash, .coinbase, .gaslimit, .number, .timestamp

gasLeft()

msg: .data, .sender, .sig, .value

tx: .gasprice, .origin

A—B—C—D:
at D: msg.sender == C
tx.origin == A

Keccak256(), sha256(), sha3()

require, assert

e.g.:

require(msg.value > 100, “insufficient funds sent”)

Function visibilities

o external: function can only be called from outside contract.
Arguments read from calldata
e public: function can be called externally and internally.
if called externally: arguments copied from calldata to memory
e private: only visible inside contract
e internal: only visible in this contract and contracts deriving from it
e view: only read storage (no writes to storage)

e pure: does not touch storage

function f(uint a) private pure returns (uint b) { returna + 1; }

contract owned {

I n h e rita n Ce address owner;

constructor() { owner = msg.sender; }
modifier onlyOwner {

o« Inheritance require(msg.sender == owner); _;}

}

contract Destructable is owned {
function destroy() public onlyOwner { selfdestruct(owner) };

}
code of contract “owned” is compiled into contract Destructable

« Libraries: library code is executed in the context of calling contract

o library Search { function IndexOf(); }
> contract A { function B { Search.IndexOf(); } }

ERC20 tokens

e https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

o A standard API for fungible tokens that provides basic functionality to transfer

tokens or allow the tokens to be spent by a third party.

e An ERC20 token is itself a smart contract that maintains all user balances:

mapping(address => uint256) internal balances;

e A standard interface allows other contracts to interact with every ERC20 token.

No need for special logic for each token.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

ERC20 token interface

function transfer(address to, uint256 _value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);

function approve(address _spender, uint256 value) external returns (bool);

function totalSupply() external view returns (uint256);
function balanceOf(address _owner) external view returns (uint256);

function allowance(address _owner, address _spender) external view returns (uint256);

How are ERC20 tokens transferred?

contract ERC20 is [ERC20 {
mapping (address => uint256) internal balances;

function transfer(address _to, uint256 _value) external returns (bool) {
require(balances[msg.sender] >= _value, "ERC20 _INSUFFICIENT_BALANCE");
require(balances[_to] + value >= balances[_to], "UINT256_OVERFLOW”);

balances[msg.sender] —= _value;
balances[to] += _value;

emit Transfer(msg.sender, to, value); // write log message
return true;

1

Tokens can be minted by a special function mint(address _to, uint256 _value)

ABI encoding and decoding

e Every function has a 4 byte selector that is calculated as
the first 4 bytes of the hash of the function signature.

e In the case of ‘transfer’, this looks like bytes4(keccak256(“transfer(address,uint256)”);

e The function arguments are then ABI encoded into a single byte array and concatenated with the
function selector. ABI encoding simple types means left padding each argument to 32 bytes.

e This data is then sent to the address of the contract, which is able to decode the arguments and
execute the code.

e Functions can also be implemented within the fallback function

Calling other contracts

o Addresses can be cast to contract types.

address _token;
IERC20Token tokenContract = IERC20Token(_token);
ERC20Token tokenContract = ERC20Token(token);

e When calling a function on an external contract, Solidity will automatically
handle ABI encoding, copying to memory, and copying return values.

o tokenContract.transfer(_to, value);

Gas cost considerations

o Everything costs gas, including processes that are happening under the hood

(ABI decoding, copying variables to memory, etc).

Considerations in reducing gas costs:
o How often to we expect a certain function to be called? Is the bottleneck the
cost of deploying the contract or the cost of each individual function call?

o Are the variables being used in calldata, the stack, memory, or storage?

Stack variables

o Stack variables are generally the cheapest to use and can be used for any
simple types (anything that is <= 32 bytes).
o uint256 a = 123;
o All simple types are represented as bytes32 at the EVM level.

e Only 16 stack variables can exist within a single scope.

Calldata

e Calldata is a read-only byte array.

e Every byte of a transaction’s calldata costs gas
(16 gas per non-zero byte, 4 gas per zero byte).

o All else equal, a function with more arguments (and larger calldata) will cost more gas.

e ltis cheaper to load variables directly from calldata, rather than copying them to memory.

o For the most part, this can be accomplished by marking a function as "external’.

Memory

e Memory is a byte array.
o Complex types (anything > 32 bytes such as structs, arrays, and strings) must
be stored in memory or in storage.

string memory name = “Alice”;

e Memory is cheap, but the cost of memory grows quadratically.

Storage

o Using storage is very expensive and should be used sparingly.

e Writing to storage is most expensive. Reading from storage is cheaper, but

still relatively expensive.
e Mmappings and state variables are always in storage.
e Some gas is refunded when storage is deleted or setto 0

e Trick for saving has: variables < 32 bytes can be packed into 32 byte slots.

Event logs

e Eventlogs are a cheap way of storing data that
does not need to be accessed by any contracts.

o Events are stored in transaction receipts, rather than in storage.

Security considerations

Are we checking math calculations for overflows and underflows?

e done by the compiler since Solidity 0.8.
e What assertions should be made about function inputs, return values, and
contract state?
e Who is allowed to call each function?
e Are we making any assumptions about the functionality of external contracts

that are being called?

Re-entrency bugs

contract Bank({
mapping(address=>uint) userBalances;

function getUserBalance(address user) constant public returns(uint) {
return userBalances[user]; }

function addToBalance() public payable {
userBalances[msg.sender] = userBalances[msg.sender] + msg.value; }

// user withdraws funds
function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

// send funds to caller ... vulnerable!
if (msg.sender.call{value:amountToWithdraw}() == false) { throw; }
userBalances[msg.sender] = 0;

b}

contract Attacker {
uint numlterations;
Bank bank;

function Attacker(address bankAddress) { // constructor
bank = Bank(_bankAddress);
numlterations = 10;
if (bank{value:75}.addToBalance() ==false) { throw; } // Deposit 75 Wei
if (bank.withdrawBalance() == false) {throw; } // Trigger attack

I

function () { // the fallback function
if (numlterations > 0) {
numlterations --; // make sure Tx does not run out of gas
if (bank.withdrawBalance() == false) { throw; }

Pl

Why is this an attack?

(1) Attacker = Bank.addToBalance(75)
(2) Attacker = Bank.withdrawBalance —
Attacker.fallback — Bank.withdrawBalance —

Attacker.fallback = Bank.withdrawBalance — ...

withdraw 75 Wei at each recursive step

How to fix?

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];

userBalances[msg.sender] = 0;

if (msg.sender.call{value:amountToWithdraw}() == false) {
userBalances[msg.sender] = amountToWithdraw;
throw;

END OF LECTURE

Next lecture: DeFi contracts

