CS251 Fall 2022

(cs251.stanford.edu)

Consensus in the Internet Setting

Ertem Nusret Tas

Recap of the Last Lecture

- Byzantine Generals Problem
- Definition of Byzantine adversary
- Synchronous, asynchronous and partially synchronous networks
- State Machine Replication (SMR)
- Security properties for SMR protocols: Safety and Liveness
- A secure SMR protocol: Streamlet

Sybil Attack

How to select the nodes that participate in consensus?

Two variants:

- Permissioned: There is a fixed set of nodes (previous lecture).
- Permissionless: Anyone satisfying certain criteria can participate.

Can we accept any node that has a signing key to participate in consensus?

Sybil Resistance

Consensus protocols with Sybil resistance are typically based on a bounded (scarce) resource:

	Resource dedicated to the protocol	Some Example Blockchains
Proof-of-Work	Total computational power	Bitcoin, PoW Ethereum
Proof-of-Stake	Total number of coins	Algorand, Cardano, Cosmos, PoS Ethereum
Proof-of-Space/Time	Total storage across time	Chia, Filecoin

How does Proof-of-Work prevent Sybil attacks?

We assume that the adversary controls a small fraction of the scarce resource!

Bitcoin: Mining

To mine a new block, a miner must find *nonce* such that

$$H(h_{prev}, txn\ root, nonce) < \text{Target} = \frac{2^{256}}{D}$$

Difficulty: How many nonces on average miners try until finding a block?

Each miner tries different nonces until one of them finds a nonce that satisfies the above equation.

Bitcoin: Block Headers

Bitcoin: Difficulty Adjustment

New target is not allowed to be more than 4x old target. New target is not allowed to be less than $\frac{1}{4}x$ old target.

Nakamoto Consensus

Chain with the highest difficulty!

Bitcoin uses **Nakamoto consensus**:

- Fork-choice / proposal rule: At any given time, each honest miner attempts to extend (i.e., mines on the tip of) the <u>heaviest</u> (longest for us) chain in its view (Ties broken adversarially).
- **Confirmation rule:** Each miner confirms the block (along with its prefix) that is *k*-deep within the longest chain in its view.
 - In practice, k = 6.
 - Miners and clients accept the transactions in the latest confirmed block and its prefix <u>as their log</u>.
 - Note that confirmation is different from finalization.
- Leader selection rule: Proof-of-Work.

Nakamoto Consensus

Bitcoin vs. Streamlet

	Bitcoin	Streamlet
Fork-choice rule	Heaviest (Longest in our case) Chain	Longest Notarized Chain
Confirmation/finalization rule	k-deep prefix of the longest (heaviest) chain	Three adjacent blocks in a notarized chain from consecutive epochs
Leader selection rule	Determined by the difficulty D	With the help of a hash function

- Streamlet is not dynamically available: It loses liveness if n/3 or more nodes go offline!
- Bitcoin is dynamically available: It continues to confirm transactions even if the majority of the mining power goes offline.

Consensus in the Internet Setting

Characterized by open participation:

- Adversary can create many Sybil nodes to take over the protocol.
- Honest participants can come and go at will.

Goals:

- Limit adversary's participation.
 - Sybil resistance (e.g., Proof-of-Work)!
- Maintain availability (liveness) of the protocol against changing participation by the honest nodes.
 - Dynamic availability!

Security

Can we show that Bitcoin is <u>secure</u> under <u>synchrony</u> against a <u>Byzantine</u> <u>adversary</u>?

What would be the best possible resilience?

Fraction of the mining power controlled by the adversary.

Nakamoto's Private Attack: $\beta \ge 1/2$

Private attack succeeds!

Private attack (mostly) succeeds if $\lambda_a \geq \lambda_h$, i.e., if $\beta \geq 1 - \beta$, i.e., if $\beta \geq \frac{1}{2}$.

Alice's log: tx_2tx_3

Private attack (mostly) fails if $\lambda_a < \lambda_h$, i.e., if $\beta < 1 - \beta$, i.e., if $\beta < \frac{1}{2}$.

Can another attack succeed?

Forking

Multiple honest blocks at the same height due to network delay. Adversary's chain grows at rate proportional to (shown by \propto) β ! Honest miners' chain grows at rate less than $1-\beta$ because of forking! Now, adversary succeeds if $\beta \geq \frac{(1-\beta)}{2}$, which implies $\beta \geq \frac{1}{2}$!!

Security

Theorem: If $\beta < 1/2$, there exists a small enough mining rate $\lambda(\Delta, \beta) = \lambda_a + \lambda_b$ (by changing difficulty) such that Bitcoin satisfies security (safety and liveness) except with error probability $e^{-\Omega(k)}$ under synchronous network.

- This is the error probability for confirmation.
- We say 'confirmation' instead of finalization because when you confirm
 a block or transaction, you confirm it with an error probability...
- ...unlike *finalizing* a block where there is no error probability*.

Now, we see why Bitcoin has 1 block every 10 minutes, instead of 1 block every second...

Is Bitcoin the Endgame?

- Bitcoin provides Sybil resistance and dynamic availability.
- It can be made secure for any $\beta < \frac{1}{2}$.
- Is it the Endgame for consensus?

No!

- Bitcoin is secure only under <u>synchrony</u> unlike Streamlet that is secure under <u>partial synchrony</u>.
- It *confirms* blocks with an error probability as a function of *k*, unlike Streamlet that *finalizes* blocks.
- Energy?

Dark Side of Bitcoin: Energy

Photo taken from the article "As the price of bitcoin has climbed, so has its environmental cost" that appeared at The Economist on May 14th 2021.

No Attacks on Bitcoin?

Ghash.IO had >50% in 2014

Gave up mining power

No Selfish mining attacks?

Why are visible attacks not more frequent?

- Miners care about the Bitcoin price.
- Might not be rational to attack.
- No guarantees for the future.

END OF LECTURE

Next lecture: Incentives and Accountability in Consensus

Optional Slides

Slides going forward is optional material and present a simplified security proof for Nakamoto consensus.

Reminder for Security (Optional)

Let's recall the definition of security for SMR protocols. Let ch_t^i denote the confirmed (i.e., k-deep) chain accepted by a client i at time t.

Safety (Consistency):

• For any two clients i and j, and times t and s: $ch_t^i \leq ch_s^j$ (prefix of) or vice versa, i.e., chains are consistent.

Liveness:

• If a transaction tx is input to an honest replica at some time t, then for all clients i, and times $s \ge t + T_{conf}$: $tx \in ch_s^i$.

Modelling Bitcoin (Optional)

Many different miners, each with infinitesimal power.

Total mining rate: λ (1/minutes).

In Bitcoin, $\lambda = 1/10$.

Adversary is Byzantine and controls $\beta < \frac{1}{2}$ fraction of the mining power.

- Adversarial mining rate: $\lambda_a = \beta \lambda$
- Honest mining rate: $\lambda_h = (1 \beta)\lambda$

Each mined block is adversarial with probability β independent of other blocks.

Network is synchronous with a known upper bound Δ on delay.

Suppose there is at most one honest block at every height.

This is the case if the network delay $\Delta = 0$.

GR (2022): If **any** attack succeeds in violating a target transaction tx's safety, then the **private attack with premining** also succeeds in violating the target transaction's safety.

We will show that if **any** attack succeeds in violating safety of a target transaction tx <u>within the first honestly mined block</u>, then the **private attack** also succeeds in violating the target transaction's safety.

For the full proof, see "Bitcoin's Latency Security Analysis Made Simple".

Suppose a transaction tx is confirmed within the first block b mined by the honest miners in an honest view.

Let's observe a 'reorg' of block b by some attack.

We will show that the private attack will also succeed in 'reorging' b!

Block b contains the transaction tx that is 'reorged'.

Consider the *first time* that *t* block *b* is reorged.

- Right before t, block c is seen at the tip of the longest chain by an honest node.
- Right after t, block d is seen at the tip of the longest chain by another (potentially the same) honest node.

- Fact 1: At each height until h_c , there is at least one adversary block.
 - Why?
 - Because there can be at most one honest block at any height.

- Fact 2: Every block after h_c thru h_d are adversarial (one block per height).
 - Why?
 - Otherwise, we contradict with the definition of blocks c and d.

$$A \ge h_d$$

• Fact 3: There are at most h_c honest blocks.

$$H \leq h_c$$

- Combining everything...
 - $H \leq h_c$
 - $A \ge h_d$
 - $h_d \ge h_c \ge k$
- This implies $A \ge H$ and $A \ge k$.

Private attack also succeeds! Why?

 $A \ge H$ and $A \ge k$:

Private attack also succeeds!

If every honest block is at a separate height...

Best attack to reorg a transaction is the **private attack with premining**! Probability that a private attack with premining succeeds $\leq e^{-\Omega(k)}$; if $\lambda_a < \lambda_h$, i.e., $\beta < 1/2$! Safety!

Multiple honest blocks at the same height due to network delay. Forking!

Probability that a block is an honest block at a unique height: $e^{-\lambda \Delta}(1-\beta)$

Trick: We give honest blocks that fall into the same height as previous honest blocks to the adversary.

Mining rate of 'honest' blocks with new definition $\frac{1}{2}$

Every honest block is again at a separate height!

Best attack to reorg a transaction is the private attack with premining.

Probability that a private attack with premining succeeds $\leq e^{-\Omega(k)}$; if $\frac{1}{2} < e^{-\lambda \Delta}(1-\beta)$.

Safety!

Security Proof: Liveness (Optional)

Growth rate of the blockchain $\geq e^{-\lambda \Delta}(1-\beta)\lambda$.

Arrival rate of adversary blocks: $\beta\lambda$

If
$$\frac{1}{2} < e^{-\lambda \Delta} (1 - \beta)$$
, then $e^{-\lambda \Delta} (1 - \beta)\lambda > \beta\lambda$.

Thus, over a sufficiently large time interval (call this u), the k-deep prefix of the longest chain in the view of each honest node must contain new honest blocks except with probability $e^{-\Omega(u)}$.

Liveness!