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Byzantine Generals Problem

• Encapsulates the problem of reaching consensus.
• Introduced by Lamport et al. in 1982.
• Problem statement:

• There are 𝑛 generals (where 𝑛 is fixed), one of which is the commander.
• Some generals are loyal, and some of them can be traitors (including 

the commander). 
• The commander sends out an order that is either attack or retreat to 

each general.
• If the commander is loyal, it sends the same order to all generals.
• All generals take an action after some time.

The Byzantine Generals Problem (1982)
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Byzantine Generals Problem

• Goal:
• All loyal generals must take the same action.
• If the commander is loyal, then all loyal generals must take the action 

suggested by the commander.
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From Generals to Nodes

• Solution to the Byzantine Generals Problem is a consensus protocol.
• When modelling consensus protocols:

• Generals → Nodes
• Commander → Leader
• Loyal → Honest, Traitor → Adversary

• What can the adversarial nodes do?



Adversary

• The adversary can corrupt nodes, after which they are called adversarial.
• The adversary is said to induce:

• Crash faults if the adversarial nodes do not send or receive any 
messages.

• Omission faults if the adversarial nodes can selectively choose to drop 
or let through each messages sent or received.

• Byzantine faults (Byzantine adversary) if the adversarial nodes can 
deviate from the protocol arbitrarily.

• Consensus protocols typically assume that the adversary cannot forge 
signatures. Why?



Adversary

• Adaptive vs. static adversary:
• Static adversary corrupts the nodes of its choice before the protocol 

execution commences.
• Adaptive adversary can dynamically corrupt the nodes during the 

protocol execution.
• We typically bound the adversary’s power by assuming an upper bound on 

the number of nodes 𝑓 that can ever be adversarial. 

• e.g., 𝑓 < 𝑛, 𝑓 < !
"
, 𝑓 < !

#
, …



Communication

• Nodes can send messages to each other within the protocol. 
• Time proceeds in discrete rounds. We will hereafter use seconds as the 

minimal unit of time. 
• We assume that the adversary controls the delivery of the messages 

subject to certain limits:
• In a synchronous network, adversary must deliver any message sent 

by an honest node to its recipient(s) within ∆ seconds. Here, ∆ is a 
known bound.

• In an asynchronous network, adversary can delay any message for an 
arbitrary, yet finite amount of time. However, it must eventually 
deliver every message sent by the honest nodes.



Communication

• Partial synchrony:
• There exists a known ∆ < ∞ and an event called the Global 

Stabilization Time (GST) such that
• GST eventually happens after some finite time that can be chosen 

arbitrarily by the adversary.
• A message sent by an honest node at time 𝑡 is delivered to its 

recipient(s) by time  ∆ +max(𝐆𝐒𝐓, 𝑡).
• Network is ‘asynchronous’ until GST, after which it behaves like a 

‘synchronous’ network.



State Machine Replication (SMR)

A Centralized Bank

Blockchain (State Machine Replication)

𝑡𝑥! 𝑠𝑡!𝑠𝑡!"#

𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝑡𝑥$𝑡𝑥#𝑡𝑥%…

Log (Ledger): an ever-growing, linearly-
ordered sequence of transactions.



State Machine Replication (SMR)

Two parties of SMR:
• Replicas receive transactions, execute the SMR protocol and determine the log.
• Clients are the learners: They communicate with the replicas to learn the log. 
Goal of SMR is to ensure that the clients learn the same log.

𝑅& 𝑅' 𝑅( 𝑅) 𝑅*

𝑡𝑥# 𝑡𝑥$𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥"𝑡𝑥!𝑡𝑥$… 𝑡𝑥!𝑡𝑥"𝑡𝑥#…

Replicas



State Machine Replication (SMR)

𝑅& 𝑅' 𝑅( 𝑅) 𝑅*

𝑡𝑥# 𝑡𝑥$𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥"𝑡𝑥!𝑡𝑥$… 𝑡𝑥!𝑡𝑥"𝑡𝑥#…

Replicas

𝐿𝑂𝐺-# = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐿𝑂𝐺-+ = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐶#

𝐶+

𝐿𝑂𝐺-$ = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐿𝑂𝐺-% = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐶$

𝐶%

Wallets are an example of a client.

Wallets ask the replicas what the 
correct log is.

Wallets do not execute the SMR 
protocol and do not talk to each other.

Clients (Wallets) Clients (Wallets)

Wallet asking 
for the log + 

response



State Machine Replication (SMR)

𝑅& 𝑅' 𝑅( 𝑅) 𝑅*

𝑡𝑥# 𝑡𝑥$𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥"𝑡𝑥!𝑡𝑥$… 𝑡𝑥!𝑡𝑥"𝑡𝑥#…

Replicas

𝐿𝑂𝐺-# = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐿𝑂𝐺-+ = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐶#

𝐶+

𝐿𝑂𝐺-$ = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐿𝑂𝐺-% = 𝑡𝑥$𝑡𝑥#𝑡𝑥%…

𝐶$

𝐶%

How does a wallet learn the correct log 
from the replicas?

• It asks the replicas what the correct 
log is.

• Wallet then accepts the answer given 
by majority of the replicas as its log.

Wallet learns the correct log if over half 
of the replicas are honest!

Clients (Wallets) Clients (Wallets)

Wallet asking 
for the log + 

response



State Machine Replication (SMR)

Going forward, we will focus primarily on the replicas and the execution of the 
SMR by the replicas.

𝑅& 𝑅' 𝑅( 𝑅) 𝑅*

𝑡𝑥# 𝑡𝑥$𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥!𝑡𝑥"𝑡𝑥#… 𝑡𝑥"𝑡𝑥!𝑡𝑥$… 𝑡𝑥!𝑡𝑥"𝑡𝑥#…

Replicas



SMR vs. Byzantine Generals

• Single shot vs. Multi-shot
• Byzantine Generals Problem is single shot consensus. Each node outputs 

a single value.
• State Machine Replication is multi-shot. Each client continuously outputs 

a log, which is a sequence of transactions (values).
• Who are the learners?

• In Byzantine Generals Problem, the nodes executing the protocol are the 
same as the nodes that output decision values.

• In State Machine Replication, protocol is executed by the replicas, 
whereas the goal is for the clients to learn the log. Replicas must ensure 
that the clients learn the same log.



Security for SMR: Definitions

Concatenation (𝑨||𝑩): 
• Suppose we have sequences 𝐴 = 𝑡𝑥$𝑡𝑥" and B = 𝑡𝑥#𝑡𝑥%. What is 𝐴||𝐵?

𝐴||𝐵 = 𝑡𝑥$𝑡𝑥"𝑡𝑥#𝑡𝑥%
Prefix relation (𝑨 ≼ 𝑩): Sequence 𝐴 is said to be a prefix of sequence 𝐵, if there 
exists a sequence 𝐶 (that is potentially empty) such that 𝐵 = 𝐴||𝐶.
Suppose we have 𝐴 = 𝑡𝑥$𝑡𝑥"𝑡𝑥#𝑡𝑥%, 𝐵 = 𝑡𝑥$𝑡𝑥"𝑡𝑥# and 𝐷 = 𝑡𝑥$𝑡𝑥"𝑡𝑥%.
• Is 𝐵 a prefix of 𝐴?

• Yes
• Is 𝐷 a prefix of 𝐴?

• No



Security for SMR: Definitions

Two sequences 𝐴 and 𝐵 are consistent if either 𝐴 ≼ 𝐵 is true or 𝐵 ≼ 𝐴 is true 
or both statements are true. 

Are these two logs consistent: 𝐿𝑂𝐺&'()* = 𝑡𝑥$𝑡𝑥"𝑡𝑥#𝑡𝑥%, 𝐿𝑂𝐺+,- =
𝑡𝑥$𝑡𝑥"𝑡𝑥#?
• Yes!

What about 𝐿𝑂𝐺&'()* = 𝑡𝑥$𝑡𝑥"𝑡𝑥#, 𝐿𝑂𝐺+,- = 𝑡𝑥$𝑡𝑥"𝑡𝑥#𝑡𝑥%?
• Yes!

What about 𝐿𝑂𝐺&'()* = 𝑡𝑥$𝑡𝑥", 𝐿𝑂𝐺+,- = 𝑡𝑥$𝑡𝑥#?
• No!



Security for SMR

Let 𝐿𝑂𝐺.( denote the log outputted by a client 𝑖 at time 𝑡. 
Then, a secure SMR protocol satisfies the following guarantees: 

Safety (Consistency): 

• For any two clients 𝑖 and 𝑗, and times 𝑡 and 𝑠: either 𝐿𝑂𝐺.( ≼ 𝐿𝑂𝐺/
0 is 

true or 𝐿𝑂𝐺/
0 ≼ 𝐿𝑂𝐺.( is true or both (Logs are consistent).

Liveness:
• If a transaction 𝑡𝑥 is input to an honest replica at some time 𝑡, then for 

all clients 𝑖, and times 𝑠 ≥ 𝑡 + 𝑇),!1: 𝑡𝑥 ∈ 𝐿𝑂𝐺/(.

No double 
spend

No 
censorship



Security for SMR

𝐵+

𝐵# 𝐵$
𝑡𝑥, 𝑡𝑥-

𝑡𝑥.

𝐴𝑙𝑖𝑐𝑒

𝐵𝑜𝑏

Safety violation!!



Blockchain Protocols

Transactions are often batched into blocks to enhance throughput.
Let 𝒄𝒉𝒕𝒊 denote the chain accepted by a client 𝑖 at time 𝑡.

Safety (Consistency): 

• For any two clients 𝑖 and 𝑗, and times 𝑡 and 𝑠: either 𝒄𝒉.( ≼ 𝒄𝒉/
0 is true 

or 𝒄𝒉/
0 ≼ 𝒄𝒉.( is true or both (Chains are consistent). 

• Liveness: If a transaction 𝑡𝑥 is input to an honest replica at some time 
𝑡, then for all clients 𝑖, and times 𝑠 ≥ 𝑡 + 𝑇),!1: 𝑡𝑥 ∈ 𝒄𝒉𝒔𝒊 .



We want a SMR protocol that is secure under partial synchrony with the best possible 
resilience (for replicas) against a Byzantine adversary (that controls the corrupted 
replicas).

DLS (1988): If 𝑓 ≥ 𝑛/3, no SMR protocol can guarantee security under a partially 
synchronous network against a Byzantine adversary.

Given 𝑓 < .
+

, can we obtain SMR protocol that satisfies safety and liveness under 
partial synchrony against a Byzantine adversary?

Desiderata



• Time proceeds in epochs of 2∆ seconds (see the figure below).
• There are 𝑛 replicas, fixed before the protocol execution starts, and every 

replica knows the public keys of all other replicas (authenticated channels 
between replicas).

• Each epoch 𝑒 is assigned a leader 𝐿* by a public hash function H: ℤ5 → [𝑛].
• Blocks: Each block is associated with an epoch.

First Attempt: Baby Streamlet

∆ ∆ ∆ ∆

𝐿!
epoch 𝑒

𝐿!"#
epoch 𝑒 + 1

𝑡



At each epoch 𝑒 = 1, 2, . . .
• Propose: At the beginning of epoch 𝑒, 𝐿* identifies the longest chain that it 

has seen so far and proposes a new block with epoch 𝑒 extending the longest 
chain.

Finalization rule: A replica finalizes the block (and its prefix) at the tip of the longest 
chain. If there are multiple such blocks, it finalizes the one with the smaller epoch.

What does finalize mean?
It means that the replica accepts the finalized chain… 
and decides the transactions in that chain as its log!

First Attempt: Baby Streamlet



First Attempt: Baby Streamlet

∆ ∆ ∆ ∆

epoch 𝑒 epoch 𝑒 + 1

e+2

…

𝐵%

𝐵#
e

𝐵$

propose propose

∆ ∆

epoch 𝑒 + 2

propose

e+1

𝐵+

Heights h h+1 h+2



Given 𝑓 < .
+

, is Baby Streamlet secure under partial synchrony against a Byzantine 
adversary?

Let’s try to prove safety first! 

Can two blocks with the same epoch number be finalized at the same height?

Security for Baby Streamlet

𝐵+

𝐵# 𝐵$
Alice

Bob

This is a safety 
violation, we 

don’t want this!



Security for Baby Streamlet

Can two blocks with the same epoch number be finalized at the same height?
Yes L
Why?

Leader can be adversarial, and network can be asynchronous (before GST)!

∆ ∆

epoch 𝑒

e

…

𝐵+

𝐵#
e

𝐵$

propose

Not 
safe!

Adversary sends 𝐵$ to Alice. 
Bob does not see 𝐵$ until GST. 

Adversary sends 𝐵+ to Bob. 
Alice does not see 𝐵+ until GST. 



• Time proceeds in epochs of 2∆ seconds.
• There are 𝑛 replicas, fixed before the protocol execution starts, and every 

replica knows the public keys of all other replicas (authenticated channels 
between replicas).

• Each epoch 𝑒 is assigned a leader 𝐿* by a public hash function H: ℤ5 → [𝑛].
• Blocks: Each block is associated with an epoch. 
• Votes: A vote on a block by a replica is its signature on the block.
• Notarization: A block is said to be notarized in the view of a replica if the 

replica observes over 2𝑛/3 signatures from distinct replicas on the block.

Second Attempt: Teen Streamlet



At each epoch 𝑒 = 1, 2, . . .
• Propose: At the beginning of epoch 𝑒, 𝐿* identifies the longest notarized chain 

that it has seen so far and proposes a new block with epoch 𝑒 extending the 
longest notarized chain.

• Vote: ∆ seconds into epoch 𝑒, each honest replica votes for the first valid 
epoch 𝑒 proposal from 𝐿* that extends the longest notarized chain in its view. 
(In the absence of such a block, the replica does not vote.)

Finalization rule: A replica finalizes a block and its entire prefix chain once it observes 
the block to be notarized.

Second Attempt: Teen Streamlet



∆ ∆ ∆ ∆

epoch 𝑒 epoch 𝑒 + 1

e+1

…

𝐵+

𝐵#
e

𝐵$

propose vote? propose vote?

• Honest replicas (> 2𝑛/3) vote for 𝐵!.
• 𝐵! becomes notarized and finalized.
• No honest replica votes for 𝐵$.
• With only adversarial votes (< 𝑛/3), 

𝐵$ cannot be notarized or finalized.
• Honest replicas (> 2𝑛/3) vote for 𝐵#.
• 𝐵# becomes notarized and finalized.

Second Attempt: Teen Streamlet

∆ ∆

epoch 𝑒 + 2

propose vote?

e+2

𝐵%



Given 𝑓 < .
+

, is Teen Streamlet secure under partial synchrony against a Byzantine 
adversary?

Let’s again try to prove safety first! 

Can two blocks with the same epoch number be notarized/finalized at the same height?

Security for Teen Streamlet

𝐵+

𝐵# 𝐵$
Alice

Bob



Security for Teen Streamlet
Lemma: Suppose 𝑓 < 𝑛/3. Then, for each epoch 𝑒, there can be at most one 
notarized block with epoch number 𝑒 in the view of any honest replica.

Proof: Towards contradiction, suppose there are two notarized blocks with epoch 
number 𝑒: 𝐵 and 𝐵’. 

Number of votes on 𝐵 and 𝐵’:  

⇒ Over 𝑛/3 replicas voted for both 𝐵 and 𝐵’.
Since 𝑓 < 𝑛/3, one honest replica voted for both 𝐵 and 𝐵’.
At each epoch, honest replicas vote for a single block with that epoch number.

𝐵 𝐵′
> 2𝑛/3

> 2𝑛/3
> 𝑛/3

Votes enable us to 
preserve safety even 
when the network is 

asynchronous.

Two blocks with the 
same epoch number 
cannot be notarized 
at the same height!



e+1

What about blocks with different epoch numbers? Can two blocks with different 
epoch numbers be notarized at the same height?

Security for Teen Streamlet

e…

𝐵$

𝐵#

1. Suppose there are 100 replicas. Votes by 67 replicas are needed for a block to be notarized.
2. Block 𝐵# is proposed by an adversarial replica and shown to only 66 honest replicas.
3. 66 honest replicas vote for 𝐵#, not enough to notarize it.
4. Block 𝐵$ is proposed by an honest replica on the tip of the longest notarized chain.
5. Every honest replica votes for 𝐵$, thus it is notarized.
6. Finally, an adversarial replica votes for 𝐵#, making it notarized (late vote!!).

∆ ∆ ∆ ∆

epoch 𝑒 epoch 𝑒 + 1

𝐵# proposed
𝐵$ proposed vote?vote?

Not 
safe!

𝐵/



Security for Teen Streamlet

• We have not investigated whether Baby and Teen Streamlet satisfy 
liveness.
• They might indeed satisfy liveness.

• However, we have shown that they do not satisfy safety,…
…which already implies that they are not secure!

• A protocol that satisfies liveness but not safety is not a useful protocol.
• It will be vulnerable to double spend attacks!
• To prove security of a protocol, one should prove that the protocol 

satisfies both safety and liveness!



At each epoch 𝑒 = 1, 2, . . .
• Propose: At the beginning of epoch 𝑒, 𝐿* identifies the longest notarized chain 

that it has seen so far and proposes a new block extending the longest 
notarized chain. (If there are multiple longest notarized chains, ties are broken 
adversarially.)

• Vote: ∆ seconds into epoch 𝑒, each honest replica votes for the first valid 
epoch 𝑒 proposal from 𝐿* that extends one of the longest notarized chains in 
its view. (In the absence of such a block, the replica does not vote.)

Finalization rule: …

Final Attempt: Streamlet*

Streamlet: Textbook Streamlined Blockchains (2020)



Finalization rule: Upon seeing three adjacent blocks in a notarized chain with 
consecutive epoch numbers, a client finalizes the second of the three blocks, and its 
entire prefix chain.

Final Attempt: Streamlet*

Streamlet: Textbook Streamlined Blockchains (2020)

𝐵#
e+3e+1 e+2

𝐵$ 𝐵+ 𝐵%



Theorem: Given 𝑓 < .
+
, Streamlet is secure under partial synchrony against a 

Byzantine adversary.

Security Theorem for Streamlet*

Streamlet* is 
secure!



Is Streamlet the Endgame?
• Streamlet’s requirement that epoch times are synchronized across replicas is too 

strong.
• Communication complexity of Streamlet is high: Θ(𝑛#) messages per block.

Why?
In Streamlet, every honest replica (Θ(𝑛) in total) relays the votes it receives from 
every other replica ((Θ(𝑛)) votes in total) to every other replica (Θ(𝑛) in total)!

Nodes Nodes NodesΘ(𝑛) Θ(𝑛)

𝑛



Is Streamlet the Endgame?

Do more practical protocols exist?

Yes!
Example: HotStuff

HotStuff achieves Θ 𝑛 message complexity per block.
In HotStuff, there is no requirement for epochs to occur in perfect synchrony.

HotStuff: BFT Consensus in the Lens of Blockchain (2019)



Next lecture: Consensus in the Internet Setting

END  OF  LECTURE



Optional Slides

Slides going forward is optional material and present a simplified security 
proof for Streamlet*.



Security Proof: Safety (Optional)

𝑒-1 𝑒 𝑒+1

𝑒’

…

… 𝑒̅-1 𝑒̅ 𝑒̅+1…

Towards contradiction, suppose two conflicting blocks are finalized at epochs 𝑒 and 𝑒’.

𝑒 = 𝑒′?

Because of the 
Lemma

Notarized blocks

𝐵+

𝐵′

𝐵# 𝐵$



Security Proof: Safety (Optional)

𝑒-1 𝑒 𝑒+1

𝑒’

…

…

Towards contradiction, suppose two conflicting blocks are finalized at epochs 𝑒
and 𝑒’.

𝑒 < 𝑒′?

By the Lemma, 𝑒 + 1 < 𝑒%.
Since 𝐵& is notarized, > 𝑛/3 honest replicas (called this set 𝑆) voted for it at epoch 𝑒+1.

Replicas in the set 𝑆 saw 𝐵$ as notarized at epoch 𝑒+1.
Replicas in the set 𝑆 do not vote for 𝐵%. (Voting rule!!)

Since 𝑆 > 𝑛/3, 𝐵′ cannot gather > 2𝑛/3 votes.
𝐵′ cannot get notarized.

𝐵+

𝐵′

𝐵# 𝐵$

Notarized blocks

Voting rule: vote for the 
proposal if it extends the 
longest notarized chain in 

view



Security Proof: Safety (Optional)

𝑒′ < 𝑒?

By the Lemma, 𝑒% < 𝑒 − 1.
Since 𝐵′ is notarized, > 𝑛/3 honest replicas (called this set 𝑆) voted for it at epoch 𝑒′.

Replicas in the set 𝑆 saw 𝐵′′ as notarized at epoch 𝑒′.
Replicas in the set 𝑆 do not vote for 𝐵#. (Voting rule!!)

Since 𝑆 > 𝑛/3, 𝐵# cannot gather > 2𝑛/3 votes.
𝐵# cannot get notarized.

Voting rule: vote for the 
proposal if it extends the 
longest notarized chain in 

view

Towards contradiction, suppose two conflicting blocks are finalized at epochs 𝑒
and 𝑒’.

𝑒-1 𝑒 𝑒+1

𝑒’

…

…

𝐵+

𝐵′

𝐵# 𝐵$

Notarized blocks

𝑒’’

𝐵′′



Security Proof: Liveness (Optional)

If there are 4 consecutive slots, e.g., 𝑒, 𝑒 + 1, 𝑒 + 2, 𝑒 + 3 with honest leaders 
after GST, at the end of these slots, every client finalizes a new block 
proposed by an honest replica.
• 1 slot to undo adversary’s actions.
• 3 slots to finalize a new block.

An epoch leader is honest with probability at least 2/3.

What is the expected latency for Streamlet?
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1. Block 𝐵$ is proposed by an honest replica; there are 66 votes on 𝐵# in honest view (recall the 
Baby Streamlet attack).

2. Adversary releases 1 vote on 𝐵# to 1 an honest replica (call this R), making the total number of 
votes on 𝐵# equal to 67 in R’s view.

3. As a result, 𝐵# is now notarized in R’s view, and 𝐵$ is no longer on the longest notarized chain in 
R’s view. R does not vote for it, and 𝐵$ is not notarized as it gathers only 66 votes.

4. Next, 𝐵& is proposed.
5. Adversary releases 1 vote on 𝐵$ to all honest replicas, making it notarized.

Finalized

Security Proof: Liveness (Optional)



Security Proof: Liveness (Optional)

There cannot be two ‘dangling’ consecutive blocks that are later notarized.
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Notarized at or after 
epoch e?

Not possible! 


