
Recursive SNARKs

CS251 Fall 2022
(cs251.stanford.edu)

Dan Boneh



… but first, more on Rollups



Review:  Rollup core idea
A layer-1 blockchain

(e.g., Ethereum)

current world state
(Rollup state Merkle root)

updated world state
(updated Rollup state root)

TxA

TxB

Rollup
coordinator

TxC Rollup state:
Alice’s balance
Bob’s balance 
…

updated Rollup state root, and Tx list

(Tx list)



The two parts of Rollup

Layer-1 blockchain (L1)

Alice:
state

Bob:
state

coordinator (a server): Rollup state (L2)

Alice:
4 ETH, 1 DAI

Bob:
3 ETH, 2 DAI

Rollup contract:
root

…

…

Rollup contract on 
layer-1 holds assets 
of all Rollup accounts
(and Merkle state root)

7 ETH, 3 DAI,

a program on L1 chain



How to send Tx to the coordinator

Enduser configures its
wallet to send Tx to the RPC
points of the selected Rollup.

(by default Metamask sends Tx to the
Ethereum Mainnet RPC points)



Review: difficulties … 

Problem 1:   what if coordinator is dishonest?
• It could steal funds from the Rollup contract
• It could issue fake Tx on behalf of users
⇒ solution: validity proofs (zk-Rollup) or fraud proofs (opt. Rollup)

immediate finality,
high compute

7-day finality,
low compute



An example    (StarkNet -- using validity proofs)

Source:  starkscan.co

Block

…

Tx posted on L1 (Ethereum) about every eight hours



An example    (Optimism  -- using fraud proofs)

Source:  optimistic.etherscan.io
Shows batch posted on L1 (Ethereum)



Review: difficulties … 

Problem 1:   what if coordinator is dishonest?
• It could steal funds from the Rollup contract
• It could issue fake Tx on behalf of users
⇒ solution: validity proofs (zk-Rollup) or fraud proofs (opt. Rollup)

Problem 2:  what if coordinator stops providing service?
• If Rollup state is lost, how can we initialize a new coordinator?



Ensuring Rollup state is always available
The definition of a Rollup:

Rollup state can always be reconstructed from
data on the L1 chain

coordinator

Layer 1 blockchain
(e.g. Ethereum)

Rollup contract

updated
state 
root Tx list

state rootSent to Rollup contract on L1 as 
part of state update message 



Ensuring Rollup state is always available
To reconstruct current Rollup state:
• Read all Rollup update messages and re-execute Tx. 

⇒ anyone can become a coordinator
• Rollups use L1 for data storage

What to store?
• For zk-Rollup:  send Tx summary to L1, without signatures

(SNARK proof proves validity of signatures)
• For optimistic:   need to send Tx summary *and* signatures to L1

… but note EIP-4444



Ensuring Rollup state is always available

The downside:   expensive
• Tx list is sent as calldata:   16 gas per non-zero byte

(EIP-4488 aims to support Rollups by reducing to 3 gas/byte)

In practice:
• Optimistic Rollups fee/Tx:  3-8 times lower than Ethereum L1
• zk-Rollup fee/Tx:  40-100 times lower than Ethereum L1

Can we do even better?



Data Availability Committee (DAC)
To further reduce Tx fees:

• Store L2 state root (small) on the L1 chain

• Store Tx data (large) with a Data Availability Committee (DAC):
• comprises a set of nodes trusted to keep the data available
• cheaper than storage on L1
• L1 accepts an update only if all DAC members sign it

⇒ ensures that all DAC members accepted Tx data

Setting up a new coordinator depends on availability of the DAC



Validium

Validium:  an L2 using a DAC and validity proofs (SNARKs)

• Well suited for lower value assets.   
• Potential privacy benefits … only DAC members see Tx data

An example:   StarkEx uses a five member DAC
• Users can choose between Validium or Rollup modes

(Tx data off-L1-chain    vs.    Tx data on-L1-chain)
cheaper Tx fees,

but only secure as DAC
More expensive Tx,

but same as L1 security



Summary:  types of L2

Scaling the blockchain:   Payment channels  and  Rollups (L2 scaling)

SNARK 
validity proofs Fraud proofs

Tx data
on L1 chain zkRollup optimistic Rollup,

7-day finality

Tx data
in a DAC

Validium
(reduced fees, 
but higher risk)

”Plasma”

availability

security



Volume of some L2 systems

Tx Volume/day average fee/tx (on Nov. 15, 2022)

• Ethereum: 1013K Tx 2.71 USD/Tx

• Arbitrum: 345K Tx 0.08 USD/Tx (optimistic Rollup)

• Optimism: 303K Tx 0.13 USD/Tx (optimistic Rollup)

• StarkNet: 14K Tx 0.22 USD/Tx (zkRollup)



Can coordinator censor a Tx?

What if coordinators refuse to process my Tx?

What to do?    One option:
• enduser can post Tx directly to the L1 Rollup contract
• The L1 Rollup contract will then refuse to accept updates from 

a coordinator until an update includes that Tx
⇒ censorship will cause the entire Rollup to freeze



Layer 3 and beyond …

SNARK recursion



SNARK recursion
Two level recursion:   proving knowledge of a proof

public:  𝑥

witness:  𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)

π

proves 𝑃 knows w s.t.
𝐶(𝑥,𝑤) = 0

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′

𝑥

proves 𝑃′ knows 𝜋 s.t.
𝑉( 𝑥, 𝜋) = 𝑦𝑒𝑠𝑣𝑝,

Use V’(      x, 𝜋’) to verify final proof  𝜋’𝑣𝑝′,



Application 1: proof compression

public:  𝑥

witness:  𝑤

SNARK
prover 𝑃

(𝑆, 𝑃, 𝑉)

π

fast prover, but
outputs a large proof

π’
(𝑆′, 𝑃′, 𝑉′)

SNARK
prover 𝑃′

𝑥

slower prover,
small final proof

prove 𝑉( 𝑥, 𝜋) = 𝑦𝑒𝑠𝑣𝑝,prove 𝐶(𝑥, 𝑤) = 0

Use V’(     x, 𝜋’) to verify final short proof  𝜋’𝑣𝑝′,



Application 2:  Layer three and beyond

Alice:
2 ETH, 1 DAI

Bob:
5 ETH, 2 DAI

Uniswap:
state

Rollup contract:

…

…
7 ETH, 3 DAI, root

L2 Rollup state

Layer-1 blockchain (L1)

Alice:
state

L3 Rollup contract:
state root

Alice:
state

Bob:
state

… L3 Rollup state (any VM)



Layer three and beyond
One L2 coordinator can support many L3s
• each L3 can run a custom VM with its own features
• L3 chains can communicate with each other through L2

Each L3 coordinator submits Tx list and SNARK proof to L2
• L2 coordinator: collects batch of proofs, 

• builds a proof 𝜋 that it has a batch of valid proofs, and
• submits the single proof 𝜋 and updated root to L1 chain.

⇒ Scaling factor 100 × 100



Application 3:   L2 with private Tx (simplified) 

L2 Rollup state: hidden balances 

Only Alice knows her own state𝑎 and 𝑟𝑎 .
• Coordinator does not know account balances

(only Alice knows her committed account balances)

Alice:
[state commitment]

…Bob:
[state commitment]

ℎ! =H(state𝑎, 𝑟𝑎) ℎ" = H(state𝑏, 𝑟𝑏)



Alice:
[state commitment]

…Bob:
[state commitment]

ℎ! =H(state𝑎, 𝑟𝑎) ℎ" = H(state𝑏, 𝑟𝑏)

• compute updated state’𝑎 and   send 𝑇𝑥 to Bob (privately)

• choose random  𝑟%& and set    ℎ%& ← H(state’𝑎, 𝑟%&)
• build proof 𝜋% that ℎ%& is a valid update to Alice’s state
• Send   (ℎ%& , 𝜋%)  to L2 coordinator

Alice want to pay Bob 2 ETH:           𝑇𝑥: [A ⇾ B: 2 ETH,  𝑠𝑖𝑔𝐴 ]

Application 3:   L2 with private Tx (simplified) 



Bob receives  𝑇𝑥 = [A ⇾ B: 2 ETH,  𝑠𝑖𝑔𝐴 ] from Alice
• compute updated state’b
• choose random  𝑟'& and set ℎ'& ← H(state’𝑏, 𝑟'&)
• build proof 𝜋' that ℎ'& is a valid update to Bob’s state
• Send   (ℎ'& , 𝜋')  to L2 coordinator

Application 3:   L2 with private Tx (simplified) 

Alice:
[state commitment]

…Bob:
[state commitment]

ℎ! =H(state𝑎, 𝑟𝑎) ℎ" = H(state𝑏, 𝑟𝑏)



Alice:
[state commitment]

…Bob:
[state commitment]

ℎ!# =H(state’𝑎,  𝑟!#)

Collect a batch of transactions from users   {(ℎ(&, 𝜋()} :
• Update Merkle leaves to new committed states
• build a proof 𝜋’ that it has a batch of valid proofs

for a consistent set of transactions, and
• submit a single proof 𝜋’ and updated root to L1 chain.

ℎ"# =H(state’b,  𝑟"#)

proof 𝜋’,  new root, Tx List

Application 3:   L2 with private Tx (simplified) 



Application 3:  main point
Only Alice knows her balance.   Only Bob knows his balance.
... they can transact without revealing amouts
… also transact with a public contract (public code and state).

Note: as described, no privacy for Alice when withdrawing from L2 

Alice:
[state commitment]

…Bob:
[state commitment]

ℎ!# =H(state’𝑎,  𝑟!#) ℎ"# =H(state’b,  𝑟"#)

proof 𝜋’,  new root, Tx List



Application 3:  main point

Danger:  if Alice loses here 𝑟% , she loses access to her funds on L2

Alice:
[state commitment]

…Bob:
[state commitment]

ℎ!# =H(state’𝑎,  𝑟!#) ℎ"# =H(state’b,  𝑟"#)

proof 𝜋’,  new root, Tx List



Final ZK topics



Commercial interest in SNARKs

Many more building applications on top …



Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
working with unreliable software.

Why so much commercial interest?

“Checking Computations in Polylogarithmic Time”



Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
working with unreliable software.

Why so much commercial interest?

a slow and expensive computer

coordinators

“Checking Computations in Polylogarithmic Time”



Babai-Fortnow-Levin-Szegedy 1991:

In this setup, a single reliable PC can monitor 
the operation of a herd of supercomputers 
working with unreliable software.

Why so much commercial interest?

an L1 blockchain

coordinators

“Checking Computations in Polylogarithmic Time”



We are going to the moon …

Blockchains drive the development of SNARKs:
zkRollup,   zkBridge,  zkCreditScore,  zkTaxes, …

… but many non-blockchain applications



Using ZK to fight disinformation 



C2PA: a standard for content provenance

embedded certified
signing key  sk

location
timestamp

signature  verify metadata
by checking sig

C2PA



A problem:  post-processing

Newspapers often process the photos before publishing:
• Resize (1500×1000),   Crop,   Grayscale (AP lists allowed ops)

???

C2PA “solution”:  
editing software will sign
processed photo to certify edits 

The problem:   laptop cannot verify signature on processed photo



A solution using ZK proofs  (SNARKs)

Editing software attaches a proof  𝜋 to photo that:

I know a triple  (Orig, Ops, Sig)  such that
1. Sig is a valid C2PA signature on Orig
2. photo is the result of applying Ops to Orig
3. metadata(photo) = metadata(Orig)

location
timestamp

proof  π

photo

⇒ Laptop verifies  𝜋 and shows metadata to user

(with T. Datta)



Performance

Proof size:   200-400 bytes.       Verification time:  2 ms.

Proof generation time by newspaper:

• Resize  (3000×3000   ⇾ 1500×1500): 84 sec.

• Crop  (3000×3000   ⇾ 1500×1500): 60 sec.

• Grayscale (2.25M pixels): 25 sec.

See also:   PhotoProof by Naveh & Tromer (2016)

(in browser)

What about video??



The future:  a market for ZK provers
Anyone with a GPU will be paid to create ZK proofs

tx1

tx2

tx3

tx4

market

𝜋

𝜋)

𝜋* selects provers
and distributes rewards

prover 1

prover 2

prover 3



ZK:  final thoughts

• Lots more to work on: 

• Better provers:  faster,  lower memory footprint, 
shorter proofs,  quantum resistant,  no trusted setup,  
distributed witness.

• New applications for SNARKs and zk-SNARKs 



DAOs



Recap:  current application areas

1. Finance (DeFi):    
• new financial instruments,  exchanges,  lending, …

2. Managing digital assets (NFTs)
• Assured provenance

3. Decentralized organizations (DAOs):
• DAOs for investment,  for donations,  for collecting art,  etc. 
• Governance:  group decision making



Decentralized orgs  (DAO)

What is a DAO?

• A Dapp deployed on-chain at a specific address

• Anyone (globally) can send funds to DAO treasury

• Anyone can submit a proposal to DAO  
⟹ participants vote
⟹ approved ⇾ proposal executes

snapshot.org

(SafeSnap:  trustless on-chain execution of off-chain votes)



Examples of DAOs

There are currently about 6500 DAOs managed on Snapshot
• Collector DAOs:    PleasrDAO, flamingoDAO,  ConstitutionDAO, …

(see art collection at    https://gallery.so/pleasrdao )

PleasrDAO:    103 members.
• Manages a treasury,   has full time employees.
• Deliberations over what to acquire over telegram.



Examples of DAOs

There are currently about 6500 DAOs managed on Snapshot
• Collector DAOs:    PleasrDAO, flamingoDAO,  ConstitutionDAO, …
• Charity DAO:   gitcoin (42K members), …

Proposal ID 21: This proposal looks to ratify the allocation of 30,000 GTC from 
the Community Treasury to the MMM workstream.

(tally.com)



Examples of DAOs

There are currently about 6500 DAOs managed on Snapshot
• Collector DAOs:    PleasrDAO, flamingoDAO,  ConstitutionDAO, …
• Charity DAO:   gitcoin, …

• Protocol DAO:   manages operation of a specific protocol 
Uniswap DAO (29K members), Compound (4K members), … 

• Social DAO:  FWB, …

• Investment DAO:  many



Example:  Uniswap proposals



How to build a DAO

Three key decisions:

• What is the community for the DAO?

• How is membership managed?
Many available tools:  Syndicate, Juicebox,  Colony,  … 
can anyone join, or does the community vote?

• How to do governance?    What is controlled by governance?



Many DAO governance experiments
Who can vote?    How to vote?   What voting mechanism?

DAOs:  a platform for experimenting with governance mechanisms



Governance methods

One token one vote:   (most common)
• Members receive tokens based on their contribution.
• Everyone can vote.

Frequently implemented using one of
OpenZeppelin’s Governor contracts  (Solidity code)

_castVote( proposalID,  voter,  support,  reason); proposal 21   (tally.com)

Problem:  direct democracy does not scale.



Poor participation rate

For all but one project:
participation rate < 5%

What to do?     delegation
Supported in Governor contract 



Delegation example:  element

≈300 addresses 
delegated tokens
to this address



bidder knew that ConstitutionDAO could not outbid it

Private DAO treasury
2021: an auction for a physical copy of the constitution.

ConstitutionDAO:
• Formed in Nov. 2021 to participate in auction.
• Raised  $46.3M  from about 20K participants worldwide
• Lost to another bidder who bid $43M 

How to participate in an auction when everyone knows your treasury??

(Sotheby's auction house)



Private DAO treasury      [Dunaif, Boneh,  2021]

The design:
One DAO platform manages many DAOs:  

a single Ethereum contract  (e.g., JuiceBox)

DAO manager:   sets up a DAO by publishing a DAO public key (pk)

Contributor:  sends funds to platform with a “blinded DAO-pk”

Contract records contribution
⇒ an observer learns nothing about which DAO received the funds
⇒ only learns total amount stored on the platform as a whole

DAO manager can later use its secret key to claim funds sent to its DAO
medium.com/@boneh



Many other DAO privacy questions …

• Private DAO participation:   keep participant list private

• Private voting:   keep who voted how on each proposal private

• Private delegations

… while complying with all relevant laws. 

Some of these questions are solved by 
general privacy platforms such as  Aztec,  Aleo,  and others. 



Next lecture:  MEV and bridging

END  OF  LECTURE


