CS251 Fall 2022
(cs251.stanford.edu)

Scaling the blockchain part I:

Payment Channels and State Channels

Dan Boneh

... but first, last words on SNARKs (for now)

SNARK heavy

DSL SNARK backend computation
program friendly prover

Circom format
ZoKrates, compiler circuit, (circuit)

Leo, R1CS, ﬁ n
Zinc,

LElre) EVM code,

Nor, assembly

code,

domain RISC-V .
specific X, witness

language

... but first, last words on SNARKs (for now)

CIFCUIt wp
X, Withess =i

CIFCUIt w
X, Withess =i

uonpezypawylie

ﬁn

proves
polynomial
relations

Scaling the blockchain

Bitcoin Tx per second
Transaction Rate
3.18 tps 0

=4200 Tx/block
1 block / 10 mins

= max: 7 Tx/sec

2021-11-14 blockchain.com/charts 2022-11-13

Ethereum Tx per second

Ethereum avg Tx per second:

Simple Tx: 21k Gas

WMMWW ?Z max 30M Gas per bIOCk
- = max 1428 tx/block

5

) 1 Block/12s

12.05.2022 06.06.2022 01.07.2022 26.07.2022 20.08.2022 14.09.2022 09.10.2022
= max 119 tx/s

=~ 15 Tx/sec

In comparison ...

Visa: up to 24,000 Tx/sec (regularly 2,000 Tx/sec)

PayPal: 200 Tx/sec

Ethereum: 15 Tx/sec

Bitcoin: 7 Tx/sec

Goal: scale up blockchain Tx speed

How to process more Tx per second

Many ideas:

Use a faster consensus protocol J

Parallelize: split the chain into independent shards

Rollup: move work somewhere else (next lecture)

Today: payment channels, reduce the need to touch the chain

Payment Channels: the basic idea

Tx fee
per purchase!

Tx1: 0.01 BTC
Tx2:0.01 BTC
Tx3: 0.01 BTC

Instead can do this:
Alice deposits 1 BTC with Bob.
At the end of the month, Bob
\ refunds unused deposit to AIiC}

only two Tx,
hundreds of
coffees

Unidirectional Payment Channel

Bob does not post on chain

Post Tx3 on Blockchain

8

Tx1: 0.99 to Alice / 0.01 to Bob from UTXO A
signed by Alice

Tx2:0.98 to Alice / 0.02 to Bob from UTXO A

cinnen hia Aliee

Tx3: 0.97 to Alice / 0.03 to Bob from UTXO A
signed by Alice

A solution?

Send 1BTC
2 to addr AB

Sign Tx3 and publish on chain

(Tx3 signed by
both Alice & Bob)

@ TX1: from AB: 0.99 to Alice / 0.01 to Bob
signed by Alice

TX3: from AB: 0.97 to Alice / 0.03 to Bob
signed by Alice

Unidirectional Payment Channel

Alice needs a way to ensure refund if Bob disappears

* Basic idea: If Bob doesn’t publish Tx3 after some time,
Alice gets 1 BTC refunded

e Refund transaction signed before funding Account AB

) Bob sends to Alice:
D < Timelocked Tx
BObL sLg

N

Example: Timelock =7 days refund Tx

Unidirectional Payment Channel

‘ Bob sends to Alice:
D D Timelocked Tx ;

Bob sty

AlLce stg
Bob sig

After 7 days:

* If Alice and Bob cooperate, close channel using multisig.
* Otherwise, Alice closes channel using refund Tx, gets 1 BTC.

Note: refund TX from Bob determines lifespan of channel
Once Alice sends 1 BTC to Bob, the Channel is “exhausted”

Payment Channel in Solidity

Home UniChannel.sol

pragma solidity >=0.4.24 <0.6.0;

contract SimplePaymentChannel @
address payable public sender; // The account sending payments.
address payable public recipient; // The account receiving the payments.
uint256 public expiration; // Timeout in case the recipient never closes.

constructor (address payable _recipient, uint256 duration)
public
payable

s = e s sender creates contract with funds,

recipient = _recipient;

expiration = now + duration; Spec|f|es duratlon

/// the recipient can close the channel at any time by presenting a

/// signed amount from the sender. the recipient will be sent that amount,

/// and the remainder will go back to the sender

function close(uint256 amount, bytes memory signature) public {
require(msg.sender == recipient);

require(isValidSignatureCamount, signature)); < ve rify Sender’s Signatu re

recipient.transfer(amount);

selfdestruct(sender); on amount

}

/// if the timeout is reached without the recipient closing the channel,
/// then the Ether is released back to the sender.
function claimTimeout() public {

require(now >= expiration);

b e T send all funds to sender

Bidirectional Payment Channel

Alice and Bob want to move funds back and forth

L 8

Two Unidirectional Channels?

Not as useful because Channels get exhausted

Bidirectional Payment Channel

On Ethereum: create a shared contract, each contributes 0.5 ETH:

SRCEERSE o
= 8

Off chain: Bob sends 0.1 ETH to Alice by both signing new state:

A: 0.6, Bob: 0.4, Nonce 1
Alice sig, Bob sig

Bidirectional Payment Channel

On chain contract does not change:

i
& 8

Off chain: Alice and Bob can move funds back and forth
by sending updated state sigs to each other:

A: 0.3, Bob: 0.7, Nonce 7
Allce sig, Bob sig

(7th transfer)

Eventually: Alice wants to close payment channel

Alice does: sends latest balances and signatures to contract
= starts challenge period (say, 3 days)

on chain: (pending close)

if Bob does nothing for 3 days:
= funds disbursed according to Alice’s submitted state
if Bob submits signed state with greater nonce (e.g., nonce=9)
= funds disbursed according to Bob’s submitted state

Bidirectional channel requires
Bob to constantly check that Alice
did not try to close the channel
with an old stale state

= post latest state if she did

Watchtowers outsource this task

Bob sends latest state to
watchtower.

Trusted for availability

Main points: summary

Payment channel between Alice and Bob:
* One on-chain Tx to create channel (deposit funds);

e Alice & Bob can send funds to each other off-chain
... as many Tx as they want;

e One on-chain Tx to close channel and disburse funds

= only two on-chain Tx

A more general concept: State Channels

Smart contract that implements a game between Alice and Bob.

Begin game & end game: on chain. All moves are done off-chain.

L 8

State Channels

Can be used to implement any 2-party contract off chain!

two Tx on-chain: contract creation and termination

Bidirectional channels on Bitcoin

The Lightning Network

Bidirectional payment channels on Bitcoin

Problem: no updatable state in UTXOs =
much harder to implement a bidirectional channel

Solution:
 When updating the channel to Alice’s benefit,
Alice gets TX that invalidates Bob’s old state

UTXO payment channel concepts

Will create UTXO that can be spent in one of two ways: (using if opcode)

* Relative time-lock: UTXO contains a number t.
A properly signed Tx can spend this UTXO
t blocks (or more) after it was created (CLTV opcode)

* Hash lock: UTXO contains a hash image X.
A properly signed Tx can spend this UTXO

by presenting x s.t. X = SHA256(x).

(x is called a hash preimage of X)

Example script

Example locktime redeem script: two ways to redeem UTXO

OP_IF

OP_HASH256 <digest> OP_EQUALVERIFY // redeem by providing <digest> preimage
OP_ELSE

<num> OP_CLTV OP_DROP // redeem by waiting <num> blocks
OP_ENDIF
<2> <sender pubkey> <recipient pubkey> <2> OP_CHECKMULTISIG // check 2-of-2 signature

This is called a hash-timelock contract (HTLC).

UTXO Payment Channel

UTXO AB:

Random x

TX1: input: UTXO AB
Outl: pay 7 —+ A
Out2: either 3 — B, 7 day timelock

or 3 = A now, given y s.t. H(y)=Y
AlLce sig

8

Randomy

TX2: input UTXO AB
pay 3->B
either 7 — A, 7 day timelock

or 7 —= B now, given x s.t. H(x)=X
Bob sig

Alice can sign and post Tx2, wait 7 days, and get her funds back

UTXO Payment Channel Update

X'=H(x’)

Alice sends 1BTC to Bob (off chain) V @

Random x’
TX3 input: UTXO AB TX4 input: UTXO AB
Outl: pay 6 - A pay4 - B

Out2: either 4 — B, 7 day timelock either 6 = A, 7 day timelock

or 4 = A now, given y s.t. H(y)=Y || or 6 = B now, given x’ s.t. H(x")=X'
AlLce sig Bob sig

Security: ways to close the channel?

Alice has TX2,TX4, x, x’

Bob has TX1,TX3, vy, x

TX2: (stale state)
pay 3 —+ B
either 7 = A, 7 day timelock

or 7 —= B now, given x s.t. H(x)=X
Bob sig

TX1: (stale stale)
pay 7/ & A
either 3 = B, 7 day timelock

or 3 = A now, given y s.t. H(y)=Y
AlLce sig

TX4: (current state)

pay4 — B

either 6 =& A, 7 day timelock

or 6 = B now, given x’ s.t. H(x)=X’
Bob sig

TX3: (current state)
pay 6 & A
either 4 — B, 7 day timelock

or 4 = A now, given y s.t. H(y)=Y
AlLce sig

Security: ways to close the channel?

Alice has TX2,TX4, x, x’

Bob has TX1,TX3, vy, x

TX2:

The good case:

Pay 3 = Alice can post Tx4 or Bob can post Tx3 to chain and

either 7 close channel after 7 days ock
or 7 =k Agets6, Bgets4 Hy)=Y
-Bob SL@ PARN "4 4 %4 & DV(O

TX4: (current state)

pay4 — B

either 6 - A, 7 day timelock

or 6 = B now, given x’ s.t. H(x")=X’
Bob sig

TX3: (current state)
pay 6 & A
either 4 — B, 7 day timelock

or 4 = A now, given y s.t. H(y)=Y
AlLce sig

Security: ways to close the channel?

Alice has TX2,TX4, x, x’ Bob has TX1,TX3, vy, x

TX2: (stale state) TX1: (stale state)

pay 3 —» B pay 7 = A

either 7 = A, 7 day timelock either 3 = B, 7 day timelock
or 7 —= B now, given x s.t. H(x)=X or 3 = A now, given y s.t. H(y)=Y
Bob sig AlLce sig

X The bad case (Alice cheats):

Pa if Alice posts the stale Tx2 then Bob will use x to take all 10 BTC
et

or = sending x to Bob revokes the stale Tx2 held by Alice

Bou sy ALt SLY)

UTXO Payment Channel Update

y
Y’=H(y’) @
Bob sends 2BTC to Alice (off chain)
Random y’

TX5 input: UTXO AB TX6 input: UTXO AB
pay 8 & A pay2 - B
either 2 = B, 7 day timelock either 8 - A, 7 day timelock
or 2 — A now, given y s.t. H(y’)=Y’ or 8 = B now, given x s.t. H(x")=X’
AlLce sig Bob sig

Security: ways to close the channel?

Alice has TX2,TX6, x, X, y

Bob has TX3,TX5, vy, v/, X

TX2:
pay 3 —+ B
either 7 = A, 7 day timelock

or 7 —= B now, given x s.t. H(x)=X
Bob sig

TX3:
pay 6 & A
either 4 — B, 7 day timelock

or 4 = A now, given y s.t. H(y)=Y
Alice sig

TX6:
pay 2 - B
either 8 =& A, 7 day timelock

or 8 = B now, given x s.t. H(x")=X’
Bob sig

TX5:
pay 8 =& A
either 2 = B, 7 day timelock

or 2 = A now, giveny s.t. H(y’')=Y
AlLce sig

’

Security: ways to close the channel?

Alice has TX2,TX6, x, X, y

Bob has TX3,TX5, vy, v/, x

TX2:
pay 3 —+ B
either 7 — A, 7 day timelock

or 7 —= B now, given x s.t. H(x)=X
Bob sig

TX3:
pay 6 =& A
either 4 — B, 7 day timelock

or 4 = A now, given y s.t. H(y)=Y
Alice sig

TX6:

pay 9) n D
eith
or8
Bob sig

(&

‘ ‘ AlLce sig

TX5:

nww Q _ N A

The bad case (Bob cheats):
Bob posts the stale Tx3 => Alice will use y to take aII 10 BTC _y

=7

Multihop payments

Multi-hop payments

Alice has channel Carol has channel

@ ~ with bank Bob Q . with bank Bob | a

Alice wants to pay Carol through untrusted intermediary Bob

Multi-hop payments (briefiy)

R=H(r)

B &

Pay 1.01 BTC to B: Pay 1 BTC to C:
Hashlocked with R Hashlocked with R | Random r
Timelock to refund Timelock to refund
Altee stg Bob 319

B can claim 1.01 BTC with r Ccanclaim 1 BTC with r

if Carol never claims, Bob gets funds back after timelock

The lightning network

The network: lots of open bi-directional payment channels.

Alice want to pay Bob: she finds a route to Bob through the graph

Many extensions possible: multi currency hubs, credit hubs, ...

nodes in lightning network (Nov. 2022)

40k—

16,150

20k—

Ok

Number of channels: 77K

END OF LECTURE

Next lecture: scaling via Rollups

