CS251 Fall 2022 (cs251.stanford.edu)

Building a SNARK

Dan Boneh

Recap: zk-SNARK applications

Private Tx on a public blockchain: Zcash, IronFish

Compliance:

- Proving that a private Tx are in compliance with banking laws
- Proving solvency in zero-knowledge

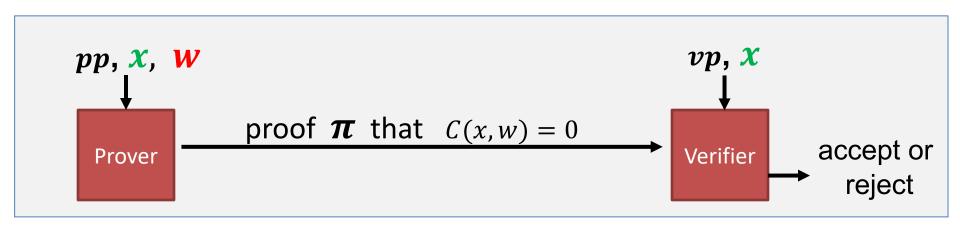
Scalability: privacy in a zk-SNARK Rollup (next week)

Bridging between blockchains: zkBridge

(preprocessing) NARK: Non-interactive ARgument of Knowledge

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

Preprocessing (setup): $S(C) \rightarrow \text{public parameters } (pp, vp)$



NARK: requirements (informal)

Prover
$$P(pp, \mathbf{x}, \mathbf{w})$$
 $proof \pi$
 $accept or reject$

Complete: $\forall x, w$: $C(x, w) = 0 \Rightarrow Pr[V(vp, x, P(pp, x, w)) = accept] = 1$

Adaptively **knowledge sound**: V accepts \Rightarrow P "knows" \mathbf{w} s.t. $C(\mathbf{x}, \mathbf{w}) = 0$ (an extractor E can extract a valid \mathbf{w} from P)

Optional: **Zero knowledge**: (C, pp, vp, x, π) "reveal nothing new" about w

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

• $S(C) \rightarrow \text{public parameters } (pp, vp)$ for prover and verifier

- $P(pp, x, w) \rightarrow \underline{short} \operatorname{proof} \pi$; $|\pi| = O_{\lambda}(\log(|C|))$
- $V(vp, x, \pi)$ fast to verify; time(V) = $O_{\lambda}(|x|, \log(|C|))$ short "summary" of circuit

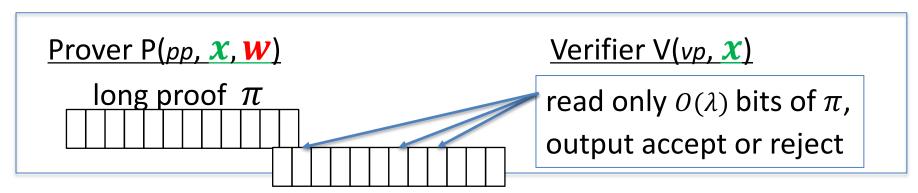
A simple PCP-based SNARK

[Kilian'92, Micali'94]

A simple construction: PCP-based SNARK

The PCP theorem: Let C(x, w) be an arithmetic circuit.

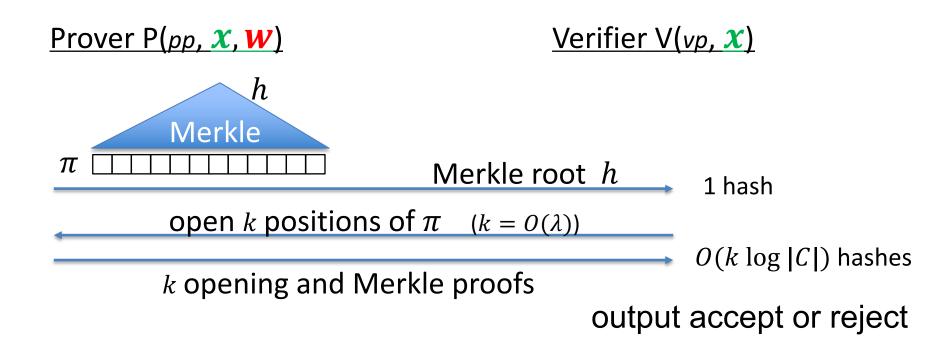
there is a proof system that for every x proves $\exists w : C(x, w) = 0$ as follows:



V always accepts valid proof. If no w, then V rejects with high prob.

size of proof π is poly(|C|). (not succinct)

Converting a PCP proof to a SNARK



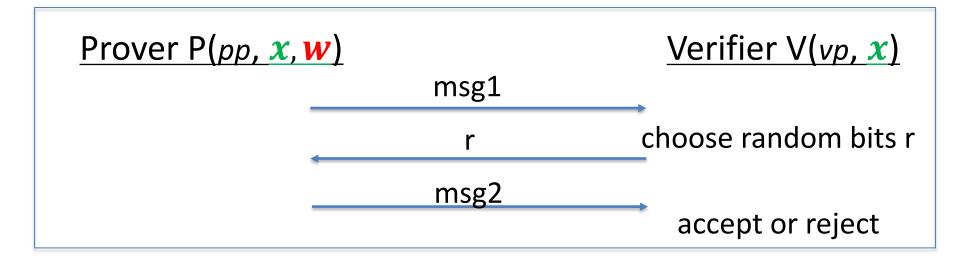
Verifier sees $O(\lambda \log |C|)$ data \Rightarrow succinct proof.

Problem: interactive

Making the proof non-interactive

The **Fiat-Shamir transform**:

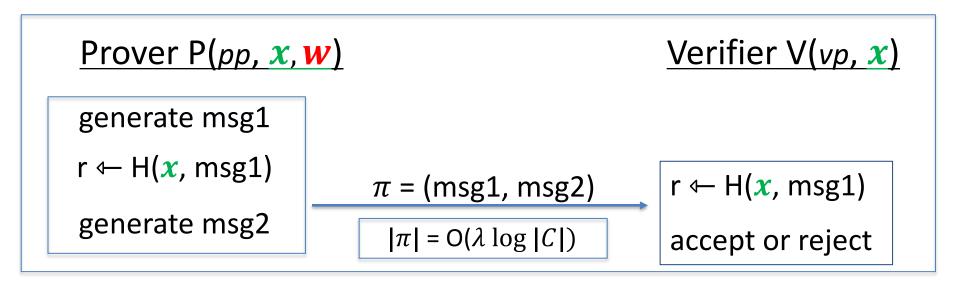
 public-coin interactive protocol ⇒ non-interactive protocol public coin: all verifier randomness is public (no secrets)



Making the proof non-interactive

Fiat-Shamir transform: $H: M \rightarrow R$ a cryptographic hash function

• idea: prover generates random bits on its own (!)



Fiat-Shamir: certain secure interactive protocols \implies non-interactive

Are we done?

Simple transparent SNARK from the PCP theorem

- Use Fiat-Shamir transform to make non-interactive
- We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = $\tilde{O}(|C|)$

Building an efficient SNARK

General paradigm: two steps

A polynomial (1)commitment scheme **SNARK** for (cryptographic object) general circuits A polynomial (2)interactive oracle proof (PIOP) Let's explain each concept ... (info. theoretic object)

Recall: commitments

Two algorithms:

- $commit(m, r) \rightarrow com$ (r chose at random)
- $verify(m, com, r) \rightarrow accept or reject$

Properties:

- binding: cannot produce two valid openings for com
- hiding: com reveals nothing about committed data

(1) Polynomial commitment schemes

Notation:

Fix a finite field: $\mathbb{F}_p = \{0,1,\ldots,p-1\}$

 $\mathbb{F}_p^{(\leq d)}[X]$: all polynomials in $\mathbb{F}_p[X]$ of degree \leq d.

(1) Polynomial commitment schemes

- $\underline{setup}(d) \rightarrow pp$, public parameters for polynomials of degree $\leq d$
- $\underline{commit}(pp, f, r) \rightarrow com_f$ commitment to $f \in \mathbb{F}_p^{(\leq d)}[X]$
- <u>eval</u>: goal: for a given com_f and $x, y \in \mathbb{F}_p$, prove that f(x) = y.

```
Formally: eval = (s, P, V) is a SNARK for:

statement st = (pp, com_f, x, y) with witness = w = (f, r)

where C(st, w) = 0 iff

[f(x) = y \ and \ f \in \mathbb{F}_p^{(\leq d)}[X] \ and \ commit(pp, f, r) = com_f]
```

(1) Polynomial commitment schemes

Properties:

- Binding: cannot produce two valid openings (f_{1}, r_{1}) , (f_{2}, r_{2}) for com_{f} .
- eval is knowledge sounds (can extract (f, r) from a successful prover)
- optional:
 - commitment is hiding
 - eval is zero knowledge

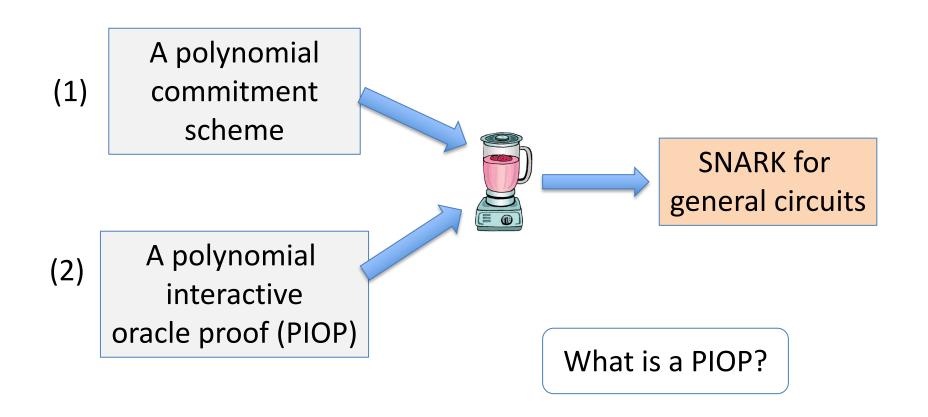
Constructing polynomial commitments

Not today ... (see readings or CS355)

Properties of the most widely used in practice (called KZG):

- trusted setup: secret randomness in setup. $|pp| = O_{\lambda}(d)$
- com_f: constant size (one group element)
- eval proof size: constant size (one group element)
- eval verify time: constant time. Prover time: $O_{\lambda}(d)$

General paradigm: two steps



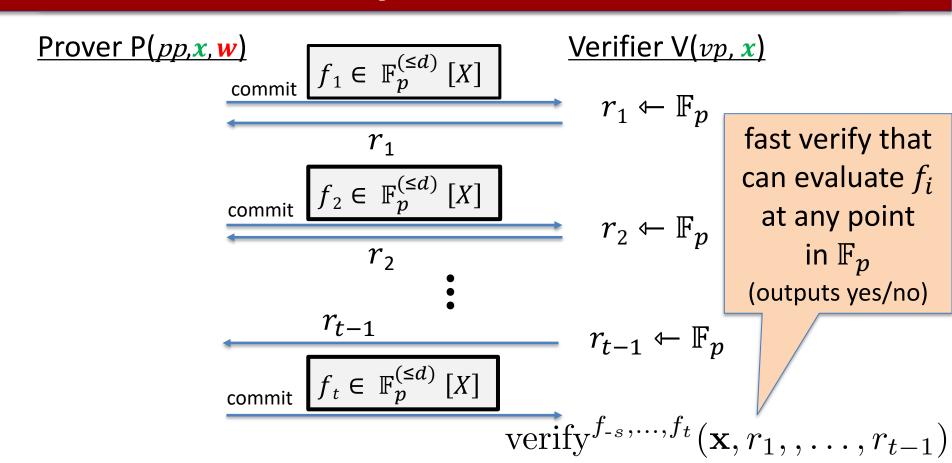
Component 2: Polynomial IOP

Let C(x, w) be some arithmetic circuit. Let $x \in \mathbb{F}_p^n$.

Poly-IOP: a proof system that proves $\exists w : C(x, w) = 0$ as follows:

Setup(C) \rightarrow public parameters pp and $vp = (f_0, f_{-1}, ..., f_{-s})$

Polynomial IOP



The Plonk poly-IOP

Goal: construct a poly-IOP called **Plonk** (eprint/2019/953)

[Gabizon – Williamson – Ciobotaru]

Plonk + PCS ⇒ SNARK

(and also a zk-SNARK)

[PCS = Polynomial Commitment Scheme]

First, a useful observation

A key fact: for non-zero
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$

for
$$r \leftarrow \mathbb{F}_p$$
: $\Pr[f(r) = 0] \le d/p$ (*)

- \Rightarrow suppose $p \approx 2^{256}$ and $d \le 2^{40}$ then d/p is negligible
- \Rightarrow for $r \leftarrow \mathbb{F}_p$: if f(r) = 0 then f is identically zero w.h.p
 - ⇒ a simple zero test for a committed polynomial

SZDL lemma: (*) also holds for **multivariate** polynomials (where d is total degree of f)

First, a useful observeration

Suppose $p \approx 2^{256}$ and $d \le 2^{40}$ so that d/p is negligible

Let
$$f, g \in \mathbb{F}_p^{(\leq d)}[X].$$
 For $r \leftarrow \mathbb{F}_p$, if $f(r) = g(r)$ then $f = g$ w.h.p

$$f(r) - g(r) = 0 \quad \Rightarrow \quad f - g = 0 \quad \text{w.h.p}$$

⇒ a simple equality test for two committed polynomials

Useful proof gadgets

Let $\omega \in \mathbb{F}_p$ be a primitive k-th root of unity $(\omega^k = 1)$ Set $\mathsf{H} \coloneqq \{1, \omega, \omega^2, ..., \omega^{k-1}\} \subseteq \mathbb{F}_p$

Let
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$
 and $b, c \in \mathbb{F}_p$. $(d \geq k)$

There are efficient poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f is identically zero on H

Tast 2 (sum-check): prove that $\sum_{a \in H} f(a) = b$ (verifier has f, b)

Task 3 (**prod-check**): prove that $\prod_{a \in H} f(a) = c$ (verifier has f, c)

Zero-test on H

(
$$\mathbf{H} = \{ 1, \omega, \omega^2, ..., \omega^{k-1} \}$$
)

Prover
$$P(f, \perp)$$

$$q(X) \leftarrow f(X)/(X^k - 1)$$

$$q \in \mathbb{F}_p^{(\leq d)}[X]$$

$$eval \ q(X) \ and \ f(X) \ at \ r$$

$$learn \ q(r), \ f(r)$$

Lemma: f is zero on H if and only if f(X) is divisible by $X^k - 1$

accept if $f(r) \stackrel{?}{=} q(r) \cdot (r^k - 1)$ (implies that $f(X) = q(X)(X^k - 1)$)

Thm: this protocol is complete and sound, assuming d/p is negligible.

Verifier time: $O(\log k)$ and two eval verify (but can be done in one)

Another useful tool: permutation check

$$W \colon H \to H$$
 is a **permutation of H** if $\forall i \in [k] \colon W(\omega^i) = \omega^j$ ex: $W(\omega^1) = \omega^{17}$, $W(\omega^2) = \omega^5$, $W(\omega^3) = \omega^2$, ...

Let
$$f, g: H \to H$$
 be polynomials in $\mathbb{F}_p^{(\leq d)}[X]$

Goal: given commitments to f, g, W prover want to prove that f(y) = g(W(y)) for all $y \in H$

 \Rightarrow Proves that g(H) is the same as f(H), just permuted by W

Another useful tool: permutation check

How? Use our zero-test to prove f(y) - g(W(y)) = 0 on H

The problem: the polynomial f(y) - g(W(y)) has degree k^2

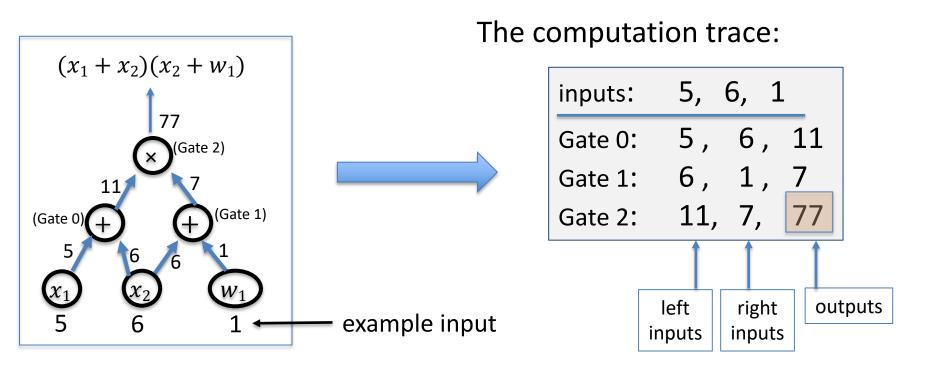
- \Rightarrow prover would need to manipulate polynomials of degree k^2
- ⇒ quadratic time prover !! (goal: linear time prover)

Cute trick: reduce this to a prod-check on a polynomial of degree 2k (not k^2)

PLONK: a poly-IOP for a general circuit

PLONK: a poly-IOP for a general circuit C(x, w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)



Encoding the trace as a polynomial

$$|C| \coloneqq \text{total \# of gates in } C$$
, $|I| \coloneqq |I_x| + |I_w| = \# \text{ inputs to } C$

let
$$d \coloneqq 3 |C| + |I|$$
 (in example, $d = 12$) and $H \coloneqq \{1, \omega, \omega^2, ..., \omega^{d-1}\}$

The plan: prover interpolates a polynomial

$$T \in \mathbb{F}_p^{(\leq d)}[X]$$

that encodes the entire trace.

Let's see how ...

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11.	7.	77

Encoding the trace as a polynomial

The plan:

Prover interpolates $T \in \mathbb{F}_p^{(\leq d)}[X]$ such that

- (1) T encodes all inputs: $T(\omega^{-j}) = \text{input } \#j$ for j = 1, ..., |I|
- (2) T encodes all wires: $\forall l = 0, ..., |C| 1$:
 - $T(\omega^{3l})$: left input to gate #l
 - $T(\omega^{3l+1})$: right input to gate #l
 - $T(\omega^{3l+2})$: output of gate #l

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:

inputs:
$$T(\omega^{-1}) = 5$$
, $T(\omega^{-2}) = 6$, $T(\omega^{-3}) = 1$, gate 0: $T(\omega^0) = 5$, $T(\omega^1) = 6$, $T(\omega^2) = 11$, gate 1: $T(\omega^3) = 6$, $T(\omega^4) = 1$, $T(\omega^5) = 7$, gate 2: $T(\omega^6) = 11$, $T(\omega^7) = 7$, $T(\omega^8) = 77$

$$degree(T) = 11$$

Prover uses FFT to compute the coefficients of T in time $d \log_2 d$

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Step 2: proving validity of P

$$\frac{\text{Prover P}(S_p, \boldsymbol{x}, \boldsymbol{w})}{\text{build } T(X) \in \mathbb{F}_p^{(\leq d)}[X]} \xrightarrow{\text{(commitment)}} \frac{\text{Verifier V}(S_v, \boldsymbol{x})}{\text{(commitment)}}$$

Prover needs to prove that T is a correct computation trace:

- (1) T encodes the correct inputs,
 (2) every gate is evaluated correctly,
 (3) the wiring is implemented correctly,
 (4) the output of last gate is 0
- Proving (4) is easy: prove $T(\omega^{3|C|-1}) = 0$

(wiring constraints)

inputs:	5, 6,	1
Gate 0:	5, 6,	11
Gate 1:	6, 1,	7
Gate 2:	11 , 7 ,	77

Proving (1): Tencodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) = \text{input #j}$

In our example: $v(\omega^{-1}) = 5$, $v(\omega^{-2}) = 6$, $v(\omega^{-3}) = 1$. (v is quadratic)

constructing v(X) takes time proportional to the size of input x

⇒ verifier has time do this

Proving (1): Tencodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) = \text{input #j}$

Let
$$H_{inp} := \{ \omega^{-1}, \omega^{-2}, ..., \omega^{-|I_x|} \} \subseteq H$$
 (points encoding the input)

Prover proves (1) by using a zero-test on H_{inp} to prove that

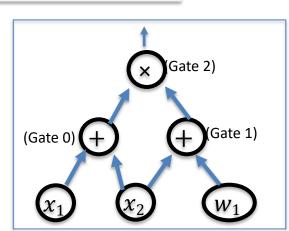
$$T(y) - v(y) = 0 \quad \forall y \in H_{inp}$$

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

define
$$S(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 such that $\forall l = 0, ..., |C| - 1$: $S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate $S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

In our example
$$S(\omega^0)=1$$
, $S(\omega^3)=1$, $S(\omega^6)=0$ (so that S is a quadratic polynomial)



Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

```
define S(X) \in \mathbb{F}_{n}^{(\leq d)}[X] such that \forall l = 0, ..., |C| - 1:
     S(\omega^{3l}) = 1 if gate #l is an addition gate
    S(\omega^{3l}) = 0 if gate #l is a multiplication gate
```

```
Observe that, \forall y \in H_{gates} := \{1, \omega^3, \omega^6, \omega^9, ..., \omega^{3(|C|-1)}\}:
```

$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) = T(\omega^2 y)$$

left input right input

left input right input

output

Proving (2): every gate is evaluated correctly

Setup(
$$C$$
) $\rightarrow pp := S$ and $vp := (S)$

$$\frac{\text{Prover P}(pp, \textbf{\textit{x}}, \textbf{\textit{w}})}{\text{build } T(X) \in \mathbb{F}_p^{(\leq d)}[X]} \xrightarrow{\text{(commitment)}} \frac{\text{Verifier V}(vp, \textbf{\textit{x}})}{\text{(commitment)}}$$

Prover uses zero-test on the set H_{gates} to prove that $\forall y \in H_{gates}$

$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0$$

Proving (3): the wiring is correct

Step 4: encode the wires of *C*:

$$\begin{cases} T(\omega^{-2}) = T(\omega^{1}) = T(\omega^{3}) \\ T(\omega^{-1}) = T(\omega^{0}) \\ T(\omega^{2}) = T(\omega^{6}) \\ T(\omega^{-3}) = T(\omega^{4}) \end{cases}$$

example: $x_1=5, x_2=6, w_1=1$ $\omega^{-1}, \omega^{-2}, \omega^{-3}: 5, 6, 1$ 0: $\omega^{0}, \omega^{1}, \omega^{2}: 5, 6, 11$ 1: $\omega^{3}, \omega^{4}, \omega^{5}: 6, 1, 7$ 2: $\omega^{6}, \omega^{7}, \omega^{8}: 11, 7, 77$

Define a polynomial W: $H \rightarrow H$ that implements a rotation:

$$W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^{-2})$$
, $W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1})$, ...

<u>Lemma</u>: $\forall y \in H$: $T(y) = T(W(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): the wiring is correct

Step 4: encode the wires of
$$C$$
:

$$T(\omega^{-2}) = T(\omega^1) = T(\omega^3)$$

$$T(\omega^{-1})$$

$$T(\omega^{-2})$$

$$T(\omega^{-2})$$
Proved using a permutation check
$$T(\omega^{-3})$$
Define a polynomia
$$W(\omega^{-2}, \omega^1, \omega^3) = \omega^3, \omega^{-2})$$

$$W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1}), \dots$$

<u>Lemma</u>: $\forall y \in H$: $T(y) = T(W(y)) \Rightarrow$ wire constraints are satisfied

The final Plonk Poly-IOP (and SNARK)

gates: (1) $S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0$

 $\forall y \in H_{gates}$

Setup(
$$C$$
) $\rightarrow pp \coloneqq$ (S,W) and $vp \coloneqq$ (S and W) (untrusted)

Prover P(pp, x, w)

build $T(X) \in \mathbb{F}_p^{(\leq d)}[X]$

Prover proves:

$$Verifier V(vp, x)$$
build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

inputs: (2)
$$T(y) - v(y) = 0$$
 $\forall y \in H_{inp}$

wires: (3)
$$T(y) - T(W(y)) = 0$$
 $\forall y \in H$

output: (4)
$$T(\omega^{3|C|-1}) = 0$$
 (output of last gate = 0)

The final Plonk Poly-IOP (and SNARK)

Thm: The Plonk Poly-IOP is complete and knowledge sound

Many extensions ...

• Plonk proof: a short proof (O(1) commitments), fast verifier

Can handle circuits with more general gates than + and ×

• PLOOKUP: efficient SNARK for circuits with lookup tables

The SNARK can easily be made into a zk-SNARK

Main challenge: reduce prover time

END OF LECTURE

Next lecture: scaling the blockchain