CS251 Fall 2022
(cs251.stanford.edu)

Building a SNARK

Dan Boneh



Recap: zk-SNARK applications

Private Tx on a public blockchain: Zcash, IronFish

Compliance:
* Proving that a private Tx are in compliance with banking laws
* Proving solvency in zero-knowledge

Scalability: privacy in a zk-SNARK Rollup (next week)

Bridging between blockchains: zkBridge



reprocessingg NARK: Non-interactive ARgument of Knowledge

Public arithmetic circuit: C(x, w) — [F

)

public statement in F" secret witness in F™"

Preprocessing (setup): S(C) — public parameters (pp, vp )

pp, X, W vp, X

proof T that C(x,w) =0

accept or
reject




NARK: requirements (informal)

Prover P(pp, x, w) Verifier V (vp, x, 1)

proof 71

accept or reject

Complete: Vx,w: C(x,w) =0 = Pr[ V(vp, x, P(pp, x, w)) = accept | =1

Adaptively knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

(an extractor E can extract a valid w from P)

Optional: Zero knowledge: (C,pp,vp,x, m) “reveal nothing new” about w




SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

* S(C) — public parameters (pp, vp) for prover and verifier

* P(pp, x,w) = shortproof m ;| |m|= 0,(log(|C]))

 V(vp, x,m) fasttoverify; | time(V)=0;(|x|, log(|C|))

\

short “summary” of circuit




A simple PCP-based SNARK

[Kilian’92, Micali’94]



A simple construction: PCP-based SNARK

The PCP theorem: Let C(x,w) be an arithmetic circuit.

there is a proof system that for every x proves Iw: C(x,w) =0

as follows:
Prover P(pp, X, W) Verifier V(vp, X)
long proof T read only 0(2) bits of 7,
output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

size of proof wis poly(|C|). (not succinct)




Converting a PCP proof to a SNARK

Prover P(pp, X, W) Verifier V(vp, X)

@?
m (TTTTITITTI11] Merkleroot A |,
open k positions of T (k. = 0(1))

» O(klog|C]|) hashes
k opening and Merkle proofs

output accept or reject

Verifier sees 0(1log|C|) data = succinct proof. | Problem: interactive




Making the proof non-interactive

The Fiat-Shamir transform:

* public-coin interactive protocol = non-interactive protocol
public coin: all verifier randomness is public (no secrets)

Prover P(pp, x, w) Verifier V(vp, x)
msgl
r choose random bits r
msg?2
accept or reject




Making the proof non-interactive

Fiat-Shamir transform: H: M — R a cryptographic hash function

* idea: prover generates random bits on its own (!)

Prover P(pp, x, W) Verifier V(vp, x)

generate msgl

r «— H(x, msgl) 1 = (msgl, msg2) |re H(x, msgl)

generate msg2 | = O(A log |C|) accept or reject

Fiat-Shamir: certain secure interactive protocols = non-interactive



Are we done?

Simple transparent SNARK from the PCP theorem
e Use Fiat-Shamir transform to make non-interactive

* We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs:  Goal: Time(Prover) = O(|C|)




Building an efficient SNARK



(1)

(2)

General paradigm: two steps

A polynomial
commitment
scheme

(cryptographic object)

A polynomial
interactive
oracle proof (PIOP)

S

(info. theoretic object)

SNARK for
general circuits

[ Let’s explain each concept ... }




Recall: commitments

Two algorithms:

commit(m, r) - com (r chose at random)

verify(m, com, r) —= accept or reject

Properties:

binding: cannot produce two valid openings for com

hiding: com reveals nothing about committed data



(1) Polynomial commitment schemes

Notation:

Fix a finite field: F, ={0,1,...,p — 1}

IFgfd) [X]: all polynomials in IF,,[X] of degree < d.



(1) Polynomial commitment schemes

« setup(d) = pp, public parameters for polynomials of degree < d

* commit(pp, f,r) » com;  commitmenttof€ IFz(fd) |1 X]

* eval: goal: foragivencomy and x,y € IF,,, prove that f(x) =y.

Formally: eval = (s, P, V) is a SNARK for:

statement st = (pp, comg, X, y) with witness =w = (f, r)

where C(st, w) =0 iff

[f(x)=y and fe IF;Sd) [X] and commit(pp, f, T) = com; ]




(1) Polynomial commitment schemes

Properties:

* Binding: cannot produce two valid openings (f; ry), (f, r,) for com,.
e evalis knowledge sounds (can extract (f, r) from a successful prover)

e optional:
e commitment is hiding

* eval is zero knowledge



Constructing polynomial commitments

Not today ... (see readings or CS355)

Properties of the most widely used in practice (called KZG) :

trusted setup: secret randomness in setup.

com; : constant size (one group element)

lpp| = 0;(d)

eval proof size: constant size (one group element)

eval verify time: constant time.  Prover time: 0,(d)




General paradigm: two steps

A polynomial

(1) commitment |
scheme \g

2) A.polynor.nial )
Interactive
oracle proof (PIOP)

SNARK for
general circuits

[ What is a PIOP? }




Component 2: Polynomial IOP

Let C(x,w) be some arithmetic circuit. Letx € ;.

Poly-IOP: a proof system that proves Iw: C(x,w) = 0 as follows:

-
[
[
-

-

Setup(C) — public parameters pp and vp = (|f,!, |f-1 f—s1)




Polynomial IOP

Prover P(pp,x,w) =0 Verifier V(vp, x)
fl € IFp_ [X]

commit

ry Iy
Ty fast verify that
(=d) can evaluate f;
commit ‘fz € IFP [X] ‘ at an int
. r. — F Y poIn
2 p :
T in I,
. (outputs yes/no)
Ty_
t—1 Tp_q [Fp
(sd)
commit ‘ft € IFP [X] ‘

f87 7ft(

Verlfy Xy Ty yeeeyTE_1)



The Plonk poly-IOP

Goal: construct a poly-IOP called Plonk  (eprint/2019/953)

[Gabizon — Williamson — Ciobotaru]

Plonk + PCS = SNARK

(and also a zk-SNARK)

[ PCS = Polynomial Commitment Scheme]



First, a useful observation

(=d)
p

for r—TF, : Prlf(r)=0]< d/p (%)

A key fact: for non-zero f € | X]

= suppose p=22°% and d<2% then d/p isnegligible
= forreT,: if f(r) =0 then f isidentically zerow.h.p

= a simple zero test for a committed polynomial

{ SZDL lemma: (*) also holds for multivariate polynomials (where d is total degree of f) }



https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

First, a useful observeration

Suppose p=22% and d<2% sothat d/p isnegligible

(=d)

let f, g € Fj

X].

For r—F,, if f(r)=g(r) then f=g whp

L )

fa)—gr)=0 = f—-g=0 whp

= a simple equality test for two committed polynomials



Useful proof gadgets

Let w € IF, be a primitive k-th root of unity (w" =1)
Set H={1, 0, 0’ .., "} €F,

let fe FS P [X] and b,c€F,. (d = k)

There are efficient poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f isidentically zero on H

Tast 2 (sum-check): prove that ), ,cy f(a) = b (verifier has

Task 3 (prod-check): prove that [],cyf(a) =c (verifier has




Zero-teston H (H={1, 0, w? .., w*})
Prover P(f, 1) Verifier V([£])

q(X) = fF(X)/(X*-1)

<d
q € F, " [X]

 re [,
eval g(X) and f(X) at r
SEUDMEHEIEL a4, £()
Lemma: f iszeroonH if and only if acceptif f(r) £ q(r)- (% -1
f(X) is divisible by Xk —1 (implies that f(X) — q(X)(Xk _ 1) )

Thm: this protocol is complete and sound, assuming d/p is negligible.

Verifier time: O(log k) and two eval verify (but can be done in one)




Another useful tool: permutation check

W: H— H isapermutationof H if Vi€ [k]: W(w)) = w/

ex: W(wl) = 07, Ww? =w>, WWwd) =w?,

Let f,g:H — H be polynomials in IF;Sd)[X]

Goal: given commitmentsto f, g, W prover want to prove that
f&y)=9gW(y)) forall yeH

= Provesthat g(H) is the same as f(H), just permuted by W




Another useful tool: permutation check

How? Use our zero-test to prove | f(y) — g(W(y)) =0 onH

The problem: the polynomial f(y) — g(W(y)) has degree k2

= prover would need to manipulate polynomials of degree k?

= quadratic time prover !! (goal: linear time prover)

Cute trick: reduce this to a prod-check
on a polynomial of degree 2k  (not k?)



PLONK: a poly-IOP for a general circuit




PLONK: a poly-IOP for a general circuit C(x,w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

The computation trace:

(x1 + x2) (2 + wy)
I inputs: 5, 6, 1
77

@(Gate 2) Gate O: 5 , 6 , 11

11 7 > Gate 1: 6 - 1 - 7
(Gate 0) (Gate 1) Gate2: 11, 7, |77
5 }6 ﬂ6 1 A J'Y 'Y

: left right outputs

5 6 1 «— example input inputs || inputs




Encoding the trace as a polynomial

|C| :=total # of gatesinC, |I|=|I,|+|[,| =#inputstoC

let d:=3|C|+ |I| (nexample,d=12) and H:={1, w, w? .., w

d—1}

The plan: prover interpolates a polynomial
<d
T e FSYIX]

that encodes the entire trace.

Let’s see how ...

inputs: 5, 6,
Gate0: 5, 6, 11
Gatel: 6, 1, 7
Gate2: 11, 7, |77




Encoding the trace as a polynomial

The plan:

Prover interpolates T € IFI(,Sd)[X] such that

(1) T encodes allinputs: T(w™/) =input#j forj=1,..,|I

(2) T encodes all wires: VI=0,...,|C|—1:

e T(w3!): leftinput to gate #l inputs: 5, 6, 1

e T(w3™1): right input to gate #l1 Gate0: 5, 6, 11
Gatel: 6, 1, 7

e T(w3*2): output of gate #l Gate2: 11, 7, 77




Encoding the trace as a polynomial

In our example, Prover interpolates T(X) such that:
inputs: T =5 Tw?4)=6 Tw?3 =1,
gate0: T(w®) =5 Tw)=6 Tw? =11,
gatel: T(w3 =6 TwH=1 Tw®) =7,
gate2: T(w®) =11, T(w) =7 T(wd) =77

inputs: 5, 6, 1
Gate0: 5, 6, 11
Gatel: 6, 1, 7
Gate2: 11, 7, 77

degree(T) = 11

Prover uses FFT to compute the coefficients of T
intime d log,d




Step 2: proving validity of P

Prover P(S,, x, W) Verifier V(S,, x)
T

(commitment)

build  T(X) € FSVIX]

Prover needs to prove that T is a correct computation trace:

" (1) T encodes the correct inputs,
(wiring constraints)

(2) every gate is evaluated correctly,
- inputs: 5, ?, 1

(3) the wiring is implemented correctly, Gateo. 5. 6 11

| (4) the output of last gate is 0 Gate 1: 5,/1 7

Gate2: 11, 7, 77

Proving (4) is easy: prove T(w3/¢I71) =0



Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IFI(DS“’CD[X]
that encodes the x-inputs to the circuit:

for j=1,...,|L]: v(w™) =input#

In our example: v(w™ 1) =5 vw™?) =6, v(iw3)=1. (v isquadratic)

constructing v(X) takes time proportional to the size of input x

= verifier has time do this



Proving (1): T encodes the correct inputs

Both prover and verifier interpolate a polynomial v(X) € IFI(DS“’CD[X]

that encodes the x-inputs to the circuit:

for j=1,...,|L]: v(w™) =input#

Let Hyp, :={w w2 ..,0 1} S H (points encoding the input)

Prover proves (1) by using a zero-test on H;,, to prove that

T(Y) _ U(Y) =0 v y € Hinp




Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)

define S(X) € IFgfd)[X] suchthat VI=0,..,|C| — 1:
S(w3!) =1 if gate #l is an addition gate

S(w3!) =0 if gate #l is a multiplication gate

t

@Gate 2)

In our example S(w® =1, S(w3) =1, S(w®) =0 /G{
(Gate 0) Gate 1)

(so that S is a quadratic polynomial) @ 5




Proving (2): every gate is evaluated correctly

Idea: encode gate types using a selector polynomial S(X)

define S(X) € F5; V[X] suchthat V[ =0,...,]|C| - 1:
S(w3!) =1 if gate #l is an addition gate

S(w3!) =0 if gate #l is a multiplication gate

Observe that, Vy € Hgo ' =1{1, 03 0 o, ..., w3UCI=1y .

S(y)-[E(v)+T((Qy)] + (1-SW)TY) T(wy) = T(w?y)




Proving (2): every gate is evaluated correctly

Setup(C) = pp:=S and vp:=(|S|)

Prover P(pp, x, w) Verifier V(vp, x)

T
build  T(X) € FSV[X] -

(commitment)

Prover uses zero-test on the set H,,. to prove that Vy € H .,

S(y)[T(y) + T(wy)] + (1-S(y))-T(y) T(wy) - T(w?) =0




Proving (3): the wiring is correct

Step 4: encode the wires of C: example: x;=5,%X,=6,w;=1
—T(a)'z):T(a)l) = T(w?3) w?l w? w3:5, ?, 1
T(w™) = T(w?) 00 w® wl w?: 5, 6, @
- T(wz)zT(w6) 1. w3, w* wd: 6,/1, 7
L T(w3) = T(w?) 2 Wb, w7, wd: (11, 7, 77

Define a polynomial W:H — H that implements a rotation:

W(w?, w!, w3) = (w!, w3, w?), Ww! w’)=(w’, w?), ..

Lemma: V yeH: T(y)=T(W(y)) = wire constraints are satisfied




Proving (3): the wiring is correct

Step 4: encode the wires of C: example: X;=5,x,=6,w;=1

[ T(w?) = T(w?) = T(w?) wl, w2 w?: 5,6 1
RE— i
T(wl) 6, 11)
2 ) ]
T(@%) proved using a permutation check 1,7
L T(w?) , 7, 77

A
H that implements a rotation:

Define a polynomi

W(w?, w!, w3) = w3, w?), Wwl w=(w’, wl), ..

Lemma: V yeH: T(y)=T(W(y)) = wire constraints are satisfied




The final Plonk Poly-IOP (and snark)

Setup(C) = pp:=(SW) and wvp:=(|S|and [W| ) | (untrusted)

Prover P(pp, x, W) Verifier V(vp, x)
T

(commitment)

build  T(X) € FSV[X] * build v(X) € F&"V [x]

Prover proves:
gates: (1) S(y)-[T(y) + T(wy)] +(1=S(y)) T(y) T(wy) = T(w?y) =0 VY € Hyates
inputs: (2) T(y) —v(y) =0 Vy € Hip,
wires: (3) T(y) —T(W(y))=0 vyeH

output: (4) T(w3!¢=1) =0 (output of last gate = 0)




The final Plonk Poly-IOP (and snark)

Setup(C) = pp:=(SW) and wvp:=(|S|and [W| ) | (untrusted)

Prover P(pp, x, W) Verifier V(vp, x)
T

(commitment)

build  T(X) € FSV[X] * build v(X) € F&"V [x]

Thm: The Plonk Poly-10OP is complete and knowledge sound

(eprint/2019/953)



Many extensions ...

* Plonk proof: ashort proof (0(1) commitments), fast verifier

e (Can handle circuits with more general gates than + and X
* PLOOKUP: efficient SNARK for circuits with lookup tables

* The SNARK can easily be made into a zk-SNARK

Main challenge: reduce prover time



END OF LECTURE

Next lecture: scaling the blockchain



