CS251 Fall 2022 (cs251.stanford.edu)

DeFi Lending Systems

Dan Boneh

HW#3 posted later tonight.

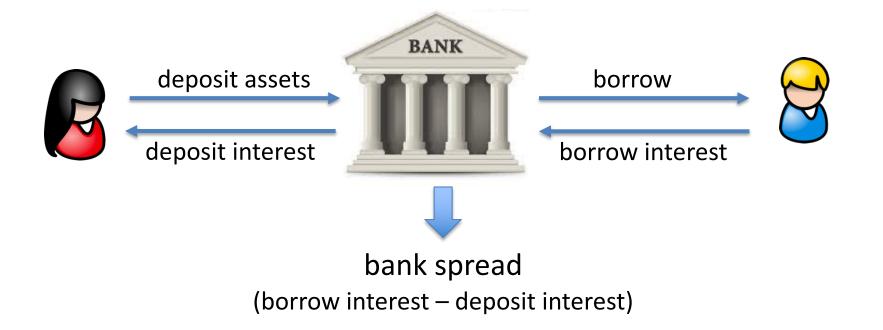
Where we are in the course

- How consensus protocols work
- Bitcoin: the UTXO model, and the Bitcoin scripting language
- Ethereum (the blockchain computer): the EVM and Solidity

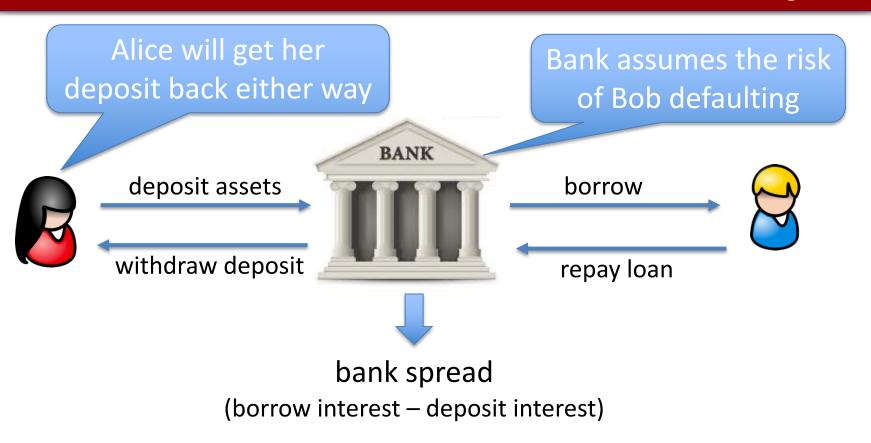
Current topic: decentralized finance

on-chain: exchanges, stablecoins, today: lending

Next: privacy on the blockchain, scaling the blockchain, and interoperability across blockchains

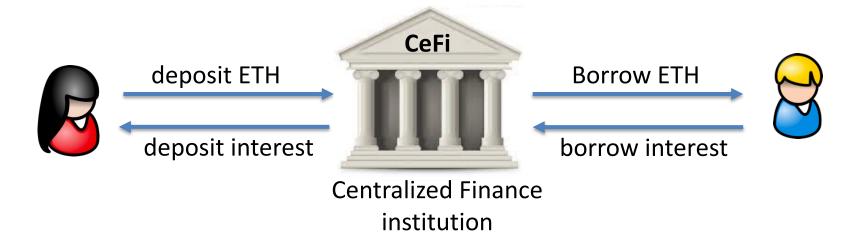

DeFi Lending Protocols

Goal: explain how decentralized lending works


This is not investment or financial advice

The role of banks in the economy

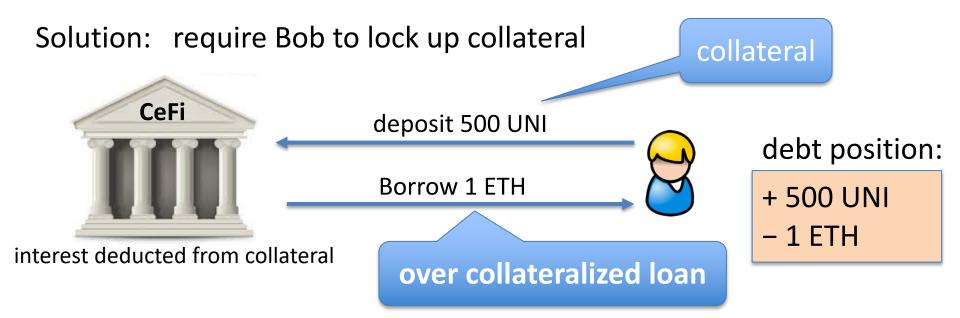
Banks bring together lenders and borrowers



The role of banks in the economy

Crypto: CeFi lending (e.g., Blockfi, Nexo, ...)

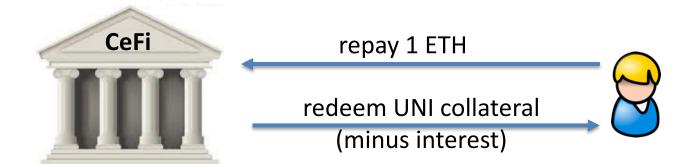
Same as with a traditional bank:



Alice gives her assets to the CeFi institution to lend out to Bob

CeFi's concern: what if Bob defaults on loan?

⇒ CeFi will absorb the loss


(1 ETH = 100 UNI)

Several things can happen next:

(1 ETH = 100 UNI)

(1) Bob repays loan

debt position:

Several things can happen next:

(1 ETH = 100 UNI)

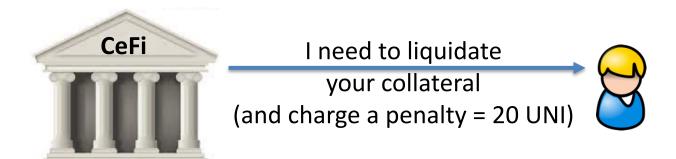
- (1) Bob repays loan
- (2) Bob defaults on loan

Ok, I'll keep (100 + penalty) UNI

I can't repay 1 ETH

redeem remaining UNI collateral

(400 - interest - penalty) UNI


debt position:

Several things can happen next:

(1 ETH = 400 UNI)

- (1) Bob repays loan
- (2) Bob defaults on loan
- (3) Liquidation: value of loan increases relative to collateral

debt position:

- +80 UNI
- 0 ETH

lender needs to liquidate **before** value(debt) > value(collateral)

Terminology

Collateral: assets that serve as a security deposit

Over-collateralization: borrower has to provide *value(collateral) > value(loan)*

Under-collateralization: *value(collateral) < value(loan)*

collateral factor

Liquidation:

if value(debt) $> (0.6) \times \text{value(collateral)}$

then collateral is liquidated until inequality flips

(liquidation reduces both sides of the inequality)

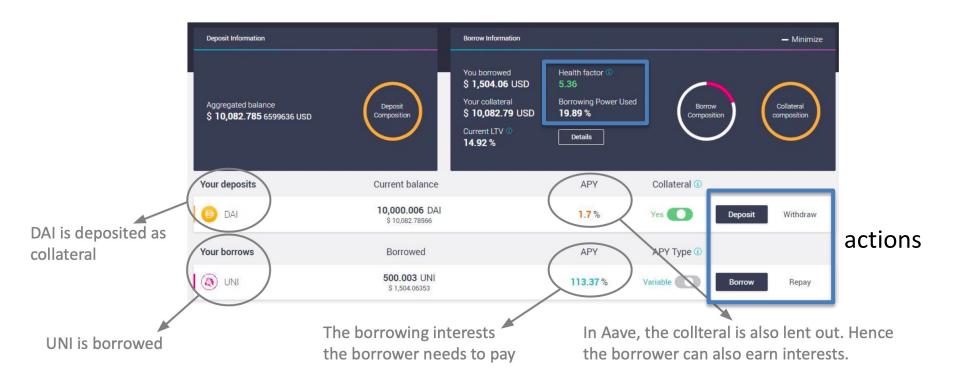
Collateral factor

CollateralFactor $\in [0,1]$

- Max value that can be borrowed using this collateral
- High volatility asset ⇒ low collateral factor
- Relatively stable asset ⇒ higher collateral factor

Examples: (on Compound)

ETH, DAI: 83%, UNI: 75%, MKR: 73%


Health of a debt position

BorrowCapacity =
$$\sum_{i}$$
 value(collateral_i) × CollateralFactor_i (in ETH)

$$health = \frac{BorrowCapacity}{value(TotalDebt)}$$

helath < 1 ⇒ triggers liquidation until (health ≥ 1)

Example: Aave dashboard (a DeFi lending Dapp)

Credit: Arthur Gervais

Why borrow ETH?

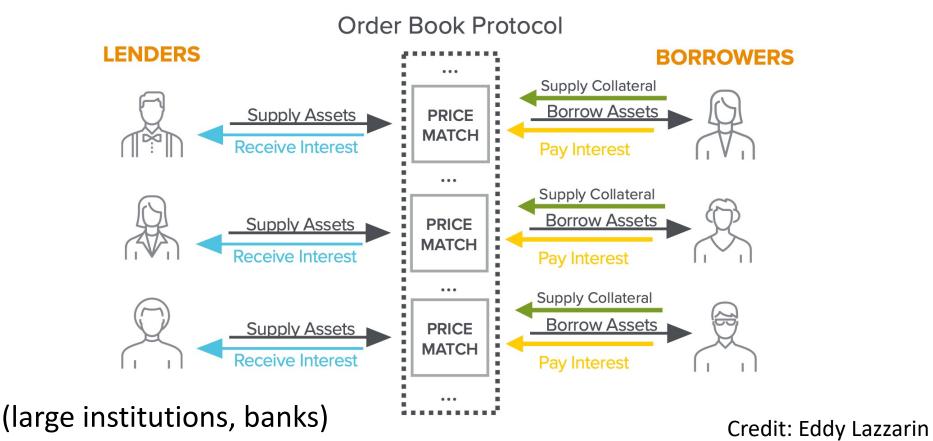
If Bob has collateral, why can't he just buy ETH?

Bob may need ETH (e.g., to buy in-game assets),
 but he might not want to sell his collateral (e.g., an NFT)

As an investment strategy: using UNI to borrow ETH gives Bob exposure to both

The problem with CeFi lending

Users must trust the CeFi institution:

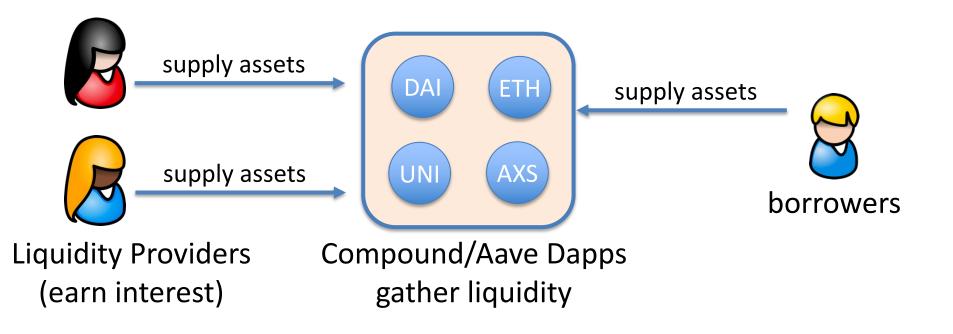

- Not to get hacked, steal assets, or miscalculate
- This is why traditional finance is regulated
- Interest payments go to the exchange, not liquidity provider Alice
- CeFi fully controls spread (borrow interest deposit interest)

DeFi Lending

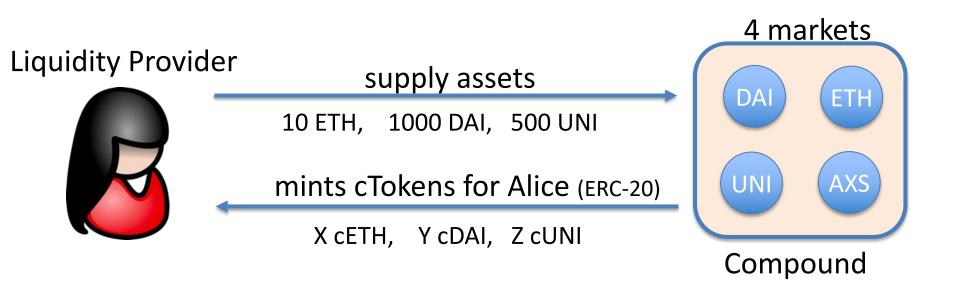
Can we build an on-chain lending Dapp?

- → no central trusted parties
- ⇒ code available on Ethereum for inspection

A first idea: an order book Dapp

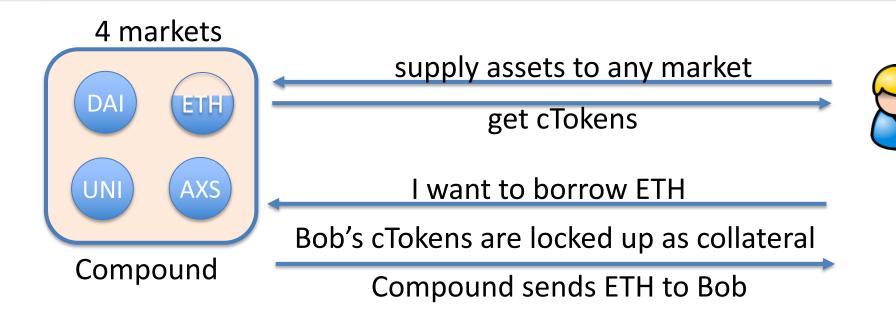


Challenges


- Computationally expensive: matching borrowers to lenders requires many transactions per person (post a bid, retract if the market changes, repeat)
- Concentrated risk: lenders are exposed to their direct counterparty defaulting
- Complex withdrawal: a lender must wait for their counter-parties to repay their debts

A better approach: liquidity pools

Over-collateralized lending: Compound and Aave



Example: Compound cTokens

Value of X, Y, Z is determined by the current exchange rate: Token to cToken exchange rate is calculated every block

Borrowers

Bob's accrued interest increases ETH/cETH exchange rate

⇒ benefit cETH token holders (ETH liquidity providers)

The exchange rate

Consider the ETH marker:

Supplying ETH: adds to UnderlyingBalance_{ETH}

Borrowing ETH: adds to totalBorrowBalance_{ETH}

Interest: added repeatedly to totalBorrowBalance_{FTH}

```
ExchangeRate_{ETH/cETH} = \frac{UnderlyingBalance_{ETH} + totalBorrowBalance_{ETH} - reserve_{ETH}}{cTokenSupply_{ETH}}
```

⇒ As totalBorrowBalance increases so does ExchangeRate

The interest rate: constantly updates

Key idea: determined by demand for asset vs. asset market size

Utilization ratio:
$$U_{ETH} = \frac{\text{totalBorrowBalance}_{ETH}}{\text{availableBalance}_{ETH} + \text{totalBorrowBalance}_{ETH}}$$

higher totalBorrowBalance, or lower availableBalance in contract

 $interestRate_{ETH} = BaseRate_{ETH} + U_{ETH} \times slope_{ETH}$

Example: Compound DAI market

(Oct. 2022)

Liquidation: debt > BorrowCapacity

If user's health < 1 then <u>anyone</u> can call:

liquidate(borrower, CollateralAsset, BorrowAsset, uint amount)

address of borrower being liquidated

Liquidator wants cTokens in this asset (e.g., cDAI) Liquidator is providing this asset (e.g., ETH)

This function transfers liquidator's ETH into ETH market, and gives the liquidator cDAI from user's collateral

Liquidation: debt > BorrowCapacity

If user's health < 1 the <u>anyone</u> can call:

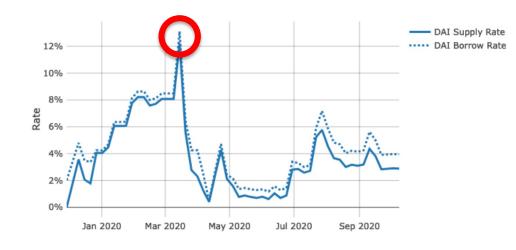
```
Liquidator is repaying the user's ETH debt
and getting the user's cDAI

add b

[at a discounted exchange rate -- penalty for user] b

(e.g., cDAI)

(e.g., ETH)
```

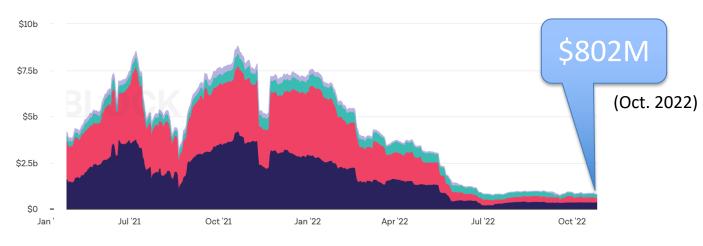

This function transfers liquidator's ETH into ETH market, and gives the liquidator cDAI from user's collateral

What is liquidation risk?

Historical DAI interest rate on Compound (APY):

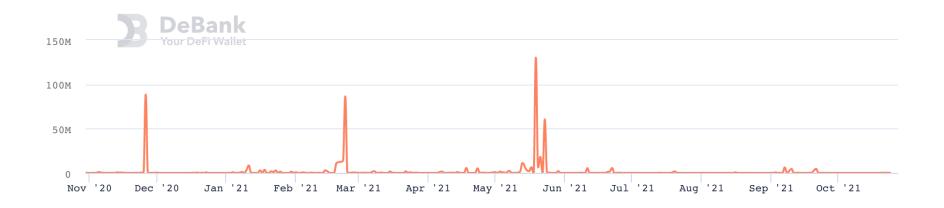
Demand for DAI spikes

- ⇒ price of DAI spikes
- ⇒ user's debt shoots up
- ⇒ user's health drops
- ⇒ liquidation ...


To use Compound, borrower must constantly monitor APY and quickly repay loans if APY goes too high (can be automated)

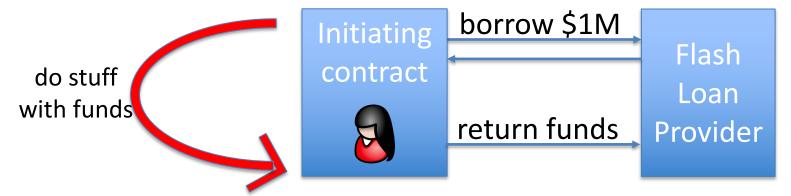
Summary & stats

- Liquidity providers can earn interest on their assets
- DeFi lending is being used quite a bit:


Compund outstanding debt

Summary & stats

Compound liquidation statistics:


Caused by collateral price drops or debt APY spikes

Flash loans

What is a flash loan?

A flash loan is taken and repaid in a single transaction

 \Rightarrow zero risk for lender \Rightarrow borrower needs no collateral

(Tx is valid only if funds are returned in same Tx)

[&]quot;Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit"

Use cases

- Risk free arbitrage
- Collateral swap
- DeFi attacks: price oracle manipulation

- •
- •

Risk free arbitrage

Alice finds a USDC/DAI price difference in two pools

Aave (flash loan provider) Flash loan 1M USDC Repay 1M USDC loan 1M USDC Uniswap 1.002M DAI Curve **USDC**→**DAI** DAI→USDC 1.001M USDC 1.002M DAI 1USDC = 1.002DAI1USDC = 1.001DAIkeep 0.001M USDC All in a single transaction

Collateral swap

start:

Alice @Compound

end goal:

Alice @Compound

-1000 DAI +1 cETH Take 1000 DAI flash loan
Repay 1000 DAI debt
Redeem 1 cETH
Swap 1 cETH for 3000 cUSDC
Deposit 3000 cUSDC as collateral
Borrow 1000 DAI
Repay 1000 DAI flash loan

-1000 DAI +3000 cUSDC

borrowed DAI using ETH as collateral

(a single Ethereum transaction)

borrowed DAI using USDC as collateral

Aave v1 implementation

```
function flashLoan(address receiver, uint256 amount) {
  // transfer funds to the receiver
  core.transferToUser(_reserve, userPayable, _amount);
  // execute action of the receiver
  receiver.executeOperation( reserve, amount, amountFee, params);
  // abort if loan is not repaid
  require( availableLiquidityAfter == availableLiquidityBefore.add(amountFee),
      "balance inconsistent");
```

Flash loans amounts on Aave (in 2021)

	Top 5 Days - Loan Amount
Date	FALSHLOAN_USD ▼
May 22	624.5M
May 5	520.9M
May 21	515.0M
May 19	265.7M
Aug 3	163.7M

END OF LECTURE

Next lecture: U.S. blockchain regulations

Recall the main application areas

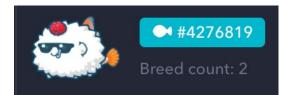
- 1. Finance (DeFi):
 - new financial instruments, exchanges, lending, ...

2. Managing digital assets (NFTs)

3. <u>DAOs</u>: decentralized organizations

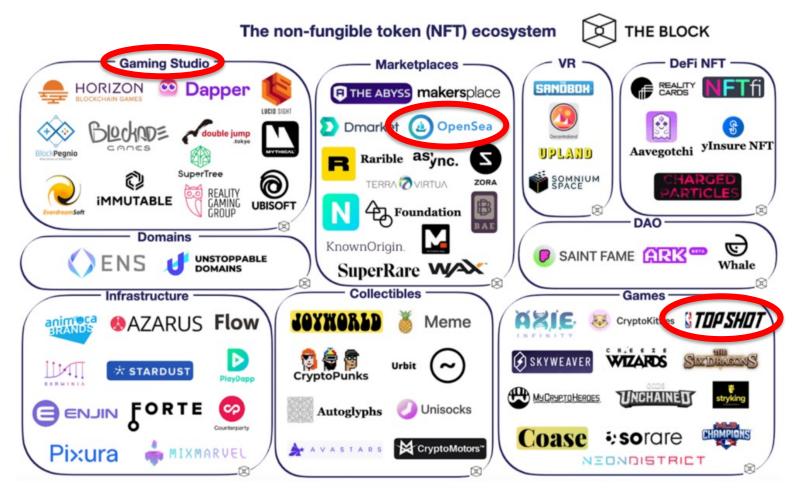
Digital assets (NFTs)

Example digital assets: (ERC-721)


- Digital art: opensea, foundation
- Collector items: NBA top shots
- Game items: horses (zed.run), axies, ...
- Metaverse: plots in a virtual land

#8857

NBA

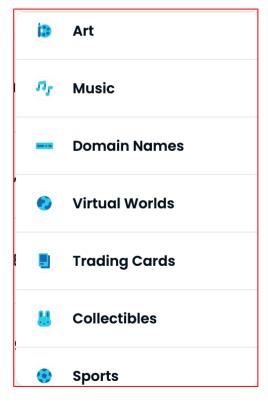


Why manage on a blockchain? Why not manage centrally?

- Blockchain ensures long-term ownership, until sale.
- Provides a trusted record of provenance (forgeries are evident)

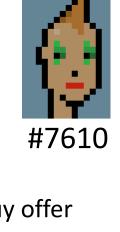
ERC-721 (subset)

```
mapping (uint256 => address) internal idToOwner;
function safeTransferFrom(
   address from, address to, uint256 tokenId, bytes data)
function approve(address approved, uint256 tokenId)
function setApprovalForAll(address operator, bool approved)
function ownerOf(uint256 tokenId) returns (address);
```



(Sep. 2020, out of date)

OpenSea 24h volume


Collection	Volume ▼
1 CryptoPunks	♦ 1,017.69
2 CreatureToadz	♦ 916.15
3 CyberKongz	♦ 892.68
4 Doodles	♦ 730.72

OpenSea categories

Example: CryptoPunks (generated in 2017)

10,000 total CryptoPunks. Managed by contract at Ethereum address 0xb47e3cd8DF8... (250 lines of solidity)

Bid	beautifu	visa	150Ξ (\$497,239)	Aug 24, 2021	#7610
Sold	gmoney	0xa04e64	49.50Ξ (\$149,939)	Aug 18, 2021	
Bid	0xa04e64		49.50Ξ (\$149,024)	Aug 18, 2021	buy offer
Sold	gr8wxl	0x84c920	21Ξ (\$31,117)	Mar 05, 2021	
Offered			21Ξ (\$31,117)	Mar 05, 2021	
Sold	0x02751f	gr8wxl	0.30= (\$67)	Aug 03, 2017	← sold!
Offered			0.30= (\$59)	Jul 30, 2017	← sell offer
Claimed		0x02751f		Jun 23, 2017	

https://www.larvalabs.com/cryptopunks/details/7610

digital assets: where is this going?

What does ownership mean?

- Who receives royalties on item: owner or creator?
- Where is item stored? Where can it be displayed?

... depends on NFT code.

NFTs and DeFi: asset-based DeFi:

- Use NFT as collateral in loans
- Fractional ownership of NFT assets
- NFT-based futures market

Decentralized orgs (DAO)

What is a DAO?

- A Dapp deployed on-chain at a specific address
- Anyone (globally) can send funds to DAO treasury

Anyone can submit a proposal to DAO

Examples:

art collector DAOs, charity DAOs, investment DAOs

Examples

Creating a DAO is quite simple: syndicate.io

... cheaper than creating a real-world U.S. partnership

Example DAOs:

PleasrDAO: invests in digital art (NFTs),

30 pieces collected, treasury of \$26M

- **Gitcoin**: DAO to fund open source projects (\$36M sent)
- Investment DAOs: many

Regulation? Next lecture ...