
Cryptocurrencies and
Blockchain Technologies

Dan Boneh
Stanford University

CS251 Fall 2022

https://cs251.stanford.edu

[course videos on canvas, discussions on edstem, homework on gradescope]
[first project – Merkle trees – is out on the course web site]

What is a blockchain?

Abstract answer: a blockchain provides
coordination between many parties,
when there is no single trusted party

if trusted party exists ⇒ no need for a blockchain

[financial systems: often no trusted party]

Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

• A practical public append-only data structure,
secured by replication and incentives

• A fixed supply asset (BTC). Digital payments, and more.

Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

• Blockchain computer: a fully programmable environment
⟹ public programs that manage digital and financial assets

• Composability: applications running on chain can call each other

2015

Ethereum

Blockchains: what is the new idea?

2009

Bitcoin

2015

Ethereum growth of
DeFi, NFTs, DAOs

2017 2022

So what is this good for?

(1) Basic application: a digital currency (stored value)
• Current largest: Bitcoin (2009), Ethereum (2015)

• Global: accessible to anyone with an Internet connection

What else is it good for?

(2) Decentralized applications (DAPPs)
• DeFi: financial instruments managed by public programs

• examples: stablecoins, lending, exchanges, ….

• Asset management (NFTs): art, game assets, domain names.

• Decentralized organizations (DAOs): (decentralized governance)

• DAOs for investment, for donations, for collecting art, etc.

(3) New programming model: writing decentralized programs

Assets managed by DAPPs

Sep. 2022

StableCoin

Exchange

Lending

Exchange

Lending

Transaction volume

24h volume Sep. 2022

$26.6B

$12.1B

$0.88B

Active developers since launch (as of 12/31/2021)

source: electric capital

Central Bank Digital Currency (CBDC)

30 central banks actively working on retail CBDC

[BIS survey Jan. 2019]

What is a blockchain?

Data Availability / Consensus Layer

Execution engine (blockchain computer)

applications (DAPPs, smart contracts)

user facing tools (cloud servers)

Sequencer: orders transactions

Consensus layer (informal)

A public append-only data structure:

• Persistence: once added, data can never be removed*

• Safety: all honest participants have the same data**

• Liveness: honest participants can add new transactions

• Open(?): anyone can add data (no authentication)

Data Availability / Consensus layer

achieved by replication

How are blocks added to chain?
blockchain

I am the
leader

6.25 BTC

verify
block

verify
block

skA

skB

skC

signed

How are blocks added to chain?
blockchain

I am the
leader

6.25 BTC

…

skA

skB

skC

6.25 BTC

Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx1, Tx2, Tx3, Tx4

Tx1, Tx2, Tx3, Tx4Tx1, Tx2, Tx3, Tx4

The good case:
copies are consistent

Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx3, Tx4, Tx1, Tx2

Tx4, Tx3, Tx1, Tx2Tx1, Tx2, Tx4, Tx3

Problems:
• Network delays

∆-delay

∆-delay

can affect Tx order

Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2 Tx3, Tx4

Tx3, Tx4Tx1, Tx2

Problems:
• Network delays
• Network partition

network
partition

Why is consensus a hard problem?

Tx1

Tx2 Tx4

Tx1, Tx2, Tx4

Tx1, Tx2, Tx4Tx1, Tx2, Tx4

Problems:
• crash

Tx3??
crashed

Why is consensus a hard problem?

Tx1

Tx2 Tx4

???

??????

Problems:
• crash
• malice Consensus protocols:

next week

Next layer: the blockchain computer

Data availability / Consensus layer

blockchain computer

DAPP DAPPDAPP
on-chain
state

Decentralized applications (DAPPs):

• Run on blockchain: code and state are written on chain

• Accept Tx from users ⇒ state transitions are recorded on chain

Next layer: the blockchain computer

Data availability / Consensus layer

blockchain computer

DAPP DAPPDAPP

end user

Top layer: user facing servers

on-chain
state

[source: the Block Genesis]

Lots of experiments:

This course

Cryptography Distributed systems
Economics

Course organization
1. The starting point: Bitcoin mechanics

2. Consensus protocols

3. Ethereum and decentralized applications

4. DeFi: decentralized applications in finance

5. Private transactions on a public blockchain
(SNARKs and zero knowledge proofs)

6. Scaling the blockchain: getting to 10K Tx/sec

7. Interoperability among chains: bridges and wrapped coins

Course organization

cs251.stanford.edu

• Homework problems, projects, final exam
• Optional weekly sections on Friday

Please tell us how we can improve …
Don’t wait until the end of the quarter

Let’s get started …

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function 𝐻: 𝑀 ⇾ 𝑇
where |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇 = 0,1 !"#

Collision resistance

Def: a collision for 𝐻:𝑀 ⇾ 𝑇 is pair 𝑥 ≠ 𝑦 ∈ 𝑀 s.t. 𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇| implies that many collisions exist

Def: a function 𝐻:𝑀 ⇾ 𝑇 is collision resistant if it is “hard” to find
even a single collision for 𝐻 (we say 𝐻 is a CRF)

Example: SHA256: {𝑥 : len(𝑥)<264 bytes}⇾ {0,1}256

details in CS255(output is 32 bytes)

Application: committing to data on a blockchain

Alice has a large file 𝑚. She posts ℎ = 𝐻(𝑚) (32 bytes)

Bob reads ℎ. Later he learns 𝑚’ s.t. 𝐻(𝑚’) = ℎ

𝐻 is a CRF ⇒ Bob is convinced that 𝑚’ = 𝑚
(otherwise, 𝑚 and 𝑚’ are a collision for 𝐻)

We say that ℎ = 𝐻(𝑚) is a binding commitment to 𝑚

(note: not hiding, ℎ may leak information about 𝑚)

Committing to a list (of transactions)

Alice has 𝑆 = (𝑚1, 𝑚2, … ,𝑚𝑛)

Goal:

- Alice posts a short binding commitment to 𝑆, ℎ = commit(𝑆)

- Bob reads ℎ. Given 𝑚𝑖, proof π𝑖 can check that 𝑆[𝑖] = 𝑚$

Bob runs verify ℎ, 𝑖,𝑚𝑖, π𝑖 ⇾ accept/reject

security: adv. cannot find (𝑆, 𝑖, 𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖, 𝑚, 𝜋) = accept where ℎ = commit(𝑆)

32 bytes

Merkle tree (Merkle 1989)

Merkle tree
commitment

ℎ

𝑚1 𝑚2 𝑚3 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values S

Goal:
• commit to list S of size n
• Later prove 𝑆[𝑖] = 𝑚$

commitment

Merkle tree (Merkle 1989) [simplified]

𝑚1 𝑚! 𝑚(𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values S

ℎ

H H H H

H H

H

Goal:
• commit to list S of size n
• Later prove 𝑆[𝑖] = 𝑚$

To prove 𝑆 4 = 𝑚% ,

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦(𝑦%

𝑦" 𝑦#

length of proof: log2 𝑛

commitment

Merkle tree (Merkle 1989) [simplified]

𝑚1 𝑚! 𝑚(𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values S

ℎ

H H H H

H H

H

To prove 𝑆 4 = 𝑚% ,

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦(𝑦%

𝑦" 𝑦#

Bob does:
𝑦2 ⇽ 𝐻(𝑚3, 𝑚4)
𝑦5 ⇽ 𝐻(𝑦1, 𝑦2)
ℎ’ ⇽ 𝐻(𝑦5, 𝑦6)
accept if ℎ = ℎ’

commitment

Merkle tree (Merkle 1989)

Thm: For a given 𝑛: if 𝐻 is a CRF then

adv. cannot find (𝑆, 𝑖,𝑚, 𝜋) s.t. S = n, 𝑚 ≠ 𝑆[𝑖],

ℎ = commit 𝑆 , and verify(ℎ, 𝑖,𝑚, 𝜋) = accept

(to prove, prove the contra-positive)

How is this useful? To post a block of transactions 𝑆 on chain
suffices to only write commit(𝑆) to chain. Keeps chain small.

⇒ Later, can prove contents of every Tx.

Merkle
tree

Tx1 Tx2 … Txn

Merkle
tree

Tx1 Tx2 … Txn

Merkle
tree

Tx1 Tx2 … Txn

Abstract block chain
blockchain

block header

⊥ Merkle
root

other
data

block header

hash Merkle
root

other
data

block header

hash Merkle
root

other
data

Merkle proofs are used to prove that a Tx is “on the block chain”

Another application: proof of work

Goal: computational problem that
• takes time Ω(𝐷) to solve, but (D is called the difficulty)
• solution takes time O(1) to verify

How? 𝐻:𝑋 × 𝑌 ⇾ {0,1,2, … , 2𝑛 − 1} e.g. 𝑛 = 256

• puzzle: input 𝑥 ∈ 𝑋, output 𝑦 ∈ 𝑌 s.t. 𝐻(𝑥, 𝑦) < 2𝑛/𝐷

• verify(𝑥, 𝑦): accept if 𝐻(𝑥, 𝑦) < 2𝑛/𝐷

Another application: proof of work

Thm: if H is a “random function” then the best algorithm
requires 𝐷 evaluations of 𝐻 in expectation.

Note: this is a parallel algorithm
⇒ the more machines I have, the faster I solve the puzzle.

Proof of work is used in some consensus protocols (e.g., Bitcoin)

Bitcoin uses 𝐻(𝑥, 𝑦) = SHA256(SHA256(𝑥. 𝑦))

Cryptography background:
Digital Signatures

How to authorize a transaction

Signatures
Physical signatures: bind transaction to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:

anyone can copy Bob’s signature from one doc to another

Digital signatures
Solution: make signature depend on document

Bob agrees to pay Alice 1$

secret signing
key (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key (pk)

‘accept’
or

‘reject’

Digital signatures: syntax
Def: a signature scheme is a triple of algorithms:

• Gen(): outputs a key pair (pk, sk)

• Sign(sk, msg) outputs sig. σ

• Verify(pk, msg, σ) outputs ‘accept’ or ‘reject’

Secure signatures: (informal)

Adversary who sees signatures on many messages of his choice,
cannot forge a signature on a new message.

Families of signature schemes
1. RSA signatures (old … not used in blockchains):

• long sigs and public keys (≥256 bytes), fast to verify

2. Discrete-log signatures: Schnorr and ECDSA
• short sigs (48 or 64 bytes) and public key (32 bytes)

3. BLS signatures: 48 bytes, aggregatable, easy threshold

4. Post-quantum signatures: long (≥600 bytes)

(Ethereum 2.0, Chia, Dfinity)

(Bitcoin, Ethereum)

details in CS255

Signatures on the blockchain
Signatures are used everywhere:
• ensure Tx authorization,
• governance votes,
• consensus protocol votes.

verify
Tx

verify
Tx

verify
Tx

data signatures

data signatures

sk1

sk2

Next lecture: the Bitcoin blockchain

END OF LECTURE

