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What is a blockchain?

Abstract answer:   a blockchain provides
coordination between many parties,
when there is no single trusted party

if trusted party exists  ⇒ no need for a blockchain

[financial systems:  often no trusted party]



Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

• A practical public append-only data structure,
secured by replication and incentives

• A fixed supply asset (BTC).    Digital payments, and more.



Blockchains: what is the new idea?

2009

Bitcoin

Several innovations:

• Blockchain computer:  a fully programmable environment
⟹ public programs that manage digital and financial assets

• Composability:  applications running on chain can call each other

2015

Ethereum



Blockchains: what is the new idea?

2009

Bitcoin

2015

Ethereum growth of 
DeFi, NFTs, DAOs 

2017 2022



So what is this good for?

(1) Basic application:  a digital currency (stored value)
• Current largest:  Bitcoin (2009),   Ethereum (2015)

• Global:  accessible to anyone with an Internet connection



What else is it good for?

(2) Decentralized applications (DAPPs)
• DeFi:   financial instruments managed by public programs 

• examples:   stablecoins,   lending,   exchanges,   ….

• Asset management (NFTs):  art,  game assets,  domain names.

• Decentralized organizations (DAOs):      (decentralized governance)

• DAOs for investment,   for donations,   for collecting art,   etc. 

(3) New programming model:   writing decentralized programs



Assets managed by DAPPs

Sep. 2022

StableCoin

Exchange

Lending

Exchange

Lending



Transaction volume

24h volume Sep. 2022

$26.6B

$12.1B

$0.88B



# Active developers since launch (as of 12/31/2021)

source: electric capital



Central Bank Digital Currency  (CBDC)

30 central banks actively working on retail CBDC

[BIS survey Jan. 2019]



What is a blockchain?

Data Availability / Consensus Layer

Execution engine  (blockchain computer)

applications (DAPPs, smart contracts)

user facing tools  (cloud servers)

Sequencer:  orders transactions



Consensus layer   (informal)

A public append-only data structure:

• Persistence: once added, data can never be removed*

• Safety: all honest participants have the same data**

• Liveness: honest participants can add new transactions

• Open(?): anyone can add data (no authentication)

Data Availability / Consensus layer

achieved by replication



How are blocks added to chain?
blockchain

I am the 
leader

6.25 BTC

verify
block

verify
block

skA

skB

skC

signed



How are blocks added to chain?
blockchain

I am the 
leader

6.25 BTC

…

skA

skB

skC

6.25 BTC



Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx1, Tx2, Tx3, Tx4

Tx1, Tx2, Tx3, Tx4Tx1, Tx2, Tx3, Tx4

The good case:
copies are consistent



Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx3, Tx4, Tx1, Tx2

Tx4, Tx3, Tx1, Tx2Tx1, Tx2, Tx4, Tx3

Problems:
• Network delays

∆-delay

∆-delay

can affect Tx order



Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2 Tx3, Tx4

Tx3, Tx4Tx1, Tx2

Problems:
• Network delays
• Network partition

network
partition



Why is consensus a hard problem?

Tx1

Tx2 Tx4

Tx1, Tx2, Tx4

Tx1, Tx2, Tx4Tx1, Tx2, Tx4

Problems:
• crash

Tx3??
crashed



Why is consensus a hard problem?

Tx1

Tx2 Tx4

???

??????

Problems:
• crash
• malice Consensus protocols:

next week



Next layer:  the blockchain computer

Data availability / Consensus layer

blockchain computer

DAPP DAPPDAPP
on-chain
state

Decentralized applications (DAPPs):   

• Run on blockchain:  code and state are written on chain

• Accept Tx from users  ⇒ state transitions are recorded on chain



Next layer:  the blockchain computer

Data availability / Consensus layer

blockchain computer

DAPP DAPPDAPP

end user

Top layer: user facing servers

on-chain
state



[source:  the Block Genesis]

Lots of experiments:



This course

Cryptography Distributed systems
Economics



Course organization
1. The starting point:  Bitcoin mechanics

2. Consensus protocols

3. Ethereum and decentralized applications

4. DeFi:  decentralized applications in finance

5. Private transactions on a public blockchain
(SNARKs and zero knowledge proofs)

6. Scaling the blockchain:   getting to 10K Tx/sec

7. Interoperability among chains:  bridges and wrapped coins



Course organization

cs251.stanford.edu

• Homework problems, projects, final exam
• Optional weekly sections on Friday

Please tell us how we can improve …
Don’t wait until the end of the quarter



Let’s get started …



Cryptography Background

(1) cryptographic hash functions

An efficiently computable function     𝐻: 𝑀 ⇾ 𝑇
where   |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇 = 0,1 !"#



Collision resistance

Def:   a collision for 𝐻:𝑀 ⇾ 𝑇 is pair  𝑥 ≠ 𝑦 ∈ 𝑀 s.t. 𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇| implies that many collisions exist

Def: a function  𝐻:𝑀 ⇾ 𝑇 is collision resistant if it is “hard” to find 
even a single collision for 𝐻 (we say 𝐻 is a CRF)

Example:    SHA256:   {𝑥 : len(𝑥)<264 bytes}⇾ {0,1}256

details in CS255(output is 32 bytes)



Application:  committing to data on a blockchain

Alice has a large file  𝑚.     She posts   ℎ = 𝐻(𝑚) (32 bytes)

Bob reads ℎ.      Later he learns  𝑚’ s.t. 𝐻(𝑚’) = ℎ

𝐻 is a CRF    ⇒ Bob is convinced that  𝑚’ = 𝑚
(otherwise,  𝑚 and 𝑚’ are a collision for 𝐻)

We say that ℎ = 𝐻(𝑚) is a binding commitment to 𝑚

(note:  not hiding,  ℎ may leak information about 𝑚)



Committing to a list    (of transactions)

Alice has    𝑆 = (𝑚1, 𝑚2, … ,𝑚𝑛)

Goal:   

- Alice posts a short binding commitment to 𝑆,  ℎ = commit(𝑆)

- Bob reads ℎ.      Given   𝑚𝑖, proof π𝑖 can check that   𝑆[𝑖] = 𝑚$

Bob runs    verify ℎ, 𝑖,𝑚𝑖, π𝑖 ⇾ accept/reject

security:    adv. cannot find  (𝑆, 𝑖, 𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖, 𝑚, 𝜋) = accept where   ℎ = commit(𝑆)

32 bytes



Merkle tree     (Merkle 1989)

Merkle tree
commitment

ℎ

𝑚1 𝑚2 𝑚3 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values  S

Goal:
• commit to list S of size n
• Later prove   𝑆[𝑖] = 𝑚$

commitment



Merkle tree     (Merkle 1989)         [simplified]

𝑚1 𝑚! 𝑚( 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values  S

ℎ

H H H H

H H

H

Goal:
• commit to list S of size n
• Later prove   𝑆[𝑖] = 𝑚$

To prove 𝑆 4 = 𝑚% ,

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦( 𝑦%

𝑦" 𝑦#

length of proof:  log2 𝑛

commitment



Merkle tree     (Merkle 1989)         [simplified]

𝑚1 𝑚! 𝑚( 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values  S

ℎ

H H H H

H H

H

To prove 𝑆 4 = 𝑚% ,

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦( 𝑦%

𝑦" 𝑦#

Bob does:
𝑦2 ⇽ 𝐻(𝑚3, 𝑚4)
𝑦5 ⇽ 𝐻(𝑦1, 𝑦2)
ℎ’ ⇽ 𝐻(𝑦5, 𝑦6)
accept if  ℎ = ℎ’

commitment



Merkle tree     (Merkle 1989)

Thm:   For a given 𝑛:      if 𝐻 is a CRF then

adv. cannot find  (𝑆, 𝑖,𝑚, 𝜋) s.t. S = n, 𝑚 ≠ 𝑆[𝑖], 

ℎ = commit 𝑆 ,  and  verify(ℎ, 𝑖,𝑚, 𝜋) = accept

(to prove, prove the contra-positive)

How is this useful?     To post a block of transactions 𝑆 on chain
suffices to only write commit(𝑆) to chain.   Keeps chain small.    

⇒ Later, can prove contents of every Tx. 



Merkle 
tree

Tx1 Tx2 …      Txn

Merkle 
tree

Tx1 Tx2 …      Txn

Merkle 
tree

Tx1 Tx2 …      Txn

Abstract block chain
blockchain

block header

⊥ Merkle
root

other
data

block header

hash Merkle
root

other
data

block header

hash Merkle
root

other
data

Merkle proofs are used to prove that a Tx is “on the block chain”



Another application:  proof of work  

Goal:   computational problem that
• takes time Ω(𝐷) to solve, but (D is called the difficulty)
• solution takes time O(1) to verify

How?       𝐻:𝑋 × 𝑌 ⇾ {0,1,2, … , 2𝑛 − 1} e.g.    𝑛 = 256

• puzzle:   input  𝑥 ∈ 𝑋,   output   𝑦 ∈ 𝑌 s.t. 𝐻(𝑥, 𝑦) < 2𝑛/𝐷

• verify(𝑥, 𝑦):    accept if    𝐻(𝑥, 𝑦) < 2𝑛/𝐷



Another application:  proof of work  

Thm:    if H is a “random function” then the best algorithm 
requires  𝐷 evaluations of 𝐻 in expectation.

Note:  this is a parallel algorithm
⇒ the more machines I have, the faster I solve the puzzle.

Proof of work is used in some consensus protocols (e.g., Bitcoin)

Bitcoin uses    𝐻(𝑥, 𝑦) = SHA256(SHA256(𝑥. 𝑦))



Cryptography background:
Digital Signatures

How to authorize a transaction



Signatures
Physical signatures:  bind transaction to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:   

anyone can copy Bob’s signature from one doc to another



Digital signatures
Solution:  make signature depend on document

Bob agrees to pay Alice 1$

secret signing 
key  (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key  (pk)

‘accept’
or

‘reject’



Digital signatures:   syntax
Def:    a signature scheme is a triple of algorithms:

• Gen():  outputs a key pair    (pk, sk)

• Sign(sk, msg)  outputs sig.  σ

• Verify(pk, msg, σ)  outputs ‘accept’ or  ‘reject’

Secure signatures:   (informal) 

Adversary who sees signatures on many messages of his choice,
cannot forge a signature on a new message.



Families of signature schemes
1. RSA signatures (old … not used in blockchains):

• long sigs and public keys (≥256 bytes),    fast to verify

2. Discrete-log signatures:   Schnorr and  ECDSA
• short sigs (48 or 64 bytes) and public key (32 bytes)

3. BLS signatures:  48 bytes,   aggregatable,   easy threshold

4. Post-quantum signatures:    long  (≥600 bytes)

(Ethereum 2.0, Chia, Dfinity)

(Bitcoin, Ethereum)

details in CS255



Signatures on the blockchain
Signatures are used everywhere:
• ensure Tx authorization,
• governance votes,
• consensus protocol votes.

verify
Tx

verify
Tx

verify
Tx

data signatures

data signatures

sk1

sk2



Next lecture:   the Bitcoin blockchain

END  OF  LECTURE


