CS251: Cryptocurrencies and Blockchain Technologies Fall 2022

Assignment #4

Due: 11:59pm on Tuesday, Dec. 6, 2022
Submit via Gradescope (each answer on a separate page) code: DJ66V 3

Problem 1. In Lecture 15 we defined the concept of a polynomial commitment scheme (PCS). In this
exercise we will develop an important application for a PCS. First, let us briefly review what is a
PCS. A PCS is a tuple of four algorithms: setup, commit, prove, and verify. The PCS is initialized
by running setup(d) to obtain some public parameters pp. Now, Carol (the committer) has a
univariate polynomial f € F,[X] of degree at most d. Carol can commit to f by sending to Roger
(the recipient) a commitment string com; obtained by running commit(pp, f). Later, Roger can
choose some u € F), and ask Carol to send him v := f(u) € F, along with a proof m,, that v
is indeed the evaluation of the committed polynomial at u. Carol obtains the proof by running
Prove(pp, (u,v), f). Roger can verify the proof by running verify(pp, (comf,u,v),ﬂuw) which
outputs accept or reject. If verify outputs accept then Roger is convinced that the committed
polynomial f satisfies f(u) = v and that f is a univariate polynomial of degree at most d. There
are PCS constructions where com; and 7, , are as short as 200 bytes each, no matter what d is.

Next, suppose Carol has a set S = {s1,...,s,} C F,. Carol wants to commit to S so that later,
given some s € IF,,, if s is in S then she can convince Roger of that fact (an inclusion proof), and
if s is not in S then she can convince Roger of that fact (an exclusion proof). One solution is
to commit to S using a Merkle tree, where the Merkle root is the commitment to .S. Then, for
s € S she can send Roger a Merkle proof of size O(logn) to convince Roger that s is in S.

Let’s see how we can do better using a PCS.

a. Show how Carol can use a PCS to commit to the set S so that later, when Roger sends an
s € IFp, Carol can provide a constant size inclusion or an exclusion proof for s that convinces
Roger. Explain how Carol commits to S, and how she constructs the exclusion or inclusion
proof for a given s € F),.

Hint: consider having Carol use the polynomial fg(X) := (X —s1) - (X — sp) € Fp[X].

b. For a large n, the inclusion/exclusion proofs in part (a) are already shorter than a Merkle
proof. Let’s do even better. Suppose Roger sends to Carol uy,...,u; € I, and all of them
happen to be in S. Carol wants to convince Roger of that fact. Using a Merkle tree, Carol
would need to send over a proof of size O(klogn) — one Merkle inclusion proof for each wu;.
Show that using the commitment scheme from part (a), Carol can convince Roger using a
constant size proof (independent of n and k). You may assume that n/p is negligible.

Hint: Both Carol and Roger can construct the polynomial g(X) := (X —uy)--- (X — ug).
Carol will then prove to Roger that g(X) divides f¢(X). Try doing so using the technique
used in Lecture 15 slide 26. Explain why your short inclusion proof convinces Roger.

Discussion: developing this further leads to a data structure called a Verkle tree, which has much
shorter proofs than a Merkle tree. Ethereum may at some point switch to using Verkle trees.


https://cs251.stanford.edu/lectures/lecture15.pdf
https://cs251.stanford.edu/lectures/lecture15.pdf#page=26

Problem 2. An insecure 3-party payment channel. Three parties, A, B, and C, are constantly
making pairwise payments and thus design a 3-party Bitcoin payment channel based on the
bidirectional payment channel we saw in lecture 16. To establish the channel the three parties
create a 3-out-of-3 multisig address that is bound to the public keys of A, B, and C, and all
three send some initial funds to that address. Once the channel is established, they can transact
without ever touching the blockchain. For example, when B wants to pay A using the channel,
the following happens without touching the blockchain:

e Party B sends to A a hashed timelocked transaction T that is already signed by B and C.
The transaction has three outputs:

— one immediate output for B whose value is B’s current balance in the channel,

— one immediate output for C' whose value is C’s current balance in the channel, and

— one output whose value is A’s current balance in the channel, but with a hashed timelock
spending rule: A can spend the output seven days after the transaction is posted, but
either B or C' can spend this output immediately if they have a hash preimage x initially
known only to A.

As in the two party payment channel, if A wants to close the channel she will sign this
transaction T4 and post it. B and C will collect their balances immediately, and A will
collect her balance after seven days. However, if A wants to keep using the channel, then
when she later pays B, she would first send the preimage = to B and C, thereby effectively
invalidating the transaction Tx. Indeed, it would no longer make sense for A to post this
stale transaction T'4: if she did, then either B or C' would immediately use x to spend A’s
timelocked output, and A would lose her balance in the channel. This means that she can
no longer close the channel in its old pre-payment state. A would then obtain from B and
C a new transaction 77 (with a similar structure as T4) that lets her close the channel in
its new state, if she wants.

e Parties B and C each receive from their peers a similar transaction with three outputs
representing the current balances in the channel. For example, party B’s transaction has
one output that is immediately available for A, one output that is immediately available
for C', and one output that is hashed timelocked for B as above. C' receives a similar
transaction.

Let’s show that while this general approach is secure for a two-party payment channel, it is
completely insecure for three parties. In particular, two colluding parties can steal funds from
the third. To see how, suppose the channel has a total of 100 BTC locked up. At some time
in the past, 90 BTC belonged to A and 5 BTC belonged to B and C each. Currently 80 of the
BTC belong to C and 10 BTC belong to A and B each. Show that A and B can collude to steal
75 BTC that currently belong to C, and split the loot between them. You may assume that A
and B can post successive transactions before C' can react.

Hint: think about what happens if A posts the stale transaction that lets her close the channel
at the time when 90 of the BTC belonged to her.


https://cs251.stanford.edu/lectures/lecture16.pdf

