CS251 Fall 2020
(cs251.stanford.edu)

Large Scale Consensus:

Availability/Finality, Randomness Beacons, VDFs

Benedikt Blinz

Blockchain Consensus

Consistency (Safety)
For all honest nodes i,j € [n] and times t, t':
Either list L;(¢) is a prefix of L;(t’) or vice versa

A —Liveness

There exists function T such that:

If any honest node receives tx at time t then Vi tx €
Li(t + T(A, n)). At time t + T(A, n) tx is finalized
A = maximum network delay

Two additional features

Finality
Anyone can verify that a transaction is finalized.
-> There are no deep forks

Dynamic —Availability

Chain makes progress even under network partitions.
->The chain keeps growing even if it forks

->Nodes can leave and join the network

Recap: Nakamoto Consensus

BH,
Time

Root

Nakamoto Properties

* Anonymous participation

* Nodes can join/leave
* Very scalable
* Dynamic availability

* Leader not known beforehand
* Makes bribing harder

* Up to 7% corruptions

 Slow

 Even when everyone
is honest

* Resource intensive
* PoS based possible
* Long forks possible

* No guarantees under
long delays

* No finality

Recap Byzantine Consensus

* Fast
* Partially Synchronous
* Halts under network partition
* Provides finality
* Known committee
* (must communicate)
* Large committee
* Large communication
* Predictable Leader

24y

* Bribing <=

Nakamoto vs BFT under network outage

Ledger length

Dynamic availability Ledger length Finality

T ...
No partition &
high participation

~ No partition &
high participation

¥

Network partition

o

Network partition

|Low participation | Low participation

NOT SAVE Y —— NOTLIVE

Time Time

\ [EwakeJnonest nodes S /
Nakamoto W’“ | [M\ BFT protocol

Consensus 67%

DYNAMIC /‘ e \
PARTICIPATION HIGH
NETWORK LOW PARTICIPATION From

PARTITIONS PARTICIPATION [NTT21]

Availability and FiNality cu. i o

Ledger length Ledger length

e, 1
No partition &
high participation

=
No partition &
high participation

Network partition

N

Low participation

Network partition

I

| Low participation

Dynamic Finality
availability

|s there a consensus protocol that provides both availability and finality?

Resolving the dilemma

Ledeer Provides
BT finality
tx{,tx,, ...
S - H
Ledger 9>
A1 availability

Prefix condition: Ledger; < |Ledger,

Ebb and Flow protocol i

How do we

build this?

Ledger length

No partition &
high participation

Network partition

Low participation ' |

T

Available ledger
.| —— Finalized prefix

Building Ebb and Flow [NTT21]

&3 snapshot

txy, .. [> [> Ledger. [> u [> Liﬁe&

Ledger,

“Snap and Chat”
construction

“Sanitized”
availability ledger
Ensures prefix

Ethereum currently uses PoW Nakamoto Consensus
Since last year there exists a separate PoS chain
The two chains will merge and PoW will be deactivated

PoS chain uses a snap and chat style protocol

 12s block time Q
e 1 epochis 32 blocks (6.4 minutes)

* Finalization in 2 epochs (~¥13 minutes) ethereum2.0

Proof of Stake

Replace Sybill resistance of POW with money

Staking

Stakes coins (through transaction)

Can’t use staked coins for anything else!

Incentives: Get’s rewards/fees. Can use punishments/slashing™

Voting Power: Proportional to relative stake

Scaling Byzantine Consensus

Sub select a set of
participants to run BC

Many stake weighted participants

c
O
o

J
9

Q

(7))

()

Q
o
=

&

=

O
oI

G
@
i)
Q
0]
(qv)
i)
&)
£
()
0]
o)
>
Vp)

O
(aa)]
-
-)
L -
O
s
wn
i)
C
(40
Qo
O
)
| -
(q¢)
o

What fraction of committee will be corrupted?

Committee selection

Sub committee roughly looks like general population

4500
- . A_
4000 5:107-9
© 3500
N
® 3000
(0]
£ 2500
£
€ 2000
S 1500
1000
500
0
,\‘b ,\‘b ch 951’ va Cb‘b ,_.b‘b Q>Q

% of Honest Users

100s of nodes >1000s of nodes
>67% Honest 80% Honest

Random Selection

How to choose committee?

Proposal:
« Each staker computes H(block number,PK)
 If H(block number,PK)< target
 Become part of committee for round
« |If BC succeeds add Block to chain
« Target such that ~1000 nodes win

Broken! Attacker can choose PK such that they win

Randomness beacon

An ideal service that reqularly publishes random
value which no party can predict or manipulate

01010001 01101011 10101000 11110000 p 3

Random Selection with Beacon

How to choose committee? 2.
l
l

H

Each Block wait for beacon randomness

Each staker computes H(bleck-rumber beacon, PK) |
If H(bleck-number beacon,PK)< target

 Become part of committee for round

If BC succeeds add Block to chain

Beacon unpredictable so can’t choose PK

Even better: Compute deterministic (BLS) signature on Beacon
and use as ticket (prevents others from seeing who won) VRF

Leader Selection

We can also make leader election
random with a beacon!

22y Can make BCresilient vs.

adversary that corrupts adaptively
(Bribing)

See Algorand reading

“Public displays”
can be corrupted

A beacon can be
used to run a fair
lottery

Lotteries

T
a4 3312 21

27

How to build a Beacon?

NIST (NSA) Beacon

Loophole-free Bell tests

result
b

result
a

measurement °
A]

choice of
measurement
i

measurement

B

i

choice of
measurement
j

~300m

Beacon Record

Version:
Frequency:
Time:

Seed Value:

Previous Output:

Signature:

Output Value:

Status:

Version 1.0
60 seconds
08/13/2014 12:36 pm (1407947760)

27D7280A657B5EOA99721D47E21A2276C80B5CDFDCA605E397D8BBAAS1C24A06
40CC9C6EEB83BBB3D837011CASB6CAO8FADC78E2BBD36C75CC971757F82068A4

2F2DE0662028D3C4D6F8DD7936262D9AFBDCFDOBD14BC733E257B14F48881A99
206BBC9429FD9BFE719551EAB840CEE8157ACAEBC80342CE4B66443C0859E216

986C73CF88056635C5E0A018358D0D91CF10A2F2B16C8B8D91AA34BOA04D103B
CFF347B714DAC343D5838E07FFDFC49BE6E39811350DC0193D17CFE1BC4EDBSB
7E3AC425EF7840EF4E549D66DOFOFB383DD9F29DFDAEF2E520B8606A4F6C55FB
3B766CC9D66494FAC1FE8983D58525224778F5AE3C3727FFOAC71DCE3B30E33B
A6CFD767EE3D299A5324E371AFB49AEC46F88D6DCAE6FCBF8B93D461B84C59CB
7577BE9A63FEODB7C83944B545C501A4C787F87B15A0F8CFD8FB7FC191F677FB
C4FB1CO7E47CO1BODO9OBACS564FEAFBDOE24D9OFO1DE2B2E66A31E7012CACD42
30EA94EF415C8F2B1751F09BD8255A2C142CE2C8C69587EE6CE788273E55AFA7

15E3B39DA53DE7C20A60D3EC2DECC2C6B2DB65FEO7B1188D666A8A8476E4910F
592FB3F8D49E4A01E5624FDF161A698EBOAAS2515A79A46F3AFA1B8D7CEBB320

0: Normal

Collect randomness approach

Mildly
" " fe 2 synchronous
Blockchain
output beacon =Hash(r, || r, || - |]r,) € {0,1}*>°

Problem: Zoe controls the final seed !!

25

Commit and Reveal

R1: H(r,)| H(r, H(r.) H(r.) Mildly
R2: ry r. r, synchronous
Blockchain
output beacon =Hash(r, || r, || - |]r,) € {0,1}*>°

Problem: Beacon can be biased by not opening!!
K parties, k bits of influence 26

Verifiable Delay Function (VDF)

Function — unique output for every @%
input
Delay — can be evaluated intime T oS
cannot be evaluated in time (1-€)T @
-

on parallel machine

Verifiable — correctness of output can
be verified efficiently

27

Security Properties (Informal)

* Setup(A, T) — public parameters pp

* Eval(pp, X) — outputy, proofrm (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, ¥, It) = Verify(pp, x, y’, I’) = yes

then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time(A) < o (T),

eg.o(T)=1—-¢eT then Pr[A(pp, X)=y] < negligible(A) e

Collect randomness approach

Mildly
" " fe 2 synchronous
Blockchain
output beacon =Hash(r, || r, || - |]r,) € {0,1}*>°

Problem: Zoe controls the final seed !!

29

Solution: slow things down with a VDF pws

Public Bulletin Board (blockchain)

l

Hash(r, || ry || --- Il v,) € {0,1}*°

L» — beacon, 1T

30

Solution: slow things down with a VDF pws

VDF delay > max-A-time(Alice — Zoe)

Uniqueness: ensures no ambiguity about output

Public Bulletin Board (blockchain)

l

Hash(r, || ry || --- Il v,) € {0,1}*°

L» — beacon, 1T

31

VDF Beacon in a blockchain

_T: A

1*@”@‘ / %
LT > f@\?ﬁ?

Initializes VDF Beacon Committee i+1

Committee i

How to build a VDF

Choose a “Group of unknown order”:

* Pick two primes p,q, Let N =p-q

 Computing ng mod N takes T repeated squarings
 Can’t be parallelized
* Unless factorization of N is known

* Let H be a hash function that maps to [0, N — 1]

Eval(pp, x): output H(x)?' How to verify?

VDF Proof

Efficiency: Bob runs in time O(log(T))

)2

Security: If Bob accepts then y = H(x

Computesy = H(x)ZT Takes asinput x,y,
Produces a small proof Outputs “accept” or “reject”
Sends y, T to Bob

Changing the rules/Governance

* Protocol upgrades
 New Transaction types (Add Smart Contracts)
 New Consensus (Switch from PoW to PoS)
* Increase Blocksize (1MB) Bitcoin/Bitcoin Cash

0

Bitcoin BitcoinCash

« How do we reach consensus on these things

Soft/Hard Fork Activiation

Hard Fork)
oy

. Activated
Soft Fork (Backwards compatible)

e Technically the simplest
* New protocol version (new software)
* Everyone upgrades

« New protocol incompatible with old protocol
* Everyone needs to upgrade
e Ethereum/Zcash/Monero do this semi regularly
* Contentious Hard Fork: Both versions exists

* Need to worry about replay attacks

Soft Forks

Rules become more restrictive
* Disabling old OP_CODES
* Further specifying signatures (ECDSA)

Old clients still work but their transactions may get
rejected

If >50% upgrade then new rules enforced
Segregated Witness was a contentious soft fork

Case Study: Bitcoin vs Bitcoin Cash

e Bitcoin Blocks are limited to 1MB
* ~Roughly 7 tx/s "
* Proposal to increase block size
* Opinion 1: “Larger blocks increase network gitcoin BitcoinCash
delay, decreases security, transactions should
be moved off the chain.”
* Opinion 2: “Bitcoin can support more
transactions we should increase block size.”
e Splitin 2017: Every Bitcoin user got same
amount of Bitcoin Cash (sum is less than sum of
parts).

Case Study: Ethereum vs. Classic

Ethereum had a smart contract called DAO
Smart contract had a bug
July 2016, S50 Million USD of Ether stolen
Proposal to hard fork Ethereum and return funds
Stake vote was held

 87% in favor but only 5.5% participated

e 4 days later Ethereum forked

e “Classic” is the old version including stolen funds
Ethereum Foundation owns trademark and branded Fork Ethereum

Later more divergence: Ethereum will move to PoS, Classic stay on
PoW

END OF LECTURE

Next lecture:

Ethereum and Smart Contracts

VDF PrOOf [Wesolowski’18]

Computes
q,r s.t.

2l =q-l+7
and 0 <r<l

(r,y, x> =y

y

Random A bit prime |

T

x4

Computes
*r = 2T mod
Checks:

Tly” = y

xlym = 52"

42

Security intuition

L‘uumn—A Must compute

y = (2)

Taking roots is
hard

Random A bit prime |

See reading
Computes T = x4 Compurtes
q,r s.t. *1r=2" mod
2l =q-l+7 Checks:
and 0 <r < nlx" =y

XLy = 520 @

VDF PrOOf [Wesolowski’18]

ey P =y

y

l=H(x,y,T) € Primes

Computes — Computes

q,rs.t. : *r =2T mod |

2l =qg-1+7 Checks: | = H(x,y,T)
and 0 <r<| nlx" =y

xlyT = 520

