
Large Scale Consensus:
Availability/Finality, Randomness Beacons, VDFs

CS251 Fall 2020
(cs251.stanford.edu)

Benedikt Bünz

Blockchain Consensus
Consistency (Safety)
For all honest nodes 𝑖, 𝑗 ∈ [𝑛] and times 𝑡, 𝑡′:
Either list 𝐿! 𝑡 is a prefix of 𝐿" 𝑡′ or vice versa
𝚫 −Liveness
There exists function 𝑇 such that:
If any honest node receives 𝑡𝑥 at time 𝑡 then ∀𝑖 𝑡𝑥 ∈
𝐿! 𝑡 + T Δ, n . At time 𝑡 + T Δ, n 𝑡𝑥 is finalized
Δ = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑒𝑙𝑎𝑦

Two additional features
Finality
Anyone can verify that a transaction is finalized.
-> There are no deep forks

𝐃𝐲𝐧𝐚𝐦𝐢𝐜 −Availability
Chain makes progress even under network partitions.
->The chain keeps growing even if it forks
->Nodes can leave and join the network

Recap: Nakamoto Consensus

Prev
Time

Nonce
Root

Genesis
H

coinbase Tx

BH2

BH2
Time

Nonce
Root

BH1

HPrev
Time

Nonce
Root

H

BH2 BH3
Time

Root

H

BH3

BH3
Time

Root

Nakamoto Properties
• Anonymous participation
• Nodes can join/leave
• Very scalable
• Dynamic availability

• Leader not known beforehand
• Makes bribing harder

• Up to ½ corruptions

• Slow
• Even when everyone

is honest
• Resource intensive
• PoS based possible

• Long forks possible
• No guarantees under

long delays
• No finality

Recap Byzantine Consensus
• Fast
• Partially Synchronous
• Halts under network partition
• Provides finality
• Known committee

• (must communicate)
• Large committee

• Large communication
• Predictable Leader

• Bribing 💸

Nakamoto vs BFT under network outage

Nakamoto
Consensus

BFT protocol

FinalityDynamic availability

NOT SAVE NOT LIVE

DYNAMIC
PARTICIPATION

NETWORK
PARTITIONS

HIGH
PARTICIPATIONLOW

PARTICIPATION
From
[NTT21]

Availability and Finality [Gilbert, Lynch ’02,Lewis-Pye, Roughgarden ‘20]

Is there a consensus protocol that provides both availability and finality?

Dynamic
availability

Finality
NO!

Resolving the dilemma

𝑡𝑥!, 𝑡𝑥", … Consensus
Protocol

LedgerF

LedgerA

Provides
finality

Has
availability

LedgerFPrefix condition: LedgerA<

Ebb and Flow protocol [NTT21]
Ebb-and-FlowFinalized How do we

build this?

Building Ebb and Flow [NTT21]

𝑡𝑥!, … Nakamoto LedgerI

snapshot

BFT LedgerF

LedgerA

“Sanitized”
availability ledger
Ensures prefix

“Snap and Chat”
construction

Ethereum 2.0

Ethereum currently uses PoW Nakamoto Consensus
Since last year there exists a separate PoS chain
The two chains will merge and PoW will be deactivated

PoS chain uses a snap and chat style protocol

• 12s block time
• 1 epoch is 32 blocks (6.4 minutes)
• Finalization in 2 epochs (~13 minutes)

Proof of Stake
Replace Sybill resistance of PoW with money

💸 Stakes coins (through transaction)
Staking
pool

💸💸💸💸💸
Voting Power: Proportional to relative stake

Can’t use staked coins for anything else!

Incentives: Get’s rewards/fees. Can use punishments/slashing

Scaling Byzantine Consensus
Sub select a set of
participants to run BC

Many stake weighted participants

Committee selection
Sub select a set of
participants to run BC

What fraction of committee will be corrupted?

Committee selection

>1000s of nodes
80% Honest

100s of nodes
>67% Honest

Sub committee roughly looks like general population

Random Selection

How to choose committee?

Proposal:
• Each staker computes H(block number,PK)
• If H(block number,PK)< target

• Become part of committee for round
• If BC succeeds add Block to chain
• Target such that ~1000 nodes win

Broken! Attacker can choose PK such that they win

Randomness beacon

20

An ideal service that regularly publishes random
value which no party can predict or manipulate

01010001 01101011 10101000 11110000

Random Selection with Beacon

How to choose committee?

• Each Block wait for beacon randomness
• Each staker computes H(block number beacon, PK)
• If H(block number beacon,PK)< target

• Become part of committee for round
• If BC succeeds add Block to chain

Beacon unpredictable so can’t choose PK
Even better: Compute deterministic (BLS) signature on Beacon
and use as ticket (prevents others from seeing who won) VRF

Leader Selection

We can also make leader election
random with a beacon!

Can make BC resilient vs.
adversary that corrupts adaptively
(Bribing)

See Algorand reading

Lotteries

``Public displays”
can be corrupted
A beacon can be
used to run a fair
lottery

How to build a Beacon?
NIST (NSA) Beacon

Collect randomness approach
Alice Bob Claire Zoe

Blockchain

ra rb rc rz

output beacon = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Zoe controls the final seed !!
25

Mildly
synchronous

Commit and Reveal
Alice Bob Claire Zoe

Blockchain

H(ra)

output beacon = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Beacon can be biased by not opening!!
K parties, k bits of influence 26

Mildly
synchronous

H(rb) H(rc) H(rz)R1:
R2: ra rb rc rz

Verifiable Delay Function (VDF)

27

• Function – unique output for every
input

• Delay – can be evaluated in time T
cannot be evaluated in time (1-𝜖)T
on parallel machine

• Verifiable – correctness of output can
be verified efficiently

𝐹

Verifier

𝑥, 𝑦, 𝜋
𝐹 𝑥
= 𝑦

Security Properties (Informal)

“Soundness”: if Verify(pp, x, y, π) = Verify(pp, x, y’, π’) = yes
then y = y’

“𝜎-Sequentiality”: if 𝐴 is a PRAM algorithm, time(A) ≤ 𝜎(𝑇),
e.g. 𝜎(𝑇) = 1 − 𝜖 𝑇 then Pr[A(pp, x) = y] < negligible(λ)

• Setup(λ, T) ⟶ public parameters pp

• Eval(pp, x) ⟶ output y, proof π (requires T steps)

• Verify(pp, x, y, π) ⟶ { yes, no }

28

Collect randomness approach
Alice Bob Claire Zoe

Blockchain

ra rb rc rz

output beacon = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Zoe controls the final seed !!
29

Mildly
synchronous

Solution: slow things down with a VDF [LW’15]

Alice Bob Claire Zoe

Public Bulletin Board (blockchain)

ra rb rc rz

Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

VDF beacon, πH
30

Solution: slow things down with a VDF [LW’15]

Public Bulletin Board (blockchain)

Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

VDF beacon, πH

VDF delay ≫ max-Δ-time(Alice ⟶ Zoe)

Uniqueness: ensures no ambiguity about output

31

VDF Beacon in a blockchain

Block i

Committee i Initializes VDF Beacon Committee i+1

Block i+1

How to build a VDF

Choose a “Group of unknown order”:
• Pick two primes p,q, Let 𝑁 = 𝑝 ⋅ 𝑞

• Computing 𝑔#! 𝑚𝑜𝑑 𝑁 takes T repeated squarings
• Can’t be parallelized
• Unless factorization of N is known

• Let 𝐻 be a hash function that maps to [0, 𝑁 − 1]

33
Eval(pp, x): output 𝐻 𝑥 "! How to verify?

VDF Proof

Computes y = 𝐻 𝑥 "!

Produces a small proof 𝜋
Sends y, 𝜋 to Bob

Takes as input 𝑥, 𝑦, 𝜋
Outputs “accept” or “reject”

Efficiency: Bob runs in time O(log(T))

Security: If Bob accepts then 𝑦 = 𝐻 𝑥 "!

Changing the rules/Governance
• Protocol upgrades
• New Transaction types (Add Smart Contracts)
• New Consensus (Switch from PoW to PoS)
• Increase Blocksize (1MB) Bitcoin/Bitcoin Cash

• How do we reach consensus on these things

Soft/Hard Fork Activiation

V 2.0 V 2.0 V 1.0 V2.0 V2.0

Activated

V2.0 V2.0 V2.0

V1.0 V1.0

V 1.0

V2.0 V2.0 V2.0

Hard Fork

Soft Fork (Backwards compatible)

Hard Forks
• Technically the simplest
• New protocol version (new software)
• Everyone upgrades
• New protocol incompatible with old protocol
• Everyone needs to upgrade
• Ethereum/Zcash/Monero do this semi regularly
• Contentious Hard Fork: Both versions exists
• Need to worry about replay attacks

Soft Forks
• Rules become more restrictive
• Disabling old OP_CODES
• Further specifying signatures (ECDSA)

• Old clients still work but their transactions may get
rejected

• If >50% upgrade then new rules enforced
• Segregated Witness was a contentious soft fork

Case Study: Bitcoin vs Bitcoin Cash
• Bitcoin Blocks are limited to 1MB
• ~Roughly 7 tx/s
• Proposal to increase block size
• Opinion 1: “Larger blocks increase network

delay, decreases security, transactions should
be moved off the chain.”

• Opinion 2: “Bitcoin can support more
transactions we should increase block size.”

• Split in 2017: Every Bitcoin user got same
amount of Bitcoin Cash (sum is less than sum of
parts).

Case Study: Ethereum vs. Classic
• Ethereum had a smart contract called DAO
• Smart contract had a bug
• July 2016, $50 Million USD of Ether stolen
• Proposal to hard fork Ethereum and return funds
• Stake vote was held

• 87% in favor but only 5.5% participated
• 4 days later Ethereum forked
• “Classic” is the old version including stolen funds

• Ethereum Foundation owns trademark and branded Fork Ethereum
• Later more divergence: Ethereum will move to PoS, Classic stay on

PoW

Next lecture:
Ethereum and Smart Contracts

END OF LECTURE

𝑥, 𝑦, 𝑇 : 𝑥"! = 𝑦

y

Random 𝜆 bit prime l

Computes
q,r s.t.
20 = 𝑞 ⋅ 𝑙 + 𝑟
and 0 ≤ 𝑟 < 𝑙

𝜋 = 𝑥1 Computes
𝑟 = 20 𝑚𝑜𝑑 𝑙
Checks:

𝜋2𝑥3 = 𝑦
𝑥1⋅2𝑥3 = 𝑥"!

VDF Proof [Wesolowski’18]

log(𝑇)steps

42

𝑥, 𝑦, 𝑇 : 𝑥"! = 𝑦

y

Random 𝜆 bit prime l

Computes
q,r s.t.
20 = 𝑞 ⋅ 𝑙 + 𝑟
and 0 ≤ 𝑟 < 𝑙

𝜋 = 𝑥1 Computes
𝑟 = 20 𝑚𝑜𝑑 𝑙
Checks:

𝜋2𝑥3 = 𝑦
𝑥1⋅2𝑥3 = 𝑥"!

Security intuition

43

Must compute 𝜋

s.t. 𝜋 = 5
6"

#
$

Taking roots is
hard
See reading

𝑥, 𝑦, 𝑇 : 𝑥"! = 𝑦

y

Computes
q,r s.t.
20 = 𝑞 ⋅ 𝑙 + 𝑟
and 0 ≤ 𝑟 < 𝑙

𝜋 = 𝑥1, 𝑙 Computes
𝑟 = 20 𝑚𝑜𝑑 𝑙
Checks: 𝑙 = 𝐻 𝑥, 𝑦, 𝑇

𝜋2𝑥3 = 𝑦
𝑥1⋅2𝑥3 = 𝑥"!

VDF Proof [Wesolowski’18]

44

𝑙 = 𝐻 𝑥, 𝑦, 𝑇 ∈ 𝑃𝑟𝑖𝑚𝑒𝑠

