CS251 Fall 2021
(cs251.stanford.edu)

Recursive SNARKs

Benedikt Blinz

Recap: Non-interactive Proof Systems

A non-interactive proof system is a triple (S, P, V):

* S(C) — public parameters (S,, S,) for prover and verifier

(Sp, Sy) is called a reference string
* P(S,, x,w) = proof

 V(S,, x,T) = accept or reject

Recap: zkRollup

Today: every miner must verify every posted Tx gem@VETRi{Y

verify all Tx _ \
= short proof It Y

8- P
-
3 - olup server \@ W

verifying proof is much easier than verifying 10K Tx

Recap: zkRollup

Today: every miner must verify every posted Tx gem@VETRi{Y
¢

d

verify all Tx _ \
= short proof Tt Y

§- F TR §
£ =N

verifying proof is much easier than verifying 10K Tx

verify Y
1 X

I Rol\la\p\ Server

Rollup with many coordinators

* Multiple servers
e Each responsible for subset of users (no overlaps)
* Rollup aggregator (can be one of the servers)

* Rollup aggregator combines summaries (balance table) and
creates one proof that

* How can we combine proofs?

* Trivial solution:
* All servers forward all Tx
* Rollup aggregator creates one SNARK
* Does not save work

Recap: Non-interactive Proof Systems

A non-interactive proof system is a triple (S, P, V):

* S(C) — public parameters (S,, S,) for prover and verifier

(Sp, Sy) is called a reference string
* P(S,, x,w) = proof

 V(S,, x,T) = accept or reject

SNARK of a SNARK Proof

A non-interactive proof system is a triple (S, P, V):

* S(C) — public parameters (S,, S,) for prover and verifier

(Sp, Sy) is called a reference string
* P(S,, x,w) = proof

 V(S,, x,T) = accept or reject

SNARK of SNARK
‘ How can we aggregate proofs? \

S(C) — SP)SV
T < P(Sp, x,w)

Now write a circuit C' that verifies :
* Input x’ is x

e Witnessw'ism

o C'(x',w’)=0iff V(Sy, m, x)=Accept

Finally:
S(C,) - S,PI S,V
T« P(S'p,x',w") ’

SNARK of SNARKs

‘ How can we aggregate proofs? \

S(C) - Sp,Sy
1y < P(Sp,x1,wy) y « P(Sp, x5, wy)

Now write a circuit C' that verifies m:

* Input x"is x| |x,
* Witness w'is q ||,
o C'(x',wW)=0iff V(Sy, x{, m;)=Accept and V(Sy, x,, T,)=Accept
Finally:
S(C) - S'p, Sy
m « P(S'p,x',w)

10

SNARK of SNARKs

* Note that C’ depends only onV and S, (not on C,,C,)

* We can express V as a circuit:

0 = “Accept”

A

w' = ' is independent of w{, w,
|C’|=2*|V| < |2* C]

Building SNARK of SNARKSs

* How bigis C’?
 Comparison |SHA256 circuit| = 20k gates

* First SNARK of SNARK ~1 million gates with trusted
setup (BCTV14)

* Today less than 50k gates (Halo, BCLMS20, Nova)

* no trusted setup
* Independent of inner SNARK circuits!

Rollup with many coordinators

* Let root; be the Merkle Tree Root of summary i
root

Build one root from summaries

Merkle tree

root; 1oot; root; root,

* Sy,Sp « S(Cr) // Cg rollup circuit

C, k2 (X = Sy, root; w = rooty,root; ..., Ty, Ty, ...):
V(Sy, x = root;, ;) for all i and root=MT(root;s)

100 DAI pool: Treasury: 300 DA
each coin = 100 DAI coins nfl
Withdraw coin #3 Merkle f
to addr A: root 2
b
—nf _proofm, A B2bytes) | nf
(over Tor) next =5
«—100DA] nullifiers
to address A contract state

Hll HZ: R— {011}256

Merkle
root

C,C,C;C,0..0
l_'_'

nf and reveal nothing about which coin was spent.

public list of coins
... but observer does not
know which are spent

But, coin #3 cannot be spent again, because nf = H,(k’) is now nullified.

zk3-Rollup (tornado cash rollup)

®

N

Rollu;; Server 2

* Users create SNARK for TC Circuit Cr¢
* Sy, S5p <« S(Cr¢)
* Tirc (_P(Sp,tx,W)
* Rollups create SNARKs for Cr = V; V(Sy, tx;, m;) = “accept”
o txroot = MT(txq, ..., tx;,)
* ' =7rcall - Tren
* Sy, Sp’ < S(Cgr)
« mp = P(Sp, txroot, ")
* Rollup Aggregator creates SNARK for C4 = V; V(Sy,/',root;, g ;)
* Sy, Sp <« S(Cy)
 root = MT(rooty, ...,rooty)
© g =Tgall - ||ITr K
1w, = P(Sp,root, mR)

Enhancing transactions with SNARKSs

We’ve seen that private transactions require zero-
knowledge proofs

Add ZK-SNARKSs to every transaction

Level 1 coordinators verify transaction by verifying
transaction ZK-SNARKSs

Additionally, we can have more complicated transactions
(Smart Contracts)

* Transaction verification is constant time regardless of
proof complexity

Can we also hide the smart contract?

ZEXE private execution

ZEXE is a model of computation (like UTXOs/Scripts
or Accounts/EVM)

The basic unit is a record (similar to a UTXO)

Every transaction consumes records and creates
records

Universal predicate: Prevents double spends
Birth predicate: Says how a record can be created
Death predicate: Says how a record can be consumed

ZEXE private execution

Record 1:
Birth predicate 1
Death predicate 1

Record 3:
Payload 1 > Birth predicate 3
Death predicate 3
Record 2: Payload 3

Birth predicate 1
Death predicate 1
Payload 1

TX checks that Record 1 and Record 2 have not been spent
Birth3(R1, R2,R3) and Death1(R1, R2,R3) and Death2(R1,R2,R3)

ZEXE private execution

e Universal predicate (similar to tornado cash)

 Uses nullifiers

* Checks that nullifier=H(sk,records) is properly

created
Merkle

* Checks that nullifier only appears once root
* Prevents double spends

R,R, R;..000

Implementing assets with ZEXE

* Record payload has a value v and an asset id
* Birth predicate
* Defines the token
* New record id needs to match consumed predicate ids
* New record value is sum of inputs
* Death predicate
e Defines the SCRIPT
* E.g. spendable by signature
* E.g. Spendable by multisigature + preimage of hash

Implementing smart contracts with ZEXE

* Record payload is state of smart contract, smart
contract instance id

* Birth predicate
* Either creates smart contract or

* One of the inputs needs to be the old smart
contract record

* Death predicate
* Defines the smart contract logic

ZEXE game of Chess

Record payload is state of smart contract, smart contract
instance id

Birth predicate

 Starts new game (and assigns pks to black/white) or
* One of the inputs needs to be the old chess game
Death predicate

* |f game finished then pay money to the winner

e Otherwise input records must be game record + one move
record

* Move record must be signed by the right player
* Move record must contain a valid move

Making ZEXE private

* Sp, Sy, < S(Cy) (Universal predicate)
* Sp, Sy, < S(Cp) (Birth predicate)

* Sp,, Sy, < S(Cp) (Death predicate)

* Spryr Svpy € S(Crx) (TX circuit)

* Crx =V(Sy,.,.) =0and V(Sy,,.,.) =0and V(Sy,,.,.) =0

And Record=H (payload, Sy, Sy, 7) // r random

TX: Input records || Output records
Compute nullifiers nfy, ..., nf,, from input records

Merkle
root

R, R, R;...000
MT of all records

To create a TX, create three ZK-SNARKS (now ZK is important)

« x=TX, w = payloads, Sy, Sy,
* Ty« P(SPU,X | Infy, ..,nfp,w || MT proofs)
« 7g <« P(Spyx,w)
o 7« P(Sppx,w)
Create mry « P(SpTx, X, W||my, g, Tp)

Birth and death
predicate as well as
records are private!

Hitchhikers guide to the galaxy

What if we want to verify
that computation?

Input > Output (42)

Long Computation

SNARKs for long computations

Ssues:
-P takes very long

-Starts after proving after
computation finished

-Can’t hand off computation
-S also runs at least linear in
Cl

(ok if many proofs)

C — Circuit for long
computation

| S(C) = (Sp, SV)
MR x = (input, output)
o w = transcript

Input

> Output (42)

Long Computation, Transcript

P(S,, x,w) > m
V(S,, x,) = accept

Handing off computation

C;— Circuit for leng intermediate computation

x1 = (input, int,), wy = transcript,
S(Cr) = (Sps SV) Xy = (intq,inty), wp = transcript,

x3 = (int,, output), w3 = transcripts

P(S,, x;, w;) —=m; V(S,, x1,mT1)
V(S,, x2,12)
V(S,, x3,m3)
||/ V linear in
#handoffs

Output (42), 13

Input > Inty, T4 > Int,, 1T,

transcript, transcript, transcript,

Incremental Proofs

* We need updatable/incremental proofs

C;— Circuit per computation step, t number of steps/handoffs
S(C7) = (Sp, Sy)

P(Sp, x;,w;,m;_;) — updated proof m; //my =1
V(S,, xg, x;, s, t) — accept/reject

|t;| = |m;—1]| /] proofs don’t grow

PhotoProof

\% c(oP
editor; editorz
E— ‘..4 .
ig’rﬂgr% Viewer can still verify

authenticity

viewer

Allow valid updates of photo and provide proof

PhotoProof

o0 Py W\ G(Op
-,‘j)!' Image, editor, Image X editor,
’; | %/ | signature e B proof; | S
signing / viewer

camera

viewer

Proof allows valid edits only, Incrementally updated

Constant size blockchains

* Rollup reduces the verification cost
e Still linear in the number of state updates

* When a node joins the network they need to verify
one rollup proof per block!

* In general starting a full node requires verification of
all blocks

e Can take days!

Constant size Blockchain

v [l o |

; prooves that transactions
are valid with respect to the
state

AND

;1 was valid for the
previous block

Merkle tree

Transactions

Constant size Blockchain

Merkle tree

Head and State 4 New miner

Verifies State-MT4
and 1,

Transactions Old miner

Constant size Blockchain

* Light clients can verify every block!

* Low memory, low computation

* Independent of length of chain or #transactions
* Relies on data serving nodes for synching

* Practical today!

END OF LECTURE

Next lecture: Crypto tricks and open discussion
Please attend last two lectures if you can

