
Recursive SNARKs

CS251 Fall 2021
(cs251.stanford.edu)

Benedikt Bünz

Recap: Non-interactive Proof Systems
A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

(Sp, Sv) is called a reference string

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

Recap: zkRollup
Today: every miner must verify every posted Tx verify

all Tx

verify
all Tx

verify
all Tx

verify all Tx
⇒ short proof π

summary, π

verify
π

verifying proof is much easier than verifying 10K Tx

verify
π

Rollup Server

Recap: zkRollup
Today: every miner must verify every posted Tx verify

all Tx

verify
all Tx

verify
all Tx

verify all Tx
⇒ short proof π

summary, π

verify
π

verifying proof is much easier than verifying 10K Tx

verify
π

Rollup Server

Rollup with many coordinators

summary2,

π2

verify
π

verify
π

Server 2

Server 1

summary1, π1

summary,
π

verify
π

Zk-zk-Rollup
• Multiple servers
• Each responsible for subset of users (no overlaps)
• Rollup aggregator (can be one of the servers)
• Rollup aggregator combines summaries (balance table) and

creates one proof that
• How can we combine proofs?
• Trivial solution:
• All servers forward all Tx
• Rollup aggregator creates one SNARK
• Does not save work

Recap: Non-interactive Proof Systems
A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

(Sp, Sv) is called a reference string

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

SNARK of a SNARK Proof
A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

(Sp, Sv) is called a reference string

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

SNARK of SNARK

𝑆 𝐶 → 𝑆!, 𝑆"
𝜋 ← 𝑃(𝑆!, 𝑥, 𝑤)

Now write a circuit 𝐶′ that verifies 𝜋:
• Input 𝑥′ is x
• Witness 𝑤′ is 𝜋
• 𝐶′(𝑥′, w’) = 0 iff V(𝑆", 𝜋, 𝑥)=Accept
Finally:

𝑆 𝐶′ → 𝑆′!, 𝑆′"
𝜋′ ← 𝑃(𝑆′!, 𝑥′, 𝑤′) 9

How can we aggregate proofs?

SNARK of SNARKs

𝑆 𝐶 → 𝑆!, 𝑆"
𝜋# ← 𝑃(𝑆!, 𝑥#, 𝑤#) 𝜋$ ← 𝑃(𝑆!, 𝑥$, 𝑤$)

Now write a circuit 𝐶′ that verifies 𝜋:
• Input 𝑥′ is x1||x2

• Witness 𝑤′ is 𝜋#||𝜋$
• 𝐶′(𝑥′, w’) = 0 iff V(𝑆" , 𝑥#, 𝜋#)=Accept and V(𝑆" , 𝑥$, 𝜋$)=Accept
Finally:

𝑆 𝐶′ → 𝑆′!, 𝑆′"
𝜋′ ← 𝑃(𝑆′!, 𝑥′, 𝑤′) 10

How can we aggregate proofs?

SNARK of SNARKs

• Note that C’ depends only on V and Sv (not on C1,C2)
• We can express V as a circuit:

𝑆! 𝑥′ 𝜋′

+ −

×

0 = “𝐴𝑐𝑐𝑒𝑝𝑡” 𝑤2 = 𝜋′ is independent of 𝑤3, 𝑤4
|C’|=2*|V| < |2* C|

Building SNARK of SNARKs

• How big is C’?
• Comparison |SHA256 circuit| = 20k gates
• First SNARK of SNARK ~1 million gates with trusted

setup (BCTV14)
• Today less than 50k gates (Halo, BCLMS20, Nova)
• no trusted setup

• Independent of inner SNARK circuits!

Rollup with many coordinators

summary2,

π1

verify
π

verify
π

Server 2

Server 1

summary1, π2

summary,
π

verify
π

Zk-zk-Rollup
• Let rooti be the Merkle Tree Root of summary i

• S!, 𝑆" ← 𝑺(𝐶#) // 𝐶# rollup circuit

Merkle tree
𝑟𝑜𝑜𝑡1 𝑟𝑜𝑜𝑡2 𝑟𝑜𝑜𝑡3 𝑟𝑜𝑜𝑡5

root

Build one root from summaries

𝐶67!(x = S8, 𝐫𝐨𝐨𝐭; w = 𝑟𝑜𝑜𝑡3, 𝑟𝑜𝑜𝑡4… , 𝜋3, 𝜋4, …):
V(S8, 𝑥 = 𝑟𝑜𝑜𝑡9, 𝜋9) for all i and 𝐫𝐨𝐨𝐭=MT(𝑟𝑜𝑜𝑡9s)

Tornado cash

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf, proof 𝝅, A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because nf = H2(k’) is now nullified.

… but observer does not
know which are spent

100 DAI
to address A

Merkle
root

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Withdraw coin #3
to addr A:

zk3-Rollup (tornado cash rollup)

summary2,

π2

verify
π

verify
π

Rollup Server 2

Rollup Server 1

summary1, π1

summary,
π

𝜋:;

𝜋:;

𝜋:;

𝜋:;

verify
π

zk3-Rollup
• Users create SNARK for TC Circuit 𝐶"#

• S$, 𝑆% ← 𝑺(𝐶"#)
• 𝜋"# ← 𝑃(𝑆% , 𝑡𝑥, 𝑤)

• Rollups create SNARKs for 𝐶& = ∀' 𝑉 𝑆(, 𝑡𝑥' , 𝜋' = “𝑎𝑐𝑐𝑒𝑝𝑡”
• 𝑡𝑥 𝑟𝑜𝑜𝑡 = 𝑀𝑇 𝑡𝑥), … , 𝑡𝑥*
• 𝜋+ = 𝜋"#,)|| … ||𝜋"#,*
• S$′, 𝑆%′ ← 𝑺(𝐶&)
• 𝜋& = 𝑃(𝑆%+ , 𝑡𝑥 𝑟𝑜𝑜𝑡, 𝜋+)

• Rollup Aggregator creates SNARK for 𝐶- = ∀' 𝑉(𝑆(′, 𝑟𝑜𝑜𝑡' , 𝜋&,')
• S$++, 𝑆%++ ← 𝑺(𝐶-)
• 𝑟𝑜𝑜𝑡 = 𝑀𝑇(𝑟𝑜𝑜𝑡), … , 𝑟𝑜𝑜𝑡.)
• 𝜋&′ = 𝜋&,)|| … ||𝜋&,.
• 𝜋- = 𝑃(𝑆%++, 𝑟𝑜𝑜𝑡, 𝜋&+)

Enhancing transactions with SNARKs
• We’ve seen that private transactions require zero-

knowledge proofs
• Add ZK-SNARKs to every transaction
• Level 1 coordinators verify transaction by verifying

transaction ZK-SNARKs
• Additionally, we can have more complicated transactions

(Smart Contracts)
• Transaction verification is constant time regardless of

proof complexity
• Can we also hide the smart contract?

ZEXE private execution

• ZEXE is a model of computation (like UTXOs/Scripts
or Accounts/EVM)

• The basic unit is a record (similar to a UTXO)
• Every transaction consumes records and creates

records
• Universal predicate: Prevents double spends
• Birth predicate: Says how a record can be created
• Death predicate: Says how a record can be consumed

ZEXE private execution
Record 1:
Birth predicate 1
Death predicate 1
Payload 1

Record 2:
Birth predicate 1
Death predicate 1
Payload 1

Record 3:
Birth predicate 3
Death predicate 3
Payload 3

TX checks that Record 1 and Record 2 have not been spent
Birth3(R1, R2,R3) and Death1(R1, R2,R3) and Death2(R1,R2,R3)

ZEXE private execution
• Universal predicate (similar to tornado cash)
• Uses nullifiers
• Checks that nullifier=H(sk,records) is properly

created
• Checks that nullifier only appears once
• Prevents double spends

Merkle
root

tree of
height 20

(220 leaves)

R1 R2 R3 … 0 0 0

Implementing assets with ZEXE

• Record payload has a value v and an asset id
• Birth predicate
• Defines the token
• New record id needs to match consumed predicate ids
• New record value is sum of inputs

• Death predicate
• Defines the SCRIPT
• E.g. spendable by signature
• E.g. Spendable by multisigature + preimage of hash

Implementing smart contracts with ZEXE

• Record payload is state of smart contract, smart
contract instance id

• Birth predicate
• Either creates smart contract or
• One of the inputs needs to be the old smart

contract record
• Death predicate
• Defines the smart contract logic

ZEXE game of Chess
• Record payload is state of smart contract, smart contract

instance id
• Birth predicate

• Starts new game (and assigns pks to black/white) or
• One of the inputs needs to be the old chess game

• Death predicate
• If game finished then pay money to the winner
• Otherwise input records must be game record + one move

record
• Move record must be signed by the right player
• Move record must contain a valid move

Making ZEXE private
• 𝑆%!, 𝑆(! ← 𝑆(𝐶/) (Universal predicate)
• 𝑆%" , 𝑆(" ← 𝑆(𝐶0) (Birth predicate)
• 𝑆%# , 𝑆(# ← 𝑆(𝐶1) (Death predicate)
• 𝑆%$% , 𝑆($% ← 𝑆(𝐶"2) (TX circuit)
• 𝐶"2 = 𝑉 𝑆(!, . , . =0 and 𝑉 𝑆(" , . , . =0 and 𝑉 𝑆(# , . , . =0
And Record=𝐻(𝑝𝑎𝑦𝑙𝑜𝑎𝑑, 𝑆(" , 𝑆(# , 𝑟) // 𝑟 random

• TX: Input records || Output records
• Compute nullifiers 𝑛𝑓!, … , 𝑛𝑓" from input records
• To create a TX, create three ZK-SNARKS (now ZK is important)

• x=TX,		𝑤 = 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠, 𝑆#!, 𝑆#"
• 𝜋$ ← 𝑃 𝑆%#, x 𝑛𝑓!, … , 𝑛𝑓", 𝑤 | | 𝑀𝑇 𝑝𝑟𝑜𝑜𝑓𝑠
• 𝜋& ← 𝑃 𝑆%!, x, 𝑤
• 𝜋' ← 𝑃 𝑆%", x, 𝑤

• Create 𝜋() ← 𝑃 𝑆%$%, x, 𝑤||𝜋$, 𝜋&, 𝜋'

R1 R2 R3 … 0 0 0

Merkle
root

tree of
height 20

(220 leaves)

MT of all records

Birth and death
predicate as well as
records are private!

Hitchhikers guide to the galaxy

Input Output (42)

Long Computation

What if we want to verify
that computation?

SNARKs for long computations

Input Output (42)
P(Sp, 𝒙,𝒘) ⇾ 𝜋
V(Sv, 𝒙, 𝜋) ⇾ acceptLong Computation, Transcript

C – Circuit for long
computation
S(𝐶) ⇾ (Sp, Sv)
𝒙 = 𝒊𝒏𝒑𝒖𝒕, 𝒐𝒖𝒕𝒑𝒖𝒕
𝒘 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕

Issues:
-P takes very long
-Starts after proving after
computation finished
-Can’t hand off computation
-S also runs at least linear in
|C|
(ok if many proofs)

Handing off computation

Input Output (42), 𝜋S

𝐶T– Circuit for long intermediate computation

S(𝐶T) ⇾ (Sp, Sv)
𝒙𝟏 = 𝒊𝒏𝒑𝒖𝒕, 𝒊𝒏𝒕𝟏 , 𝒘𝟏 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝟏
𝒙𝟐 = 𝒊𝒏𝒕𝟏, 𝒊𝒏𝒕𝟐 , 𝒘𝟐 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝟐
𝒙𝟑 = 𝒊𝒏𝒕𝟐, 𝒐𝒖𝒕𝒑𝒖𝒕 , 𝒘𝟑 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝟑
P(Sp, 𝒙𝒊, 𝒘𝒊) ⇾𝜋9

Int1,𝜋3 Int2,𝜋4
transcript1 transcript2 transcript3

V(Sv, 𝒙𝟏, 𝝅𝟏)
V(Sv, 𝒙𝟐, 𝝅𝟐)
V(Sv, 𝒙𝟑, 𝝅𝟑)
|𝜋|/ V linear in
#handoffs

Incremental Proofs

• We need updatable/incremental proofs

S(𝐶T) ⇾ (Sp, Sv)

𝐶T– Circuit per computation step, 𝑡 number of steps/handoffs

P(Sp, 𝒙𝒊, 𝒘𝒊, 𝜋9Y3) ⇾ updated proof 𝜋9 // 𝜋Z =⊥

V(Sv, 𝒙𝟎, 𝒙𝒕, 𝜋:, t) ⇾ accept/reject

|𝜋9| = |𝜋9Y3| // proofs don’t grow

PhotoProof

Allow valid updates of photo and provide proof

Viewer can still verify
authenticity

PhotoProof

Proof allows valid edits only, Incrementally updated

Constant size blockchains

• Rollup reduces the verification cost
• Still linear in the number of state updates
• When a node joins the network they need to verify

one rollup proof per block!
• In general starting a full node requires verification of

all blocks
• Can take days!

Constant size Blockchain

𝜋$
State-MT1

TX-MT1

Merkle tree

Transactions

𝜋%
State-MT2

TX-MT2

𝜋&
State-MT3

TX-MT3

𝜋'
State-MT4

TX-MT4

𝜋9 prooves that transactions
are valid with respect to the
state
AND
𝜋9Y3 was valid for the
previous block

Constant size Blockchain

𝜋$
State-MT1

TX-MT1

Merkle tree

Transactions

𝜋%
State-MT2

TX-MT2

𝜋&
State-MT3

TX-MT3

𝜋'
State-MT4

TX-MT4

Old miner New minerHead and State 4

Verifies State-MT4
and 𝜋5

Constant size Blockchain

• Light clients can verify every block!
• Low memory, low computation
• Independent of length of chain or #transactions

• Relies on data serving nodes for synching

• Practical today!

Next lecture: Crypto tricks and open discussion
Please attend last two lectures if you can

END OF LECTURE

