
Scaling II: Rollup

CS251 Fall 2021
(cs251.stanford.edu)

Benedikt Bünz

Lightning network

• Low TX fees
• Instant payments
• Routing through intermediaries

Downsides of Payment/State Channels

• Everyone needs to be online
• Mitigated by watchtowers
• Hubs need to be online

• Capital is locked up
• Funds in one channel can’t be used in different channel
• If network is separated transactions are not possible

• Only Peer to Peer payments
• No multi party contracts channels

• TX to fund/close

Blockchain Layers

consensus layerLayer 1:

compute layer (blockchain computer)Layer 1.5:

applications (DAPPs, smart contracts)Layer 2:

user facing tools (cloud servers)Layer 3:

Bitcoin/Ethereum combine ordering (layer 1) and verification (1.5)
What if we can outsource verification? Makes consensus cheaper

Idea: Aggregate Transactions

• Payment channels move more transactions offchain
• Idea: Combine Transaction, Rollup Server verifies

TX Agg:
TX1,TX2,TX3

TX1:
A->B 5ETH

TX2:
C->D 2ETH

TX3:
D->B 1ETH

Server (untrusted)

Smaller than
sum of TX

Blockchain

Recap: The Ethereum blockchain

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Recap: Merkle tree (Merkle 1989)

𝑚1 𝑚! 𝑚" 𝑚# 𝑚$ 𝑚%𝑚& 𝑚'

list of values S

ℎ

H H H H

H H

H

Goal:
• commit to list S
• Later prove 𝑆[𝑖] = 𝑚𝑖

To prove 𝑆 4 = 𝑚# ,

proof π = 𝑚", 𝑦(, 𝑦&

𝑦1 𝑦! 𝑦" 𝑦#

𝑦$ 𝑦&

length of 𝜋: log2 |𝑆|

commitment

Recap State Commitment
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]
• Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d

root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:

≤ 2×|S|

|S| = # non-zero cells

Merke (Patricia) Tree Proofs

• Logarithmic in tree height
• Given proof for i -> Possible to update S[i] and

recompute root
• Given proof for i, proof for j and update of S[j] it’s

possible to update proof for S[i]
• Exclusion proofs possible in Patricia Trees

Rollup

Rollup Smart ContractServerUsers

root
10, d

0

1

0, a0

1
⊥, b

⊥, c

0

1

S[A’s PK] = {3 ETH, nonce}
S[B’s PK] = {2 ETH, nonce}
S[C’s PK] = {10 ETH, nonce}
S[D’s PK] = {1 ETH, nonce}

Rollup State S Stores S

Rollup Deposit

Rollup Smart ContractUsers
TX Deposit

root

Proof that A’s PK ∉ S given
3 ETH transfer

TX Deposit:
root 1. Checks Proof

2. Updates root such that
S[A’s PK]={3 ETH, 0}

Rollup Withdraw

Rollup Smart ContractUsers
TX Withdraw

root

Proof that S[A’s PK]={3 ETH, nonce}
given
Destination Address NewA
Signature by A

TX Withdraw:

root

1. Checks Proof
2. Checks Signature
3. Sends 3 ETH to NewA

Rollup Transfer

Rollup Smart ContractUsers
TX Transfer

root

Proof that given
S[A’s PK]={3 ETH, 0}
S[B’s PK]={2 ETH, 0}
Transfer amount 2 ETH
Signature by A

TX Transfer:
1. Checks Proofs
2. Checks Signature
3. Set

1. S[A’s PK]={1 ETH, 1}
2. S[B’s PK]={4 ETH, 1}

root

Space saved but
no computation

SNARK

Provides Proof/SNARK that given given
public inputs (rootHash, key, value) it knows
private inputs (path) such that function
outputs true

SNARK is short/easy to check

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑆𝑝, 𝑆𝑣) for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘) ⇾ short proof 𝜋 ; |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)

• V(𝑆𝑣, 𝒙, 𝝅) fast to verify ; time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)

If (S, P, V) is succinct and zero-knowledge then we say that it is a zk-SNARK

|𝜋| =500 bytes
time(V)=500k Gas

ZKRollup

• Merkelize Transactions
• SNARK proves that given transactions I know

signatures such that state transition S -> S’ valid
• Publish transaction diff on chain.
• No signatures per transaction.
• 500k gas + data cost for on chain diff

ZKRollup (Validity Rollup)

Rollup Smart Contract
ServerUsers

Commitment to S
root

Transactions

1. Applies TXs to S resulting in S’
2. Produces root’= Commit(S’)
3. Produces SNARK 𝜋 that ∃txs such that root’ is

correct update to state S commited in root

root’ 𝜋
Coordinator does:

Stores S

ZKRollup

Rollup Smart Contract
ServerUsers

Commitment to S
root’

Transactions

1. Verify 𝜋 given root and root’
2. If accept then set root <- root’

root’ 𝜋
Smart Contract does:

Smart contract still allows “manual” withdrawals

Stores S’

Data Availability Problem

root’
⁇

𝜋

Update must be valid!
What if Server does not reveal
data? Can’t update Merkle proofs

Can’t withdraw!

Publish diff on chain

Rollup Smart Contract
ServerUsers

root’

Transactions
with signatures

root’ 𝜋

Txlist= [{A-> B 3}, {C-> D 2}, {D-> B 1}]
No signatures, Sender, Receiver, Amount only in Calldata (not stored)
<100bytes per tx ~400 gas/tx, SNARK verification ~1500 gas/tx (if full)
Full Block 3600 rollup tx vs 570 normal tx (6x speedup)

Stores S’
txlist

zkRollup stats

• ZKRollup is cheaper than onchain tx
• Can scale to max ~300tx/s now, 1000tx/s soon
• Vs. max 40-50tx/s on mainnet
• Cost dominated by SNARK verification
• Will get cheaper precompiles

• Finality ~ Blockchain finality (no instant transfer)

Multiple Assets

Txlist= [{A-> B 3 ETH}, {C-> D 2 DAI}, {D-> B 1 BAT}]

1 byte à 256 assets
2 bytesà 65k assets

Very easy to support many assets
Simply add asset field to TX
Hardly increases SNARK complexity

Transaction List/Atomic Swaps

Txlist= [{A-> B 3 ETH and B-> A 2 DAI}, {D-> B 1 BAT}]

Support transaction list that are executed together
Transactions need to be signed by all senders
Can’t execute part of transaction only all together!

Enables atomic swaps: Alice swaps with Bob 3 ETH for 2 DAI

Exchanges
Buy 3 ETH for 5 DAI

Sell 3 ETH for 5 DAI

Alice 3 ETH 5 DAI
Bob 5 DAI 3 ETH
Carol 4 BAT 10 DAI

give get

Order book

Exchanges match
orders
Classical exchanges
also store funds

Rolled up Exchange

Submit orders
Has orderbook
Matches orders
Rolls up
transactions as
atomic swaps

Txs Root, 𝜋 Verifies TX

Exchange trusted for
honest matching

Root of balance tree

Rolled up Exchange v2

Submit orders
Updates orderbook tree
on chain and proves
correct matching

Txs Root, 𝜋 Verifies TX
Root of balance tree
Root of orderbook tree

Benefit: No trust
Downside: Every order creates rollup TX, No instant matching

Rolling up Smart Contracts

• zkRollup works best for simple transfers
• zkRollup for the EVM?
• Roll up generic smart contract transactions?
• Create SNARK where the circuit implements the EVM
• More expensive on the server
• Soon to be a reality for a subset of the EVM (zkEVM)

• Can we support smart contract rollups today?

Optimistic Rollup

Rollup Smart Contract
ServerUsers

root’

Transactions
with signatures

root’ 𝜋
Stores S’

txlist

What if we remove the SNARK?

Idea: Instead of proving correctness, prove fraud!
New Role: Validator checks correctness, provides fraud proofs

Optimistic Rollup
• Server updates transaction root
• Server puts a large bond into escrow
• If transaction update is invalid users/validators

provide fraud proof
• Successful fraud proof means bond gets slashed
• Part to validator providing proof part gets burned

• Unsuccessful fraud proof costs validator money
• How to proof fraud?

Fraud Proofs

root’

root

txlist
Commits to state S

1. Stores S agrees on root
2. Applies txlist to S to compute S’
3. Computes root’’ from S’
4. If root’≠root’’ call “Fraud”

Problem: Validator doesn’t know what’s in root’

Server

Validator

Referee Delegation
Idea: Server and Validator find first point of disagreement

Break down computation of S’ into small steps, e.g. cycles on a VM
Validator does the same
Let Si be Server’s intermediate states and S’i the validator’s

root
txlist Computation

root’
S1 S2 Sn-1

Referee Delegation
Server and Validator run interactive binary search

root
txlist Computation

root’
S1 S2 Sn-1 Sn

Sn/2
Checks whether
Sn/2=S’n/2
If no disagreement in fist half
Otherwise in second

Referee Delegation

root
txlist S1 S2 Sn/2-1 Sn/2

Repeat protocol for log2(n) steps
End with agreement on Si and
disagreement on Si+1 and S’i+1

Smart Contract checks transition between Si
and Si+1 and declares winner

Problem: Checks take a long time

• log2(n) messages (1 hash per message)
• 1 Verification step on smart contract
• If either party timeouts declares winner
• Looser gets slashed, Winner rewarded
• Problem: log2(n)*timeout
• No incentive to cheat
• But: Long wait till finalization! (7 days)

Pipelined Assertions

Bond i
Bond
i+1

Rollup state i Rollup state i+1

Bond
i+2

Rollup state i+2

Server can build on states
before timeouts

If prior state invalid, all
subsequent bonds are slashed

Pipelined Assertions

Bond i
Bond
i+1

Rollup state i Rollup state i+1

Bond
i+2

Rollup state i+2
Server can claim prior state not
valid and continue given this.Bond

i+1
Rollup state i+1’

State i valid

State i not valid

If no successful fraud proof then
reward gets slashed

Insurance of Rollup -> Instant Finality
• Rollup is not instant (unlike lightning)
• But if server is trusted then giving them transaction -

> finality
• Idea: Use insurance to achieve finality
• Server signs insurance
• If transaction not included in next (few) blocks

insurance can be used to get insurance premium
• Works for zk and optimistic rollup
• Does not work for NFTs (directly)

Optimistic Rollup

• Live and implemented (Optimism and Arbitrum)
• You can port arbitrary smart contracts (OVM)
• Works well if honest rollup server
• Fraud proofs protection if malicious server

• Up to ~4000 tx/s on ETH 1.0
• Important that one independent validator exists
• 7 day finality wait

A combined view of rollups
Standard L1 chains: every miner must verify every posted Tx

verify
all Tx

verify
all Tx

verify
all Tx

rollup
server

verify all Tx
⇒ short proof π

Tx summary, π

verify
π

verify
π

Rollup server: compresses a thousand Tx into one on-chain proof (SNARK or Fraud)

verify
π

Data Availability

root’ 𝜋, diff
Update must be valid!
User must know state transition
Posting state diff on chain limits
rollup benefits

Can we keep the
data off chain?

Off Chain Rollups (Validum and Plasma)
• Idea: Create a separate “cheap” chain for the data

POS Consensus chain
Stores roll up state

Ethereum: Stores state root

User

Gets state/
Sends tx

Post new state root/

rollup proof

Independent of #TX

Conflict Resolution: On Chain requests
• Idea: Create a separate “cheap” chain for the data

POS Consensus chain
Stores roll up state

Ethereum: Stores state root

User

State requestState
challenge

Respond with state/
Slashed if no response

On Chain vs Off Chain Data availability

• Off Chain is much cheaper and independent of #tx
• Only limitation is data consensus

• Data consensus not trusted for security
• Can’t steal your money

• Data consensus is trusted for availability
• Can lock up your money (bribery attack)
• Can increase fees

• Economic incentives can mitigate issues
• For high value transfer use on chain rollup for low value use

off chain rollup

2 by 2 rollup

Scaling the blockchain: Payment channels and Rollups (L2 scaling)

SNARK validity proofs Fraud proofs

Tx summary
on L1 chain

zkRollup
blockchain finality, only
simple transfers (now)

optimistic Rollup
7 day finality

Instant transfers

Tx summary
off chain

Vallidium
large #tx but vulnerable

to lock up attacks

”Plasma”
Largest #tx but lock up
attacks and long finality

availability

security

Next lecture: Recursive SNARKs

END OF LECTURE

