CS251 Fall 2021

(cs251.stanford.edu)

Building a SNARK

Dan Boneh

Recap: zk-SNARK applications

Private Tx on a public blockchain:

- Confidential transactions
- Tornado cash, Zcash, IronFish
- Private Dapps: Aleo

Compliance:

- Proving solvency in zero-knowledge
- Zero-knowledge taxes

Scalability: privacy in zk-SNARK Rollup (next week)

(non-interactive) Preprocessing argument systems

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

Preprocessing (setup): $S(C) \rightarrow \text{public parameters} (S_p, S_v)$

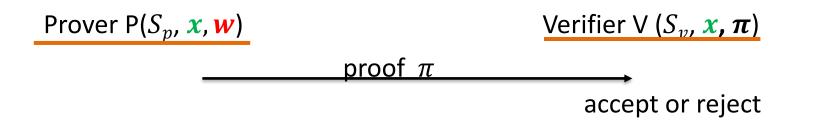
Preprocessing argument System

A preprocessing argument system is a triple (S, P, V):

• **S**(*C*) \rightarrow public parameters (*S*_{*p*}, *S*_{*v*}) for prover and verifier

- $\mathbf{P}(S_p, \mathbf{x}, \mathbf{w}) \rightarrow \text{proof } \pi$
- $V(S_v, x, \pi) \rightarrow \text{accept or reject}$

Requirements (informal)



Complete: $\forall x, w$: $C(x, w) = 0 \implies \Pr[V(S_v, x, P(S_p, x, w)) = \operatorname{accept}] = 1$ Knowledge sound: $\forall \operatorname{accepts} \implies P$ "knows" w s.t. C(x, w) = 0example: P "knows" w s.t. $[H(w) = x \text{ and } 0 \le w \le 2^{128}]$ Optional: Zero knowledge: (S_v, x, π) "reveals nothing" about w

SNARK: a <u>Succinct</u> ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

• **S**(*C*) \rightarrow public parameters (*S*_{*p*}, *S*_{*v*}) for prover and verifier

•
$$\mathbf{P}(S_p, \mathbf{x}, \mathbf{w}) \rightarrow \underline{\mathbf{short}} \text{ proof } \pi$$
 ; $|\pi| = O(\log(|\mathbf{C}|), \lambda)$

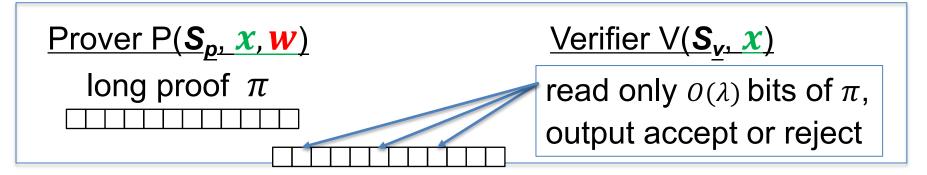
• $V(S_v, x, \pi)$ fast to verify ; time(V) = $O(|x|, \log(|C|), \lambda)$ short "summary" of circuit λ = security parameter = 128

A simple PCP-based SNARK

[Kilian'92, Micali'94]

A simple construction: PCP-based SNARK

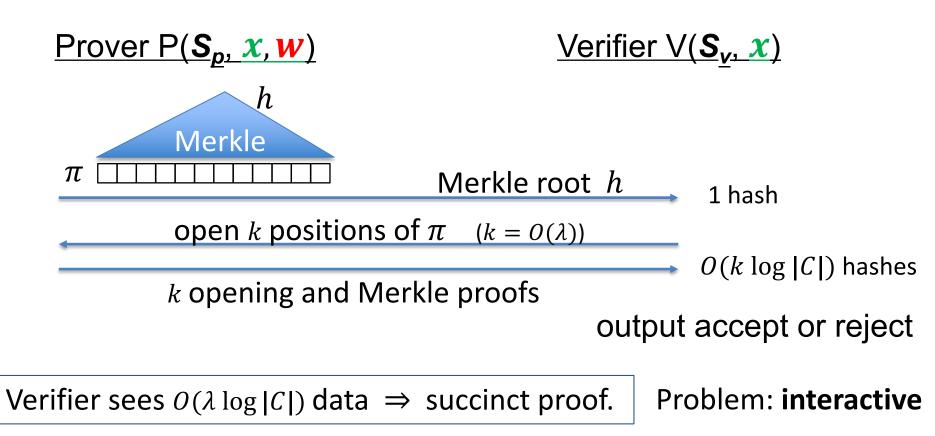
<u>The PCP theorem</u>: Let C(x, w) be an arithmetic circuit. there is a proof system that for every x proves $\exists w: C(x, w) = 0$ as follows:



V always accepts valid proof. If no *w*, then V rejects with high prob.

size of proof π is poly(|C|). (not succinct)

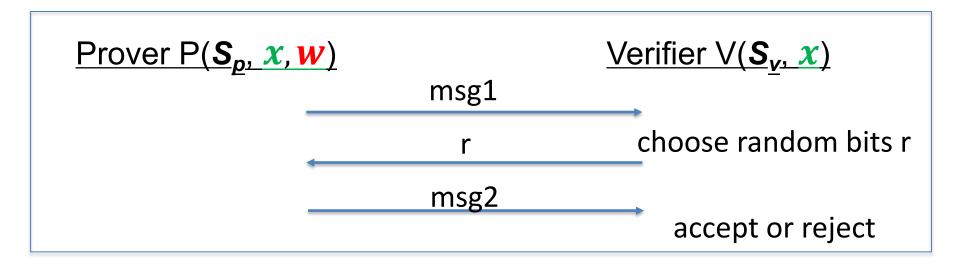
Converting a PCP proof to a SNARK



Making the proof non-interactive

The Fiat-Shamir transform:

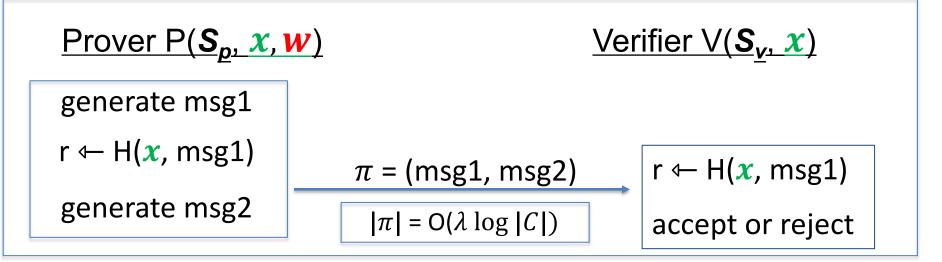
 public-coin interactive protocol ⇒ non-interactive protocol public coin: all verifier randomness is public (no secrets)



Making the proof non-interactive

<u>Fiat-Shamir transform</u>: $H: M \rightarrow R$ a cryptographic hash function

• idea: prover generates random bits on its own (!)



Fiat-Shamir: certain secure interactive protocols \implies non-interactive

Let's build an extractor *E* for the interactive protocol:

- After prover commits to Merkle root of proof
 E asks prover to open many batches of *k* = *O*(λ) positions of π (by rewinding prover)
- *E* fails to extract cell #j of π if
 - (1) prover produces a false Merkle proofs (efficient prover cannot), or
 - (2) prover fails (i.e., verifier rejects) whenever j is in batch to open:

Pr[prover fails] \geq Pr[j in batch] = $1 - (1 - 1/|\pi|)^k$.

so: this cannot happen if k is sufficiently large

 \Rightarrow *E* extracts entire proof π . Once π is known, *E* can obtain *w* from π .

Are we done?

Simple transparent SNARK from the PCP theorem

- Use Fiat-Shamir transform to make non-interactive
- We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

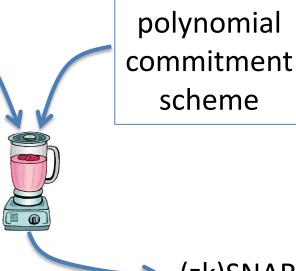
Better SNARKs: Goal: Time(Prover) = $\tilde{O}(|C|)$

Building an efficient SNARK

General paradigm

Many SNARKs are built in two steps:

polynomial interactive oracle proofs (poly-IOP)



(zk)SNARK for general circuits

Recall: commitments

Two algorithms:

- $commit(m, r) \rightarrow com$ (r chose at random)
- $verify(m, com, r) \rightarrow accept or reject$

Properties:

- binding: cannot produce two valid openings for *com*.
- hiding: *com* reveals nothing about committed data

(1) Polynomial commitment schemes

Notation:

Fix a finite field:
$$\mathbb{F}_p = \{0, 1, \dots, p-1\}$$

$\mathbb{F}_p^{(\leq d)}[X]$: all polynomials in $\mathbb{F}_p[X]$ of degree $\leq d$.

(1) Polynomial commitment schemes

- <u>setup</u>(d) $\rightarrow pp$, public parameters for polynomials of degree $\leq d$
- <u>commit(pp, f, r)</u> \rightarrow **com**_f commitment to $f \in \mathbb{F}_p^{(\leq d)}[X]$
- <u>eval</u>: goal: for a given com_f and $x, y \in \mathbb{F}_p$, prove that f(x) = y.

Formally: *eval* = (P, V) is a SNARK for:

statement $st = (pp, com_f, x, y)$ with witness = w = (f, r)where C(st, w) = 0 iff

$$[f(x) = y \text{ and } f \in \mathbb{F}_p^{(\leq d)}[X] \text{ and commit(pp, f, r)} = com_f]$$

(1) Polynomial commitment schemes

Properties:

- Binding: cannot produce two valid openings (f_{1}, r_{1}) , (f_{2}, r_{2}) for **com**_f.
- eval is knowledge sounds (can extract (f, r) from a successful prover)
- optional:
 - commitment is hiding
 - eval is zero knowledge

Constructing polynomial commitments

Not today ... (see readings or CS355)

simple construction without this requirement

Properties of the best ones:

- transparent setup: no secret randomness in setup
- *com*_f is constant size (a single group element)
- eval proof size for $f \in \mathbb{F}_p^{(\leq d)}[X]$ is $O(\log d)$ group elements
- eval verify time is O(log d) Prover time:

O(d)

Component 2: Polynomial IOP

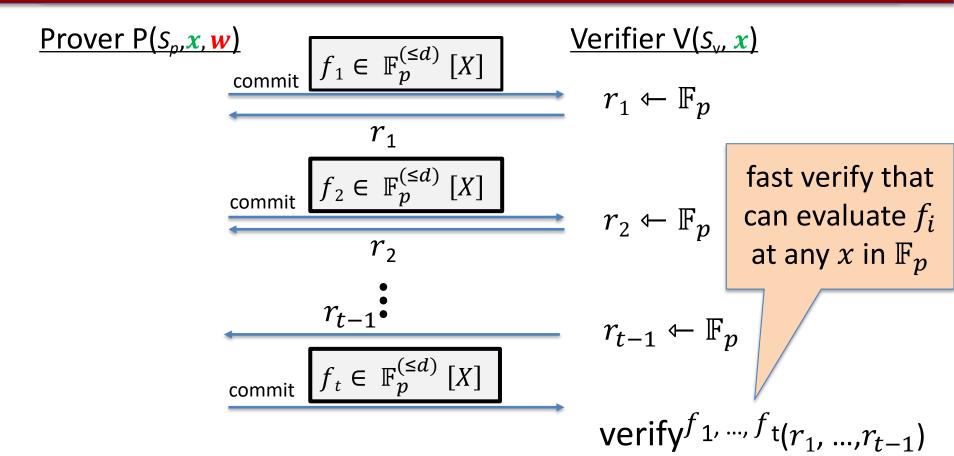
Goal: polynomial commitment scheme \Rightarrow SNARK for a general circuit C(x, w).

... done using a polynomial-IOP

Fix an arithmetic circuit C(x, w). Let $x \in \mathbb{F}_p^n$.

<u>Poly-IOP</u>: a proof system that proves $\exists w: C(x, w) = 0$ as follows:

(2) Polynomial IOP



Properties

• Complete: if $\exists w: C(x, w) = 0$ then verifier always accepts

Knowledge sound: (informal) Let x ∈ Fⁿ_p.
 P*: a prover that convinces the verifier with prob. ≥ 1/10⁶ then there is an efficient extractor E s.t.

$$\Pr[E(x, f_1, r_1, \dots, r_{t-1}, f_t) = w \text{ s.t. } C(x, w) = 0] \ge 1/10^6 - \varepsilon$$

• Optional: zero knowledge

The resulting SNARK

Poly-IOP params: t = #polynomials, q = # eval queries in verify The SNARK:

- During interactive phase of poly-IOP: send t poly commitments
- During poly-IOP verify: run poly-commit eval protocol q times
- Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof: t poly-commits + q eval proofs SNARK verify time: q poly eval proof verifications + time(IOP-verify) SNARK prover time: t poly commits + time(IOP-prover)

Constructing a Poly-IOP: t+q=4

First some useful tricks ...

The fundamental theorem of algebra: for $0 \neq f \in \mathbb{F}_p^{(\leq d)}[X]$ for $r \leftarrow \mathbb{F}_p$: $\Pr[f(r) = 0] \leq d/p$

- \Rightarrow suppose p $\approx 2^{256}$ and d $\leq 2^{40}$ then d/p is negligible
- \Rightarrow for $r \leftarrow \mathbb{F}_p$, if f(r) = 0 then f is identically zero w.h.p

 \Rightarrow simple zero test for a committed polynomial

Some useful gadgets

Let
$$\omega \in \mathbb{F}_p$$
 be a primitive k-th root of unity $(\omega^k = 1)$
Set $H := \{1, \omega, \omega^2, ..., \omega^{k-1}\} \subseteq \mathbb{F}_p$

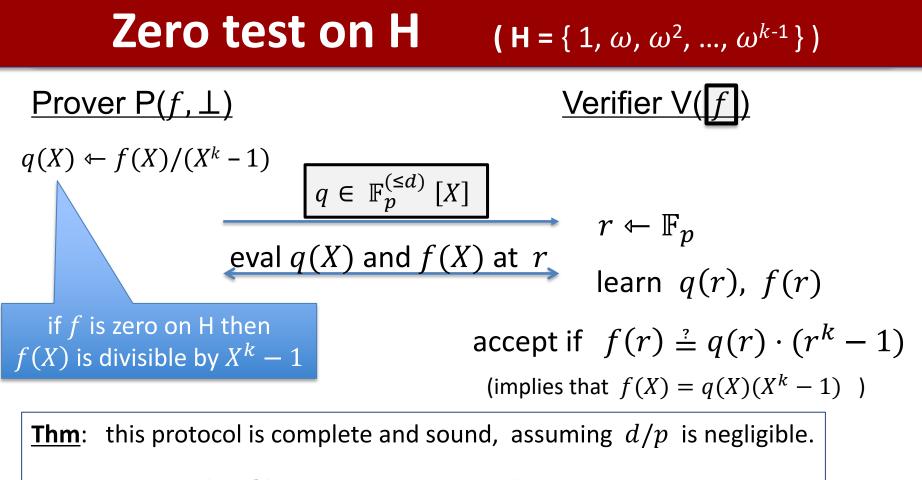
Let
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$
 and $b, c \in \mathbb{F}_p$. $(d \geq k)$

Want poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f is identically zero on H

Tast 2 (sum-check): prove that $\sum_{a \in H} f(a) = b$

Task 3 (**prod-check**): prove that $\prod_{a \in H} f(a) = c$



Verifier time: $O(\log k)$ and two eval verify (but can be done in one)

Product check on H: $\prod_{a \in H} f(a) = 1$

Let $t \in \mathbb{F}_p^{(\leq k)}[X]$ be the degree-*d* polynomial: $t(1) = f(1), \quad t(\omega^s) = \prod_{i=0}^s f(\omega^i) \text{ for } s = 1, \dots, k-1$

Then
$$t(\omega^{k-1}) = \prod_{a \in H} f(a) = 1$$

and $t(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in H$ (including $x = \omega^{k-1}$)

Lemma: if (1)
$$t(\omega^{k-1}) = 1$$
 and
(2) $t(\omega \cdot x) - t(x) \cdot f(\omega \cdot x) = 0$ for all $x \in H$
then $\prod_{a \in H} f(a) = 1$

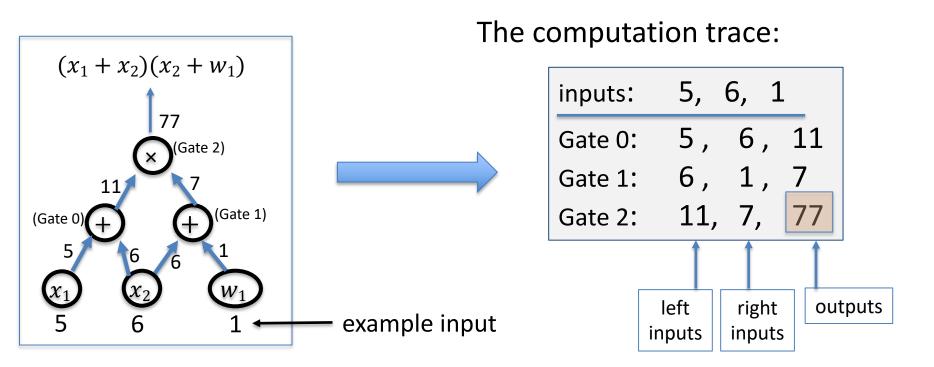
Product check on H (unoptimized)

Prover P((f, c),
$$\bot$$
)
construct $t(X) \in \mathbb{F}_p^{(\leq k)}$, $t_1(X) = t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X)$
and $q(X) = t_1(X)/(X^k - 1) \in \mathbb{F}_p^{(\leq k)}$
 $q, t \in \mathbb{F}_p^{(\leq k)}[X]$
 $eval t(X)$ at ω^{k-1} , $r, \omega r$
 $r \leftarrow \mathbb{F}_p$
learn $t(\omega^{k-1})$, $t(r)$, $t(\omega r)$, $q(r)$, $f(\omega r)$
 $eval q(X)$ at r , and $f(X)$ at ωr
 $t_1(H) = 0$:
 $t(\omega r) - t(r)f(\omega r) \stackrel{?}{=} q(r) \cdot (r^k - 1)$

PLONK: a poly-IOP for a general circuit

PLONK: a poly-IOP for a general circuit C(x, w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)



Encoding the trace as a polynomial

|C| = total # of gates in C, $|I| = |I_x| + |I_w| = \# \text{ inputs to } C$

let d = 3 |C| + |I| (in example, d = 12) and $H = \{1, \omega, \omega^2, ..., \omega^{d-1}\}$

The plan: prover interpolates a polynomial

 $P \in \mathbb{F}_p^{(\leq d)}[\mathsf{X}]$

that encodes the entire trace.

Let's see how ...

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

The plan: (prover uses FFT to compute coefficients of P in time $d \log_2 d$)

Prover interpolates $P \in \mathbb{F}_p^{(\leq d)}[X]$ such that (1) $P(\omega^{-j}) = \text{input } \# j$ for j = 1, ..., |I| (all inputs), and

(2)
$$\forall l = 0, ..., |C| - 1$$
:

- P(ω^{3l}): left input to gate #l
- $P(\omega^{3l+1})$: right input to gate #l
- $P(\omega^{3l+2})$: output of gate #l

inputs:	5, 6,	1
Gate 0:	5,6	, 11
Gate 1:	6, 1	, 7
Gate 2:	11, 7	, 77

Encoding the trace as a polynomial

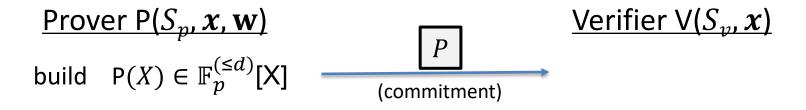
In our example:

inputs:	$P(\omega^{-1}) = 5$, $P(\omega^{-2}) = 6$, $P(\omega^{-3})$) = 1,
gate 0:	$P(\omega^{0}) = 5$, $P(\omega^{1}) = 6$, $P(\omega^{2})$	= 11,
gate 1:	$P(\omega^{3}) = 6$, $P(\omega^{4}) = 1$, $P(\omega^{5})$	= 7,
gate 2:	$P(\omega^{6}) = 11$, $P(\omega^{7}) = 7$, $P(\omega^{8})$) = 77

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

degree(P) = 11

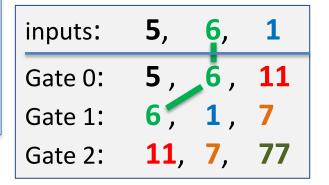
Step 2: proving validity of P



Prover needs to prove that P is a correct computation trace:

- (1) P encodes the correct inputs,
- (2) every gate is evaluated correctly,
- (3) the wiring is implemented correctly,
- (4) the final output is 0

Proving (4) is easy: prove $P(\omega^{3|C|-1}) = 0$



Proving (1): P encodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the *x*-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) =$ input #j

In our example: $v(\omega^{-1}) = 5$, $v(\omega^{-2}) = 6$. (*v* is linear)

constructing v(X) takes time proportional to the size of input x

Proving (1): P encodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the *x*-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) =$ input #j

Let $H_{inp} = \{ \omega^{-1}, \omega^{-2}, \dots, \omega^{-|I_{\chi}|} \} \subseteq H$ (points encoding the input)

Prover proves (1) by using a zero-test on H_{inp} to prove that

$$\mathsf{P}(\mathsf{y}) - \boldsymbol{\nu}(\mathsf{y}) = 0 \qquad \forall \ \mathsf{y} \in \mathsf{H}_{\mathsf{inp}}$$

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

define
$$S(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 such that $\forall l = 0, ..., |C| - 1$:
 $S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate
 $S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

In our example
$$S(\omega^0) = 1$$
, $S(\omega^3) = 1$, $S(\omega^6) = 0$

(so that S is a quadratic polynomial)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

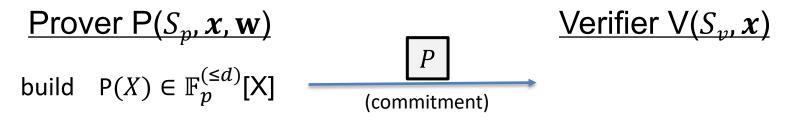
define
$$S(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 such that $\forall l = 0, ..., |C| - 1$:
 $S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate
 $S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

Observe that,
$$\forall y \in H_{gates} = \{1, \omega^3, \omega^6, \omega^9, ..., \omega^{3(|C|-1)}\}:$$

$$S(y) \cdot [P(y) + P(\omega y)] + (1 - S(y)) \cdot P(y) \cdot P(\omega y) = P(\omega^2 y)$$

Proving (2): every gate is evaluated correctly

Setup(C):
$$S_v = (poly commitment to S(X))$$



Prover uses zero-test on H_{gates} to prove that $\forall y \in H_{gates}$ $S(y) \cdot [P(y) + P(\omega y)] + (1 - S(y)) \cdot P(y) \cdot P(\omega y) - P(\omega^2 y) = 0$

Proving (3): the wiring is correct

Step 4 : encode the wires of <i>C</i> :	<u>ex</u>
$P(\omega^{-2}) = P(\omega^1) = P(\omega^3)$	
$P(\omega^{-1}) = P(\omega^{0})$	
$P(\omega^2) = P(\omega^6)$	
$ \begin{bmatrix} P(\omega^{-2}) = P(\omega^{1}) = P(\omega^{3}) \\ P(\omega^{-1}) = P(\omega^{0}) \\ P(\omega^{2}) = P(\omega^{6}) \\ P(\omega^{-3}) = P(\omega^{4}) \end{bmatrix} $	

example: $x_1=5, x_2=6, w_1=1$ $\omega^{-1}, \omega^{-2}, \omega^{-3}: 5, 6, 1$ $\omega^{0}, \omega^{1}, \omega^{2}: 5, 6, 11$ $\omega^{3}, \omega^{4}, \omega^{5}: 6, 1, 7$ $\omega^{6}, \omega^{7}, \omega^{8}: 11, 7, 77$

Define a polynomial W: $H \rightarrow H$ that implements a rotation: W($\omega^{-2}, \omega^1, \omega^3$) = ($\omega^1, \omega^3, \omega^{-2}$), W(ω^{-1}, ω^0) = (ω^0, ω^{-1}), ...

<u>Lemma</u>: $\forall y \in H$: $P(y) = P(W(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): encoding the circuit wiring

<u>Problem</u>: the constraint P(y) = P(W(y)) has degree d^2

- \Rightarrow prover would need to manipulate polynomials of degree d²
- ⇒ quadratic time prover !! (goal: linear time prover)

Cute trick: use prod-check proof to reduce this to a constraint of linear degree

Reducing wiring check to a linear degree

Lemma:
$$P(y) = P(W(y))$$
 for all $y \in H$ if and only if $L(Y, Z) \equiv 1$,
where $L(Y, Z) = \prod_{x \in H} \frac{P(x) + Y \cdot W(x) + Z}{P(x) + Y \cdot x + Z}$

To prove that $L(Y, Z) \equiv 1$ do:

- (1) verifier chooses random $y, z \in \mathbb{F}_p$
- (2) prover builds $L_1(X)$ s.t. $L_1(x) = \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z}$ for all $x \in H$
- (3) run prod-check to prove $\prod_{x \in H} L_1(x) = 1$
- (4) validate L_1 : run zero-test on H to prove $L_2(x) = 0$ for all $x \in H$, where $L_2(x) = (P(x) + y \cdot x + z) L_1(x) - (P(x) + y \cdot W(x) + z)$

The final (S, P, V) SNARK

Setup(C):
$$S_v = ($$
 poly commitment to $S(X)$ and $W(X))$

Prover
$$P(S_p, x, w)$$
PVerifier $V(S_v, x)$ build $P(X) \in \mathbb{F}_p^{(\leq d)}[X]$ (commitment)build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

Prover proves:

gates: (1) $S(y) \cdot [P(y) + P(\omega y)] + (1 - S(y)) \cdot P(y) \cdot P(\omega y) - P(\omega^2 y) = 0$ $\forall y \in H_{gates}$ inputs: (2) P(y) - v(y) = 0 $\forall y \in H_{inp}$ wires: (3) P(y) - P(W(y)) = 0 $\forall y \in H$ output: (4) $P(\omega^{3|C|-1}) = 0$ (output of last gate = 0)

Many extensions ...

• Plonk proof: a short proof (O(1) commitments), fast verifier

- Can handle circuits with more general gates than + and ×
 - PLOOKUP: efficient SNARK for circuits with lookup tables

• The SNARK can easily be made into a zk-SNARK

Main challenge: reduce prover time

END OF LECTURE

Next lecture: scaling the blockchain