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Can we have private transactions
on a public blockchain?

Naïve reasoning:  
universal verifiability ⇒ transaction data must be public.
otherwise, how we can the public verify Tx ??

Goal for this lecture:     
crypto magic   ⇒ private Tx on a publicly verifiable blockchain

Crypto tools:   commitments and zero knowledge proofs



The need for privacy in the financial system

Supply chain privacy:
A car company does not want to reveal 
how much it pays its supplier for tires, wipers, etc.

Payment privacy:
• A company that pays its employees in crypto needs to keep list 

of employees and their salaries private.
• Privacy for rent, donations, purchases

Business logic privacy:  Can the code of a smart contract be private?



Last lecture

Neither Bitcoin nor Ethereum are private

Address 0x1654b0c3f62902d7A86237…

etherscan.io:



mixer
address: 

M

Simple blockchain anonymity via mixing
fresh addr X
from Alice TLS

1 ETH to M
from Alice

1 ETH to M
from Bob

1 ETH to M
from Carol

blockchain

fresh addr Y
from Bob TLS

fresh addr Z
from Carol TLS

Send:
1 ETH to X
1 ETH to Y
1 ETH to Z

Observer knows Y belongs to one of  {Alice, Bob, Carol}  but does not know which one
⟹ anonymity set of size 3.      
⟹ Bob can mix again with different parties to increase anonymity set.

Problems:  (i)  mixer knows all,    (ii)  mixer can abscond with 3 ETH !! 

Mixing without a mixer?   on Bitcoin: CoinJoin (e.g., Wasabi),    on Ethereum:  Tornado cash

has 3 ETH



An central tool for 
privacy on the blockchain

What is a zk-SNARK?



zk-SNARK:  Blockchain Applications
Private Tx on a public blockchain:
• Confidential transactions
• Tornado cash,  Zcash,  IronFish
• Private Dapps:  Aleo

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes

Scalability:   privacy in zk-SNARK Rollup  (next week)



(1)  arithmetic circuits
• Fix a finite field    𝔽 = 0,… , 𝑝 − 1 for some prime  p>2.

• Arithmetic circuit:     𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled  +, −, or ×
inputs are labeled   1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe 

• |𝐶| = # gates in 𝐶 𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)



Interesting arithmetic circuits

Examples:

• Chash(h, m):   outputs 0 if   SHA256(m) = h ,   and ≠0 otherwise

Chash(h, m) = (h – SHA256(m))  , |Chash| ≈ 20K gates

• Csig(pk, m, σ): outputs  0  if σ is a valid ECDSA signature 
on m with respect to pk



(2) Argument systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽
public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒙, 𝒘 𝒙
P’s goal:  “convince” V that ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

accept or 
reject



(non-interactive) Preprocessing argument systems

Preprocessing (setup):    S(𝐶)  ⇾ public parameters  ( 𝑺𝒑, 𝑺𝒗 )

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽

public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝑺𝒑, 𝒙, 𝒘 𝑺𝒗, 𝒙

accept or 
reject

proof 𝜋



Preprocessing argument System
A preprocessing argument system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (𝑆𝑝, 𝑆𝑣)    for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘)  ⇾ proof  𝜋

• V(𝑆𝑣, 𝒙, 𝝅)  ⇾ accept or reject



Argument system:  requirements  (informal)
Prover P(𝑆𝑝, 𝒙,𝒘) Verifier V (𝑆𝑣, 𝒙, 𝝅)

proof  𝜋
accept or reject

Complete:   ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ Pr[ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept ] = 1

Knowledge sound:   V accepts    ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

P* does not “know”  𝒘 ⇒ Pr[ V(Sv, 𝑥, 𝜋) = accept ] <  negligible

Optional: Zero knowledge:      (𝑆𝑣 , 𝒙, 𝜋)    “reveals nothing” about 𝒘



SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (𝑆𝑝, 𝑆𝑣)    for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘)  ⇾ short proof  𝜋 ; |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆)

• V(𝑆𝑣, 𝒙, 𝝅)    fast to verify ;    time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)

Why preprocess 𝐶??short “summary” of circuit



SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (𝑆𝑝, 𝑆𝑣)    for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘)  ⇾ short proof  𝜋 ; |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆)

• V(𝑆𝑣, 𝒙, 𝝅)    fast to verify ;    time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)

SNARK: (S, P, V) is complete,  knowledge sound,  and  succinct

zk-SNARK: (S, P, V) is a SNARK and is zero knowledge



The trivial argument system
(a)  Prover sends  𝒘 to verifier,  
(b)  Verifier checks if   𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:
(1) 𝒘 might be secret:   prover does not want to reveal  𝒘 to verifier

(2)   𝒘 might be long:   we want a “short” proof

(3)   computing 𝐶(𝒙,𝒘)may be hard:   we want a “fast” verifier



An example
Prover:   I know   (𝑥1, … , 𝑥!) ∈ 𝑋 such that   𝐻(𝑥1, … , 𝑥𝑛) = 𝑦

Prover Verifier

statement:  𝑦
witness:   𝑥1, … , 𝑥!

statement:  𝑦

Proof 𝜋 accept or reject

SNARK:   size(𝜋) and  VerifyTime(𝜋) is  𝑂(log 𝑛) !!



An example

statement:  𝑦
witness:   𝑥1, … , 𝑥!

statement:  𝑦

Proof 𝜋 accept or reject

How is this possible ???

SNARK:   size(𝜋) and  VerifyTime(𝜋) is  𝑂(log 𝑛) !!

Prover Verifier



Types of preprocessing Setup
Recall setup for circuit 𝐶:    S(𝐶; 𝑟)  ⇾ public parameters  (𝑆𝑝, 𝑆𝑣)

Types of setup:

trusted setup per circuit:    S(𝐶; 𝑟) random 𝑟 must be kept secret from prover

prover learns 𝑟 ⇒ can prove false statements

trusted but universal (updatable) setup:  secret 𝑟 is independent of 𝐶

𝑺 = 𝑆%!%&, 𝑆%!'() : 𝑆%!%& 𝜆; 𝑟 ⇾ 𝑝𝑝,      𝑆%!'()(𝑝𝑝, 𝐶) ⇾ (𝑆*, 𝑆+)

transparent setup:   S(𝐶) does not use secret data (no trusted setup)

one-time no secret data from prover

be
tt

er

random bits



Significant progress in recent years

• Kilian’92, Micali’94:   succinct transparent arguments from PCP
• impractical prover time

• GGPR’13, Groth’16, …:  linear prover time, constant size proof  (𝑂!(1))
• trusted setup per circuit   (setup alg. uses secret randomness)
• compromised setup  ⇒ proofs of false statements

• Sonic’19,  Marlin’19,  Plonk’19, … :   universal trusted setup

• DARK’19,  Halo’19,  STARK, …  :  no trusted setup (transparent)



Types of SNARKs   (partial list)

size of
proof 𝜋

size of  Sp
(beyond 𝐶)

verifier
time

trusted
setup?

Groth’16 O(1) O(|𝐶|) O(1) yes/per circuit

Plonk/Marlin O(1) O(|𝐶|) O(1) yes/universal

Bulletproofs O(log|𝐶|) O(1) O(|𝐶|) no

STARK O(log|𝐶|) O(1) O(log|𝐶|) no

DARK O(log|𝐶|) O(1) O(log|𝐶|) no

⋮ ⋮ ⋮



A SNARK software system

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,

Snarky,
…

compiler

SNARK
friendly
format
R1CS,
AIR,

Plonk-CG

SNARK
backend

x, witness

Proof   𝜋

(Sp, Sv)setup

CPU heavy

verifier accept/
rejectx



How to define “knowledge soundness”
and “zero knowledge”?



Definitions:  (1) knowledge sound

Goal:   if V accepts  then  P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

What does it mean to ”know”  𝒘 ??

informal def:   P knows 𝒘,  if 𝒘 can be “extracted” from P

P



Definitions:  (1) knowledge sound
Formally:   (S, P, V) is knowledge sound for a circuit 𝐶 if

for every poly. time adversary  A = (A0, A1)  such that

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝜋 ⇽ A1(Sp, 𝑥, st):   

Pr[V(Sv, 𝑥, 𝜋) = accept] > 1/106 (non-negligible)

there is an efficient extractor 𝐸 (that uses A1 as a black box)  s.t.

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝑤 ⇽ 𝐸A1(Sp,𝑥,st) (Sp, 𝑥):   

Pr[C(𝑥, 𝑤) = 0] > 1/106 − 𝜖 (for a negligible 𝜖)



Definitions:  (2) Zero knowledge

A story about the lady sipping tea



Definitions:  (2) Zero knowledge (against an honest verifier)

(S, P, V) is zero knowledge if for every 𝑥 ∈ 𝔽.

proof 𝜋 “reveals nothing” about  𝒘,  other than its existence

What does it mean to “reveal nothing” ??

Informal def:  𝜋 “reveals nothing”  about  𝒘 if the verifier can
generate 𝜋 by itself ⟹ it learned nothing new from 𝜋

(S, P, V) is zero knowledge if there is an efficient alg. Sim 
s.t. (Sp, Sv, 𝜋) ⇽ Sim(𝐶, 𝑥)  “look like” the real   Sp, Sv and  𝜋.

Main point:  Sim(𝐶,x) simulates  𝜋 without knowledge of 𝒘
(but also outputs Sp, Sv)



Definitions:  (2) Zero knowledge (against an honest verifier)

Formally:   (S, P, V) is (honest verifier) zero knowledge for a circuit 𝐶
if there is an efficient simulator  Sim such that
for all 𝑥 ∈ 𝔽! s.t. ∃𝑤: 𝐶 𝑥, 𝑤 = 0 the distribution:

(Sp, Sv, 𝑥, 𝜋): where   (Sp, Sv) ⇽ S(𝐶) ,   𝜋 ⇽ P(Sp , 𝑥, 𝒘)

is indistinguishable from the distribution:

(Sp, Sv, 𝑥, 𝜋): where   (Sp, Sv, 𝜋) ⇽ Sim(𝐶, 𝑥)



How to build a zk-SNARK?
Recall:   A zero knowledge preprocessing argument system.

Prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Next lecture



Launched on the Ethereum blockchain on May 2020  (v2)

Tornado cash:   a zk-based mixer



Tornado Cash:  a ZK-mixer

account

MIX

Tornado.cash
contract

fresh
address

(1000 DAI)

???

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

1000 DAI



The tornado cash contract   (simplified)

nf1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)Currently:

• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4

H1, H2:  R ⇾ {0,1}256

C1 C2 C3 0   0 … 0

public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

CRHF



Tornado cash: deposit     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 0   0 … 0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins
Build Merkle proof for leaf #4:

MerkleProof(4)      (leaf=0)
choose random  k, r  in  R
set C4 = H1(k, r)

H1, H2:  R ⇾ {0,1}256

contract state

next = 4
100 DAI

C4 , MerkleProof(4)



Tornado cash: deposit     (simplified)

coins
Merkle

root
(32 bytes)

tree of
height 20

(220 leaves)

100 DAI
C4 ,  MerkleProof(4)

Tornado contract does:

(1) verify  MerkleProof(4) with 
respect to current stored root

(2) use C4 and MerkleProof(4)  to
compute updated Merkle root

(3) update state

next = 4

H1, H2:  R ⇾ {0,1}256

Tornado contract C1 C2 C3 0   0 … 0

public list of coins

Coins
Merkle

root



Tornado cash: deposit     (simplified)

coins
Merkle

root
(32 bytes)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

100 DAI
C4 ,  MerkleProof(4)

public list of coins

Tornado contract does:

(1) verify  MerkleProof(4) with 
respect to current stored root

(2) use C4 and MerkleProof(4)  to
compute updated Merkle root

(3) update state

next = 4

H1, H2:  R ⇾ {0,1}256

Tornado contract



Tornado cash: deposit     (simplified)

nf1

nullifiers

updated
Merkle

root

Treasury:  400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

100 DAI
C4 , MerkleProof(4)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coinsnote:  (k, r)
Alice keeps secret
(one note per coin)

Every deposit:  new Coin 
added sequentially to tree

an observer sees who
owns which coins

Alice deposits 100 DAI:

updated contract state

next = 5



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

Withdraw coin #3
to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H2(k’)

H1, H2:  R ⇾ {0,1}256

next = 5

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)



Tornado cash: withdrawal     (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof  𝜋 for 
public statement  x = (root,  nf,  A)
secret witness  w = (k’, r’,  C3 , MerkleProof(C3) )

where  Circuit(x,w)=0 iff:

(i) C3 = (leaf #3 of root),   i.e.   MerkleProof(C3) is valid,

(ii) C3 = H1(k’, r’),  and

(iii) nf = H2(k’).

H1, H2:  R ⇾ {0,1}256

(address A not used in Circuit)



Tornado cash: withdrawal     (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof  𝜋 for 
public statement  x = (root,  nf,  A)
secret witness  w = (k’, r’,  C3 , MerkleProof(C3) )

H1, H2:  R ⇾ {0,1}256

The address A is part of the statement to ensure that a miner cannot change A to 
its own address and steal funds 

Assumes the SNARK is non-malleable:
adversary cannot use proof 𝜋 for x to build a proof 𝜋’ for some “related” x’

(e.g., where in x’ the address A is replaced by some A’)



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins
Bob’s ID and coin C3

are not revealed

Contract checks (i) proof  𝜋 is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers  

nf,  proof 𝜋,  A
(over Tor)

Merkle
root

H1, H2:  R ⇾ {0,1}256

contract state

next = 5

Withdraw coin #3
to addr A:



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf,  proof 𝜋,  A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because  nf = H2(k’)  is now nullified. 

… but observer does not 
know which are spent

100 DAI
to address A

Merkle
root

H1, H2:  R ⇾ {0,1}256

next = 5

contract state

Withdraw coin #3
to addr A:



Who pays the withdrawal gas fee?
Problem:   how does Bob pay for gas for the withdrawal Tx?
• If paid from Bob’s address, then fresh address is linkable to Bob

Tornado’s solution:   Bob uses a relay

nf, proof 𝜋,  A
(over Tor)

(100-gas) DAI
to address A

relay

nf, proof 𝜋,  A
and gas

tornado
contract

gas

Note:  relay and Tornado also charge a fee



Tornado Cash:  the UI

After deposit:  get a note Later, use note to withdraw

enter note here

address

(wait before withdrawing)



Anonymity set

# leaves occupied
over all pools

Oct. 2021

1 ETH pool



Compliance tool

enter note here



Compliance tool

Reveals source address and destination address of funds



ZCASH / IRONFISH

Two L1 blockchains that extend Bitcoin.

Sapling (Zcash v2) launched in Aug. 2018.

Similar use of Nullifiers,  support for any value Tx. 



Quick review
A zk-SNARK for a circuit 𝐶:
• For a public statement 𝑥,  prover outputs a proof that “convinces” 

verifier that prover knows  𝑤 s.t. 𝐶(𝑥,𝑤) = 0.    
• Proof is short and fast to verify

What is it good for?
• Private payments and private Dapp business logic (Aleo)
• Private compliance  and   L2 scalability with privacy

More to think about:   
• private DAO participation?    private governance?



Further topics

Privately communicating with the blockchain:   Nym
• How to privately compensate proxies for relaying traffic

Next lecture:   how to build a SNARK



END  OF  LECTURE



Two types of argument systems:  interactive vs. non-interactive

Interaclve:   proof takes mullple P↔V rounds of interaclon 
• Useful when there is a single verifier, e.g.  a compliance auditor
• Example:  zero-knowledge proof of taxes to tax authority

Non-interaclve:   prover sends a single message (proof) to verifier
• Used when many verifiers need to verify proof
• SNARK:   short proof that is fast to verify


