
Using zk-SNARKs for Privacy on the Blockchain

CS251 Fall 2021
(cs251.stanford.edu)

Dan Boneh

Can we have private transactions
on a public blockchain?

Naïve reasoning:
universal verifiability ⇒ transaction data must be public.
otherwise, how we can the public verify Tx ??

Goal for this lecture:
crypto magic ⇒ private Tx on a publicly verifiable blockchain

Crypto tools: commitments and zero knowledge proofs

The need for privacy in the financial system

Supply chain privacy:
A car company does not want to reveal
how much it pays its supplier for tires, wipers, etc.

Payment privacy:
• A company that pays its employees in crypto needs to keep list

of employees and their salaries private.
• Privacy for rent, donations, purchases

Business logic privacy: Can the code of a smart contract be private?

Last lecture

Neither Bitcoin nor Ethereum are private

Address 0x1654b0c3f62902d7A86237…

etherscan.io:

mixer
address:

M

Simple blockchain anonymity via mixing
fresh addr X
from Alice TLS

1 ETH to M
from Alice

1 ETH to M
from Bob

1 ETH to M
from Carol

blockchain

fresh addr Y
from Bob TLS

fresh addr Z
from Carol TLS

Send:
1 ETH to X
1 ETH to Y
1 ETH to Z

Observer knows Y belongs to one of {Alice, Bob, Carol} but does not know which one
⟹ anonymity set of size 3.
⟹ Bob can mix again with different parties to increase anonymity set.

Problems: (i) mixer knows all, (ii) mixer can abscond with 3 ETH !!

Mixing without a mixer? on Bitcoin: CoinJoin (e.g., Wasabi), on Ethereum: Tornado cash

has 3 ETH

An central tool for
privacy on the blockchain

What is a zk-SNARK?

zk-SNARK: Blockchain Applications
Private Tx on a public blockchain:
• Confidential transactions
• Tornado cash, Zcash, IronFish
• Private Dapps: Aleo

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes

Scalability: privacy in zk-SNARK Rollup (next week)

(1) arithmetic circuits
• Fix a finite field 𝔽 = 0,… , 𝑝 − 1 for some prime p>2.

• Arithmetic circuit: 𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled +, −, or ×
inputs are labeled 1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe

• |𝐶| = # gates in 𝐶 𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)

Interesting arithmetic circuits

Examples:

• Chash(h, m): outputs 0 if SHA256(m) = h , and ≠0 otherwise

Chash(h, m) = (h – SHA256(m)) , |Chash| ≈ 20K gates

• Csig(pk, m, σ): outputs 0 if σ is a valid ECDSA signature
on m with respect to pk

(2) Argument systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽
public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒙, 𝒘 𝒙
P’s goal: “convince” V that ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

accept or
reject

(non-interactive) Preprocessing argument systems

Preprocessing (setup): S(𝐶) ⇾ public parameters (𝑺𝒑, 𝑺𝒗)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽

public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝑺𝒑, 𝒙, 𝒘 𝑺𝒗, 𝒙

accept or
reject

proof 𝜋

Preprocessing argument System
A preprocessing argument system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑆𝑝, 𝑆𝑣) for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘) ⇾ proof 𝜋

• V(𝑆𝑣, 𝒙, 𝝅) ⇾ accept or reject

Argument system: requirements (informal)
Prover P(𝑆𝑝, 𝒙,𝒘) Verifier V (𝑆𝑣, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete: ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ Pr[V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept] = 1

Knowledge sound: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

P* does not “know” 𝒘 ⇒ Pr[V(Sv, 𝑥, 𝜋) = accept] < negligible

Optional: Zero knowledge: (𝑆𝑣 , 𝒙, 𝜋) “reveals nothing” about 𝒘

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑆𝑝, 𝑆𝑣) for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘) ⇾ short proof 𝜋 ; |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)

• V(𝑆𝑣, 𝒙, 𝝅) fast to verify ; time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)

Why preprocess 𝐶??short “summary” of circuit

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑆𝑝, 𝑆𝑣) for prover and verifier

• P(𝑆𝑝, 𝒙,𝒘) ⇾ short proof 𝜋 ; |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)

• V(𝑆𝑣, 𝒙, 𝝅) fast to verify ; time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)

SNARK: (S, P, V) is complete, knowledge sound, and succinct

zk-SNARK: (S, P, V) is a SNARK and is zero knowledge

The trivial argument system
(a) Prover sends 𝒘 to verifier,
(b) Verifier checks if 𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:
(1) 𝒘 might be secret: prover does not want to reveal 𝒘 to verifier

(2) 𝒘 might be long: we want a “short” proof

(3) computing 𝐶(𝒙,𝒘)may be hard: we want a “fast” verifier

An example
Prover: I know (𝑥1, … , 𝑥!) ∈ 𝑋 such that 𝐻(𝑥1, … , 𝑥𝑛) = 𝑦

Prover Verifier

statement: 𝑦
witness: 𝑥1, … , 𝑥!

statement: 𝑦

Proof 𝜋 accept or reject

SNARK: size(𝜋) and VerifyTime(𝜋) is 𝑂(log 𝑛) !!

An example

statement: 𝑦
witness: 𝑥1, … , 𝑥!

statement: 𝑦

Proof 𝜋 accept or reject

How is this possible ???

SNARK: size(𝜋) and VerifyTime(𝜋) is 𝑂(log 𝑛) !!

Prover Verifier

Types of preprocessing Setup
Recall setup for circuit 𝐶: S(𝐶; 𝑟) ⇾ public parameters (𝑆𝑝, 𝑆𝑣)

Types of setup:

trusted setup per circuit: S(𝐶; 𝑟) random 𝑟 must be kept secret from prover

prover learns 𝑟 ⇒ can prove false statements

trusted but universal (updatable) setup: secret 𝑟 is independent of 𝐶

𝑺 = 𝑆%!%&, 𝑆%!'() : 𝑆%!%& 𝜆; 𝑟 ⇾ 𝑝𝑝, 𝑆%!'()(𝑝𝑝, 𝐶) ⇾ (𝑆*, 𝑆+)

transparent setup: S(𝐶) does not use secret data (no trusted setup)

one-time no secret data from prover

be
tt

er

random bits

Significant progress in recent years

• Kilian’92, Micali’94: succinct transparent arguments from PCP
• impractical prover time

• GGPR’13, Groth’16, …: linear prover time, constant size proof (𝑂!(1))
• trusted setup per circuit (setup alg. uses secret randomness)
• compromised setup ⇒ proofs of false statements

• Sonic’19, Marlin’19, Plonk’19, … : universal trusted setup

• DARK’19, Halo’19, STARK, … : no trusted setup (transparent)

Types of SNARKs (partial list)

size of
proof 𝜋

size of Sp
(beyond 𝐶)

verifier
time

trusted
setup?

Groth’16 O(1) O(|𝐶|) O(1) yes/per circuit

Plonk/Marlin O(1) O(|𝐶|) O(1) yes/universal

Bulletproofs O(log|𝐶|) O(1) O(|𝐶|) no

STARK O(log|𝐶|) O(1) O(log|𝐶|) no

DARK O(log|𝐶|) O(1) O(log|𝐶|) no

⋮ ⋮ ⋮

A SNARK software system

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,

Snarky,
…

compiler

SNARK
friendly
format
R1CS,
AIR,

Plonk-CG

SNARK
backend

x, witness

Proof 𝜋

(Sp, Sv)setup

CPU heavy

verifier accept/
rejectx

How to define “knowledge soundness”
and “zero knowledge”?

Definitions: (1) knowledge sound

Goal: if V accepts then P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

What does it mean to ”know” 𝒘 ??

informal def: P knows 𝒘, if 𝒘 can be “extracted” from P

P

Definitions: (1) knowledge sound
Formally: (S, P, V) is knowledge sound for a circuit 𝐶 if

for every poly. time adversary A = (A0, A1) such that

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝜋 ⇽ A1(Sp, 𝑥, st):

Pr[V(Sv, 𝑥, 𝜋) = accept] > 1/106 (non-negligible)

there is an efficient extractor 𝐸 (that uses A1 as a black box) s.t.

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝑤 ⇽ 𝐸A1(Sp,𝑥,st) (Sp, 𝑥):

Pr[C(𝑥, 𝑤) = 0] > 1/106 − 𝜖 (for a negligible 𝜖)

Definitions: (2) Zero knowledge

A story about the lady sipping tea

Definitions: (2) Zero knowledge (against an honest verifier)

(S, P, V) is zero knowledge if for every 𝑥 ∈ 𝔽.

proof 𝜋 “reveals nothing” about 𝒘, other than its existence

What does it mean to “reveal nothing” ??

Informal def: 𝜋 “reveals nothing” about 𝒘 if the verifier can
generate 𝜋 by itself ⟹ it learned nothing new from 𝜋

(S, P, V) is zero knowledge if there is an efficient alg. Sim
s.t. (Sp, Sv, 𝜋) ⇽ Sim(𝐶, 𝑥) “look like” the real Sp, Sv and 𝜋.

Main point: Sim(𝐶,x) simulates 𝜋 without knowledge of 𝒘
(but also outputs Sp, Sv)

Definitions: (2) Zero knowledge (against an honest verifier)

Formally: (S, P, V) is (honest verifier) zero knowledge for a circuit 𝐶
if there is an efficient simulator Sim such that
for all 𝑥 ∈ 𝔽! s.t. ∃𝑤: 𝐶 𝑥, 𝑤 = 0 the distribution:

(Sp, Sv, 𝑥, 𝜋): where (Sp, Sv) ⇽ S(𝐶) , 𝜋 ⇽ P(Sp , 𝑥, 𝒘)

is indistinguishable from the distribution:

(Sp, Sv, 𝑥, 𝜋): where (Sp, Sv, 𝜋) ⇽ Sim(𝐶, 𝑥)

How to build a zk-SNARK?
Recall: A zero knowledge preprocessing argument system.

Prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Next lecture

Launched on the Ethereum blockchain on May 2020 (v2)

Tornado cash: a zk-based mixer

Tornado Cash: a ZK-mixer

account

MIX

Tornado.cash
contract

fresh
address

(1000 DAI)

???

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

1000 DAI

The tornado cash contract (simplified)

nf1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)Currently:

• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4

H1, H2: R ⇾ {0,1}256

C1 C2 C3 0 0 … 0

public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

CRHF

Tornado cash: deposit (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 0 0 … 0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins
Build Merkle proof for leaf #4:

MerkleProof(4) (leaf=0)
choose random k, r in R
set C4 = H1(k, r)

H1, H2: R ⇾ {0,1}256

contract state

next = 4
100 DAI

C4 , MerkleProof(4)

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

tree of
height 20

(220 leaves)

100 DAI
C4 , MerkleProof(4)

Tornado contract does:

(1) verify MerkleProof(4) with
respect to current stored root

(2) use C4 and MerkleProof(4) to
compute updated Merkle root

(3) update state

next = 4

H1, H2: R ⇾ {0,1}256

Tornado contract C1 C2 C3 0 0 … 0

public list of coins

Coins
Merkle

root

Tornado cash: deposit (simplified)

coins
Merkle

root
(32 bytes)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

100 DAI
C4 , MerkleProof(4)

public list of coins

Tornado contract does:

(1) verify MerkleProof(4) with
respect to current stored root

(2) use C4 and MerkleProof(4) to
compute updated Merkle root

(3) update state

next = 4

H1, H2: R ⇾ {0,1}256

Tornado contract

Tornado cash: deposit (simplified)

nf1

nullifiers

updated
Merkle

root

Treasury: 400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

100 DAI
C4 , MerkleProof(4)

C1 C2 C3 C4 0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coinsnote: (k, r)
Alice keeps secret
(one note per coin)

Every deposit: new Coin
added sequentially to tree

an observer sees who
owns which coins

Alice deposits 100 DAI:

updated contract state

next = 5

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

Withdraw coin #3
to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H2(k’)

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof 𝜋 for
public statement x = (root, nf, A)
secret witness w = (k’, r’, C3 , MerkleProof(C3))

where Circuit(x,w)=0 iff:

(i) C3 = (leaf #3 of root), i.e. MerkleProof(C3) is valid,

(ii) C3 = H1(k’, r’), and

(iii) nf = H2(k’).

H1, H2: R ⇾ {0,1}256

(address A not used in Circuit)

Tornado cash: withdrawal (simplified)

Withdraw coin #3 to addr A:

C1 C2 C3 C4 0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof 𝜋 for
public statement x = (root, nf, A)
secret witness w = (k’, r’, C3 , MerkleProof(C3))

H1, H2: R ⇾ {0,1}256

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:
adversary cannot use proof 𝜋 for x to build a proof 𝜋’ for some “related” x’

(e.g., where in x’ the address A is replaced by some A’)

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 400 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins
Bob’s ID and coin C3

are not revealed

Contract checks (i) proof 𝜋 is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

nf, proof 𝜋, A
(over Tor)

Merkle
root

H1, H2: R ⇾ {0,1}256

contract state

next = 5

Withdraw coin #3
to addr A:

Tornado cash: withdrawal (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury: 300 DAI100 DAI pool:
each coin = 100 DAI

nf2
(32 bytes)

C1 C2 C3 C4 0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf, proof 𝜋, A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because nf = H2(k’) is now nullified.

… but observer does not
know which are spent

100 DAI
to address A

Merkle
root

H1, H2: R ⇾ {0,1}256

next = 5

contract state

Withdraw coin #3
to addr A:

Who pays the withdrawal gas fee?
Problem: how does Bob pay for gas for the withdrawal Tx?
• If paid from Bob’s address, then fresh address is linkable to Bob

Tornado’s solution: Bob uses a relay

nf, proof 𝜋, A
(over Tor)

(100-gas) DAI
to address A

relay

nf, proof 𝜋, A
and gas

tornado
contract

gas

Note: relay and Tornado also charge a fee

Tornado Cash: the UI

After deposit: get a note Later, use note to withdraw

enter note here

address

(wait before withdrawing)

Anonymity set

leaves occupied
over all pools

Oct. 2021

1 ETH pool

Compliance tool

enter note here

Compliance tool

Reveals source address and destination address of funds

ZCASH / IRONFISH

Two L1 blockchains that extend Bitcoin.

Sapling (Zcash v2) launched in Aug. 2018.

Similar use of Nullifiers, support for any value Tx.

Quick review
A zk-SNARK for a circuit 𝐶:
• For a public statement 𝑥, prover outputs a proof that “convinces”

verifier that prover knows 𝑤 s.t. 𝐶(𝑥,𝑤) = 0.
• Proof is short and fast to verify

What is it good for?
• Private payments and private Dapp business logic (Aleo)
• Private compliance and L2 scalability with privacy

More to think about:
• private DAO participation? private governance?

Further topics

Privately communicating with the blockchain: Nym
• How to privately compensate proxies for relaying traffic

Next lecture: how to build a SNARK

END OF LECTURE

Two types of argument systems: interactive vs. non-interactive

Interaclve: proof takes mullple P↔V rounds of interaclon
• Useful when there is a single verifier, e.g. a compliance auditor
• Example: zero-knowledge proof of taxes to tax authority

Non-interaclve: prover sends a single message (proof) to verifier
• Used when many verifiers need to verify proof
• SNARK: short proof that is fast to verify

