CS251 Fall 2021
(cs251.stanford.edu)

Using zk-SNARKs for Privacy on the Blockchain

Dan Boneh

Naive reasoning:

universal verifiability = transaction data must be pubilic.
otherwise, how we can the public verify Tx ??

Goal for this lecture:
crypto magic = private Tx on a publicly verifiable blockchain

Crypto tools: commitments and zero knowledge proofs

The need for privacy in the financial system

Supply chain privacy:

A car company does not want to reveal
how much it pays its supplier for tires, wipers, etc.

Payment privacy:
A company that pays its employees in crypto needs to keep list
of employees and their salaries private.

* Privacy for rent, donations, purchases

Business logic privacy: Can the code of a smart contract be private?

Last lecture

Neither Bitcoin nor Ethereum are private

) Txn Hash Method ®
etherscan.io:

® 0x0269eff8b4196558c07 ... Set Approval For...
Address 0x1654b0c3f62902d7A86237...

@ Oxa3dacb0e7c579a99cd... Cancel Order_
Balance: 1.114479450024297906 Ether

® 0x73785abcc7ccf030d6a... Set Approval For...
Ether Value: $4,286.34 (@ $3,846.05/ETH)

® 0x1463293c495069d61c... Atomic Match_

Block

13426561

13397993

13387834

13387703

Simple blockchain anonymity via mixing

<«LETHto M fresh addr X =, (A
from Alice from Alice | ¢ address:

< 1ETHto M @ fresh addr Y =
from Bob from Bob E

LLETHto M a
from Carol

Observer knows Y belongs to one of {Alice, Bob, Carol} but does not know which one
— anonymity set of size 3.
— Bob can mix again with different parties to increase anonymity set.

fresh addr Z
from Carol

=)

TLS

has 3 ETH

S
o
(@)
=~
o
>
L
=

Problems: (i) mixer knows all, (ii) mixer can abscond with 3 ETH !!

Mixing without a mixer? on Bitcoin: Coinloin (e.g., Wasabi), on Ethereum: Tornado cash

What is a zk-SNARK?

An central tool for
privacy on the blockchain

zk-SNARK: Blockchain Applications

Private Tx on a public blockchain:
* Confidential transactions
 Tornado cash, Zcash, IronFish
* Private Dapps: Aleo

Compliance:
* Proving solvency in zero-knowledge
e Zero-knowledge taxes

Scalability: privacy in zk-SNARK Rollup (next week)

(1) arithmetic circuits

* Fix afinite field F ={0,..,p — 1} for some prime p>2.

* Arithmeticcircuit: C: F* — F
* directed acyclic graph (DAG) where x1(x1 + 22+ D2 — 1)

internal nodes are labeled +, —, or X
inputs are labeled 1, xy, ..., x,

e defines an n-variate polynomial
with an evaluation recipe B&
e |C| =#gatesinC

Interesting arithmetic circuits

Examples:

Ciasnlh, m): outputs O if SHA256(m)=h, and z0 otherwise
Chash(h, m) = (h —SHA256(m)) , | Chash | = 20K gates

* Cgolpk, m, 0): outputs O if oisavalid ECDSA signature
on m with respect to pk

(2) Argument systems (orne)

Public arithmetic circuit: C(x, w) — F

A

public statement in F" secret witness in F™"

X, W X
P’s goal: “convince” Vthat 3w s.t. C(x,w) =0

accept or
reject

(non-interactive) Preprocessing argument systems

Public arithmetic circuit: C(x, w) — [F

)

public statement in F" secret witness in F™"

Preprocessing (setup): S(C) — public parameters (S,, S,)

Sy, X, W S, X

proof

accept or
reject

Preprocessing argument System

A preprocessing argument system is a triple (S, P, V):
* S(C) — public parameters (S,, §,) for prover and verifier
* P(S,, x,w) = proof

* V(S,, x, ™) — accept or reject

Argument system: requirements (informal)

Prover P(S,, x, w) Verifier V (S, x, 1)

proof 71

accept or reject

Complete: Vx,w: C(x,w) =0 = Pr[V(S, x, P(S,, x, w)) = accept] =1
Knowledge sound: V accepts = P “knows” ws.t. C(x,w) =0

P* does not “know” w = Pr[V(S, x, m) = accept | < negligible

Optional: Zero knowledge: (S,,x, ™) “reveals nothing” about w

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

* S(C) — public parameters (S,, S,) for prover and verifier

* P(S,, x,w) — short proof ©

e V(S,, x,) fastto verify

’

L

short “summary” of circuit

;|| = 0(log(|Cl), 2)

time(V) = 0(lx|, log(ICl), 2)

Why preprocess C??

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing argument system is a triple (S, P, V):

* S(C) — public parameters (S,, S,) for prover and verifier

* P(S,, x,w) — shortproof m ; ||m| = O(log(|C|), 2)

* V(S,, x,m) fasttoverify ; time(V)=0(|x|, log(|C|), 1)

SNARK: (S, P, V) is complete, knowledge sound, and succinct

zk-SNARK: (S, P, V) is a SNARK and is zero knowledge

The trivial argument system

(a) Prover sends w to verifier,
(b) Verifier checksif C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover does not want to reveal w to verifier
(2) w might be long: we want a “short” proof

(3) computing C(x,w) may be hard: we want a “fast” verifier

An example

Prover: |know (xy,..,%X,) €X suchthat H(xy,..,x,) =y

SNARK: size(m) and VerifyTime(m) is O(logn) !!

statement: y statement: y]
witness: Xy, ..., Xp

@ Proof TT) accept or reject

An example
@w s this pc?ssibﬁi?;'

—q
SNARK: size(m) and VerifyTime(m) is O(logn) !!

statement: y statement: y)
witness: Xy, ..., Xp

@ Proof TT) accept or reject

Types of preprocessing Setup

Recall setup for circuit C: S(C;r) — public parameters (S,,S,)

random bits

Types of setup:

trusted setup per circuit:
prover learnsr = can prove false statements

S(C; r) random r must be kept secret from prover

trusted but universal (updatable) setup: secret r is independent of C

g
3
S = (Sinit> Sindex): Sinit(;1) =2 pD, Sindgex(op, C) — (Sp!Sv)
l one-time - no secret data from prover .
v transparent setup: S(C) does not use secret data (no trusted setup)

Significant progress in recent years

Kilian’92, Micali’94: succinct transparent arguments from PCP
* impractical prover time

GGPR’13, Groth’16, ...: linear prover time, constant size proof o,
 trusted setup per circuit (setup alg. uses secret randomness)
e compromised setup = proofs of false statements

Sonic’19, Marlin’19, Plonk’19, ... : universal trusted setup

DARK’19, Halo’19, STARLK, ... : no trusted setup (transparent)

Types of SNARKS (partial list)

Groth’16 0O(1) o(|C]) 0(1) yes/per circuit
Plonk/Marlin 0(1) o(|C]) 0(1) yes/universal
Bulletproofs O(log|C]) O(1) o(|C))

STARK O(log|C]) O(1) O(log|C])

DARK O(log|C]|) O(1) O(log|C])

A SNARK software system

CPU heavy }
SNARK

DSL

roeram SNARK backend
. friendly Proof m
Circom, . T ——
ZoKrates, compiler

R1GS, X, withess
AIR,

Plonk-CG

Cairo, verifier accept/
Snarky, % rejeCt

Leo,
Zinc,

How to define “knowledge soundness”

and “zero knowledge”?

Definitions: (1) knowledge sound

Goal: if Vaccepts then P “knows” ws.t. C(x,w) =0
What does it mean to "know” w ??

informal def: P knows w, if w can be “extracted” from P

Definitions: (1) knowledge sound

Formally: (S, P, V) is knowledge sound for a circuit C if

for every poly. time adversary A = (A, A;) such that
S(C) — (Spl SV)I (xl St) < AO(Sp)r T Al(Spr X, St):

Pr[V(S,, x,) = accept] > 1/10° (hon-negligible)

there is an efficient extractor E (that uses A; as a black box) s.t.

S(C) = (S, Su), (x, st) ¢ Ay(S,), w = ERMOEU (S)

Pr[C(x, w) = 0] > 1/10° — € (for a negligible €)

o
6o
o
2
S
O
c
R
O
L
Q
N
o

A story about the lady sipping tea

Definitions

Definitions: (2) Zero knowledge ...

(S, P, V) is zero knowledge if for every x € F"
proof T “reveals nothing” about w, other than its existence

What does it mean to “reveal nothing” ??

Informal def: ™ “reveals nothing” about w if the verifier can
generate T by itself — it learned nothing new from «

(S, P, V) is zero knowledge if there is an efficient alg. Sim
s.t. (S, Sy,) « Sim(C, x) “look like” the real S,, S, and m.

Main point: Sim(C,x) simulates m without knowledge of w
(but also outputs S, S,)

Definitions: (2) Zero knowledge ...

Formally: (S, P, V) is (honest verifier) Zero knowledge for a circuit C

if there is an efficient simulator Sim such that

forallx € F* s.t. 3w:C(x,w) = 0 the distribution:

(Spy Sw X, m): where (S, S,) «+ S(C), ™ P(S,,x, w)

is indistinguishable from the distribution:

(Sp, S» X,). where (S, S,, m) « Sim(C, x)

How to build a zk-SNARK?

Recall: A zero knowledge preprocessing argument system.

Prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Next lecture

Tornado cash: a zk-based mixer

Launched on the Ethereum blockchain on May 2020 (v2)

Tornado Cash: a ZK-mixer

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

\MQQK
@ 277
B

1000 DAI » MIX 1000 DAI

«——DUy NFT > | NFT

privately market

account fresh
address

DN (1000 DAI)
1000 Tornado.cash

contract

The tornado cash contract (simpiified)

100 DAI pool:

each coin = 100 DAI

Currently:

three coins in pool
contract has 300 DAI
two nullifiers stored

Treasury: 300 DA

coins nf1
Merkle ¢

root nt,
(32 bytes)
next=4

nullifiers
contract state f
explicit list:

Hll HZ: R— {011}256

Coins
Merkle
root

C,C,C;0 0..0

public list of coins

one entry per spent coin

CRHF

Tornado cash: deposit (simplified)

Hll HZ: R— {011}256

100 DAI pool: Treasury: 300 DAI
each coin = 100 DAI . Coins
coins nf1 Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes)

100 DAI
> next = 4
C, , MerkleProof(4)
nullifiers ¢ G G0O0..0
Build Merkle proof for leaf #4: |contract state $! ,
MerkleProof(4) (leaf=0) public list of coins

choose random k, r in R explicit list:

set C4=Hyl(k, r) one entry per spent coin

Tornado cash: deposit (simplified)

H,, H,: R — {0,1}2°%
coins
C,, MerkleProof(4) Merkle
root root
(32 bytes)
Tornado contract does:
next =4
(1) verify MerkleProof(4) with
respect to current stored root
Tornado contract Cl Cz C3 0 0..0
(2) use C, and MerkleProof(4) to
compute updated Merkle root public list of coins

(3) update state

Tornado cash: deposit (simplified)

H,, H,: R — {0,1}2°%
coins
C,, MerkleProof(4) Merkle
rOOt root
(32 bytes)
Tornado contract does:
next =4
(1) verify MerkleProof(4) with
respect to current stored root
Tornado contract Cl Cz C3 C4 0..0
(2) use C, and MerkleProof(4) to
compute updated Merkle root public list of coins

(3) update state

Tornado cash: deposit (simpiified)

100 DAI pool: Treasury: 400 DAI
each coin = 100 DAI updated
uPdatEd nfl Merkle
Merkle root
Alice deposits 100 DAI: root nfz
(32 bytes)

100 DAI
C, , MerkleProof(4)

> next =5

nullifiers C; (G CGC 0.0
—

updated contract state

|

note: (k, r)
Alice keeps secret
(one note per coin)

public list of coins

Every deposit: new Coin an observer sees who

owns which coins

added sequentially to tree

Tornado cash: withdrawal (simpiified)

Hy, Hy: R — {0,1}2°®

100 DAI pool: Treasury: 400 DAI
. Merkle
each coin = 100 DAI coins nfl oot
Merkle ¢
nt,

Withdraw coin #3 root
to addr A: (82:bytes)

;) next=>5

@ has note= (k’, r’) ;G CCO0..0
nullifiers v
set nf=H,(k’) contract state public list of coins

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)

Tornado cash: withdrawal (simpiified)

Hy, Hy: R — {0,1}2°®

Withdraw coin #3 to addr A:

Merkle
root

has note= (k/, r’) set nf =H,(k’)

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (k’, r’, C3, MerkleProof(C;)) ;GG C,0...0
where Circuit(x,w)=0 iff:
(i) Cs;=(leaf #3 of root), i.e. MerkleProof(C;) is valid,
(ii) Cs3=Hy(k’, r’), and
(iii) nf =Hy(k’). (address A not used in Circuit)

Tornado cash: withdrawal (simpiified)

The address A is part of the statement to ensure that a miner cannot change A to
its own address and steal funds

Assumes the SNARK is non-malleable:
adversary cannot use proof for x to build a proof " for some “related” x’
(e.g., where in x’ the address A is replaced by some A’)

C,C,C;C,0..0

Bob builds zk-SNARK proof m for
public statement x = (root, nf, A)

secret witness w = (k’, r’, Cs, MerkleProof(C;))

Tornado cash: withdrawal (simpiified)

Hll HZ: R— {011}256

100 DAI pool: Treasury: 400 DAI
each coin = 100 DAI . Merkle
coins nf1 root
Withdraw coin #3 Merkle f
to addr A: root 2

(32 bytes)
f, proofm, A
(over Tor) next =5
Bob’s ID and coin C;

are not revealed nullifiers -)
contract state public list of coins

C,C,C;C,0..0
l_'_'

Contract checks (i) proof m is valid for (root, nf, A), and
(ii) nf is not in the list of nullifiers

Tornado cash: withdrawal

(simplified)

Hy, Hy: R — {0,1}2°®

Merkle
root

C,C,C;C,0..0
l_'_'

100 DAI pool: Treasury: 300 DA
each coin = 100 DAI .
coins nf !
Withdraw coin #3 Merkle f
to addr A: root 2
b
_of proofz. A , | ™ | nf
(over Tor) next =5
nullifiers
to address A contract state

nf and reveal nothing about which coin was spent.

public list of coins
... but observer does not
know which are spent

But, coin #3 cannot be spent again, because nf = H,(k’)

is now nullified.

Who pays the withdrawal gas fee?

Problem: how does Bob pay for gas for the withdrawal Tx?
e |If paid from Bob’s address, then fresh address is linkable to Bob

Tornado’s solution: Bob uses a relay

‘ e f_proofm, A |
nf proofm, A ' r —(100-gas) DAl ,
(over Tor) ' ane ges to address A
rela
y tornado
contract

Note: relay and Tornado also charge a fee

Tornado Cash: the Ul

Deposit / Withdraw Deposit \ Withdraw

Token Note 3

DAT enter note here

Amount 3 Recipient Address Donate
) (@)))
@, O @, @, address
100 DAI 1K DAI 10K DAI 100K DAI

After deposit: get a note Later, use note to withdraw

(wait before withdrawing)

88,036

Total deposits

leaves occupied
over all pools

Oct. 2021

Anonymity set

$3,798,916,834

Total USD deposited

1 ETH pool

30141 :qual user deposits

Latest deposits

30141. 4 minutes ago
30140. 9 minutes ago
30139. 2 hours ago
30138. 3 hours ago

30137. 3 hours ago

30136. 3 hours ago
30135. 4 hours ago
30134. 5 hours ago

30133. 5 hours ago

30132. 6 hours ago

Compliance tool

Tornado.cash compliance tool

Maintaining financial privacy is essential to preserving our freedoms.

However, it should not come at the cost of non-compliance. With Tornado.cash, you can always
provide cryptographically verified proof of transactional history using the Ethereum address you
used to deposit or withdraw funds. This might be necessary to show the origin of assets held in

your withdrawal address.
To generate a compliance report, please enter your Tornado.Cash Note below.

Note

enter note here

Compliance tool

Deposit Withdrawal 0.942 ETH
Verified

| Generate PDF report ’

Reveals source address and destination address of funds

ZCASH / IRONFISH

Two L1 blockchains that extend Bitcoin.

Sapling (Zcash v2) launched in Aug. 2018.

Similar use of Nullifiers, support for any value Tx.

Quick review

A zk-SNARK for a circuit C:

* For a public statement x, prover outputs a proof that “convinces”
verifier that prover knows w st. C(x,w) = 0.

* Proof is short and fast to verify

What is it good for?

* Private payments and private Dapp business logic (Aleo)
* Private compliance and L2 scalability with privacy

More to think about:

e private DAO participation? private governance?

Further topics

Privately communicating with the blockchain: Nym
* How to privately compensate proxies for relaying traffic

Next lecture: how to build a SNARK

END OF LECTURE

Two types of argument systems: interactive vs. non-interactive

Interactive: proof takes multiple P<V rounds of interaction
e Useful when there is a single verifier, e.g. a compliance auditor
 Example: zero-knowledge proof of taxes to tax authority

Non-interactive: prover sends a single message (proof) to verifier
* Used when many verifiers need to verify proof
 SNARK: short proof that is fast to verify

