CS251 Fall 2021

(cs251.stanford.edu)

DeFi Lending Systems

Dan Boneh

HW#3 posted later tonight. Please fill out the feedback form on Ed.

By popular request ...

A few words on WorldCoin

Where we are in the course

- How consensus protocols work
- **Bitcoin**: the UTXO model, and the Bitcoin scripting language
- **Ethereum** (the blockchain computer): the EVM and Solidity

Current topic: **decentralized finance**

on-chain: exchanges, stablecoins, today: lending

<u>Next</u>: privacy on the blockchain, scaling the blockchain, and interoperability across blockchains

DeFi Lending Protocols

Goal: explain how decentralized lending works

This is not investment or financial advice

The role of banks in the economy

Banks bring together lenders and borrowers

The role of banks in the economy

Crypto: CeFilending (e.g., Blockfi, Nexo, ...)

Same as with a traditional bank:

Alice gives her assets to the CeFi institution to lend out to Bob

(1 ETH = 100 UNI)

CeFi's concern: what if Bob defaults on loan?

 \implies CeFi will absorb the loss

Solution: require Bob to lock up collateral

Several things can happen next:

(1) Bob repays loan

(1 ETH = 100 UNI)

Several things can happen next:

- (1) Bob repays loan
- (2) Bob defaults on loan
- (3) Liquidation: value of loan increases relative to collateral

lender needs to liquidate **before** value(debt) > value(collateral)

(1 ETH = 400 UNI)

Terminology

Collateral: assets that serve as a security deposit

Over-collateralization: borrower has to provide value(collateral) > value(loan)

Under-collateralization: *value(collateral) < value(loan)*

Liquidation:

collateral factor

if value(debt) > $(0.6) \times$ value(collateral)

then collateral is liquidated until inequality flips (liquidation reduces both sides of the inequality)

Collateral factor

CollateralFactor \in [0,1]

- Max value that can be borrowed using this collateral
- High volatility asset \implies low collateral factor
- Relatively stable asset \implies higher collateral factor

<u>Examples:</u> (on Compound) ETH, DAI: 75%, UNI: 60%, YFI: 35%

Health of a debt position

BorrowCapacity =
$$\sum_{i}$$
 value(collateral_i) × CollateralFactor_i
(in ETH)

$$health = \frac{BorrowCapacity}{value(TotalDebt)}$$

helath < 1 \implies triggers liquidation until (health \ge 1)

Example: Aave dashboard (a DeFi lending Dapp)

Credit: Arthur Gervais

If Bob has collateral, why can't he just buy ETH?

- Bob may need ETH (e.g., to buy in-game Axies), but he might not want to sell his collateral (e.g., an NFT)
- As an investment strategy: using UNI to borrow ETH gives Bob exposure to both

The problem with CeFi lending

Users must trust the CeFi institution:

- Not to get hacked, steal assets, or miscalculate
- This is why traditional finance is regulated
- Interest payments go to the exchange, not liquidity provider Alice
- CeFi fully controls spread (borrow interest deposit interest)

DeFi Lending

Can we build an on-chain lending Dapp?

- \Rightarrow no central trusted parties
- \Rightarrow code available on Ethereum for inspection

A first idea: an order book Dapp

Credit: Eddy Lazzarin

Challenges

- **Computationally expensive**: matching borrowers to lenders requires many transactions per person (post a bid, retract if the market changes, repeat)
- **Concentrated risk**: lenders are exposed to their direct counterparty defaulting
- **Complex withdrawal**: a lender must wait for their counter-parties to repay their debts

A better approach: liquidity pools

Over-collateralized lending: Compound and Aave

Example: Compound cTokens

Value of X, Y, Z is determined by an exchange rate: Token to cToken exchange rate is calculated every block

Borrowers

Bob's accrued interest increases ETH/cETH exchange rate

 \implies benefit cETH token holders (ETH liquidity providers)

The exchange rate

Consider the ETH marker:

Supplying ETH:adds to UnderlyingBalanceBorrowing ETH:adds to totalBorrowBalanceInterest:added repeatedly to totalBorrowBalance

ExchangeRate _{ETH/cETH} =	UnderlyingBalance _{ETH} + totalBorrowBalance _{ETH} – reserve _{ETH}
	cTokenSupply _{ETH}

⇒ As totalBorrowBalance increases so does ExchangeRate

The interest rate: constantly updates

Key idea: determined by demand for asset vs. asset market size

Utilization ratio:
$$U_{ETH} = \frac{\text{totalBorrowBalance}_{ETH}}{\text{availableBalance}_{ETH} + \text{totalBorrowBalance}_{ETH}}$$

higher totalBorrowBalance, or lower availableBalance in contract higher $U_{ETH} \in [0,1]$

interestRate_{ETH} = BaseRate_{ETH} +
$$\mathbf{U}_{ETH}$$
 × slope_{ETH}

Example: Compound ETH market

Liquidation: debt > BorrowCapacity

If user's health < 1 the <u>anyone</u> can call:

This function transfers liquidator's ETH into ETH market, and gives the liquidator cDAI from user's collateral

Liquidation: debt > BorrowCapacity

If user's health < 1 the <u>anyone</u> can call:

 lic
 Liquidator is repaying the user's ETH debt
 t)

 and getting the user's cDAI

 add

 bd

(e.g., cDAI)

(e.g., ETH)

This function transfers liquidator's ETH into ETH market, and gives the liquidator cDAI from user's collateral

What is liquidation risk?

Historical DAI interest rate on Compound (APY):

APY shoots up temporarily

- \implies user's debt shoots up
- \Rightarrow user's health drops
- \implies liquidation ...

To use Compound borrower must constantly monitor APY and quickly repay loans if APY goes too high (can be automated)

Summary & stats

- Liquidity providers can earn interest on their assets
- DeFi lending is being used quite a bit:

Summary & stats

Compound liquidation statistics:

Caused by collateral price drops or debt APY spikes

Flash loans

What is a flash loan?

A flash loan is taken and repaid in a single transaction

 \Rightarrow zero risk for lender \Rightarrow borrower needs no collateral

(Tx is valid only if funds are returned in same Tx)

'Attacking the DeFi Ecosystem with Flash Loans for Fun and Profit"

Use cases

- Risk free arbitrage
- Collateral swap
- DeFi attacks: price oracle manipulation
 - •
 - ullet
 - \bullet

Risk free arbitrage

Alice finds a USDC/DAI price difference in two pools

Collateral swap

Alice @Compound

Alice @Compound

-1000 DAI +1 cETH Take 1000 DAI flash loan Repay 1000 DAI debt Redeem 1 cETH Swap 1 cETH for 3000 cUSDC Deposit 3000 cUSDC as collateral Borrow 1000 DAI Repay 1000 DAI flash loan

-1000 DAI +3000 cUSDC

borrowed DAI using (a single Ethereum transaction) ETH as collateral borrowed DAI using USDC as collateral

Flash loans amounts on Aave (in 2021)

Top 5 Days - Loan Amount	
Date	FALSHLOAN_USD 🔻
May 22	624.5M
May 5	520.9M
May 21	515.0M
May 19	265.7M
Aug 3	163.7M

END OF LECTURE

Next lecture: U.S. blockchain regulations