
Cryptocurrencies and 
Blockchain Technologies

Dan Boneh          Benedikt Bünz
Stanford University

CS251 Fall 2021

(https://cs251.stanford.edu)

[videos on canvas,  discussions on edstem,  homework on gradescope]  



What is a blockchain?

Abstract answer:   a blockchain provides
• coordination between many parties,
• when there is no single trusted party

if trusted party exists  ⇒ no need for a blockchain

[financial systems:  often no trusted party]



What is all the excitement about?

(1) Basic application:  a digital currency (stored value)
• Current largest:  Bitcoin (2009),   Ethereum (2015)

• Global:  accessible to anyone with an Internet connection



What is all the excitement about?

(2) Beyond stored value:   decentralized applications (DAPPs)
• DeFi:   financial instruments managed by public programs

• examples:   stablecoins,   lending,   exchanges,   ….

• Asset management (NFTs):  art,  game assets,  domain names.

• Decentralized organizations (DAOs):      (decentralized governance)

• DAOs for investment,   for donations,   for collecting art,   etc. 

(3) New programming model:   writing decentralized programs



Assets managed by DAPPs

Sep. 2021



Transaction volume

24h volume Sep. 2021



Central Bank Digital Currency  (CBDC)

30 central banks actively working on retail CBDC

[BIS survey Jan. 2019]



What is a blockchain?   

consensus layer

compute layer  (blockchain computer)

applications (DAPPs, smart contracts)

user facing tools  (cloud servers)



Consensus layer   (informal)

A public append-only data structure:

• Persistence: once added, data can never be removed*

• Safety: all honest participants have the same data**

• Liveness: honest participants can add new transactions

• Open(?): anyone can add data (no authentication)

consensus layer

achieved by replication



How are blocks added to chain?
blockchain

I am the 
leader2 ETH

verify
block

verify
block

skA

skB

skC

signed



How are blocks added to chain?
blockchain

I am the 
leader2 ETH

2 ETH
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Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx1, Tx2, Tx3, Tx4

Tx1, Tx2, Tx3, Tx4Tx1, Tx2, Tx3, Tx4



Why is consensus a hard problem?

Tx1

Tx2

Tx3

Tx4

Tx1, Tx2, Tx3, Tx4 Tx1, Tx2, Tx3, Tx4

Tx1, Tx2, Tx3, Tx4Tx1, Tx2, Tx3, Tx4

Problems:
• Network delay
• Network partition
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Why is consensus a hard problem?

Tx1

Tx2 Tx4

Tx1, Tx2, Tx4

Tx1, Tx2, Tx4Tx1, Tx2, Tx4

Problems:
• crash
• malice



The blockchain computer

DAPP logic is encoded in a program that runs on blockchain

• Rules are enforced by a public program (public source code)

⇒ transparency:  no single trusted 3rd party

• The DAPP program is executed by parties who create new blocks

⇒ public verifiability:  everyone can verify state transitions

consensus layer

compute layer



Decentralized applications (DAPPS)

consensus layer

blockchain computer

applications (DAPPs, smart contracts)

Run on 
blockchain
computer 



Common DAPP architecture

consensus layer

blockchain computer

DAPP DAPPDAPP

end user

Top layer: user facing servers

on-chain
state



[source:  the Block Genesis]



lots of experiments …
locked



This course

Cryptography Distributed systems
Economics



Course organization
1. The starting point:  Bitcoin mechanics

2. Consensus protocols

3. Ethereum and decentralized applications

4. Economics of decentralized applications

5. Scaling the blockchain:   10K Tx/sec

6. Private transactions on a public blockchain
(SNARKs and zero knowledge proofs)

7. Interoperability among chains:  bridges and wrapped coins



Course organization

cs251.stanford.edu

• Three homework problems, four projects, final exam(?)
• Optional weekly sections on Friday

Please tell us how we can improve …
Don’t wait until the end of the quarter



Let’s get started …



Cryptography Background

(1) cryptographic hash functions

An efficiently computable function     𝐻: 𝑀 ⇾ 𝑇
where   |𝑀| ≫ |𝑇|

megabytes hash value

32 bytes

𝑇 = 0,1 !"#



Collision resistance

Def:   a collision for 𝐻:𝑀 ⇾ 𝑇 is pair  𝑥 ≠ 𝑦 ∈ 𝑀 s.t. 𝐻(𝑥) = 𝐻(𝑦)

|𝑀| ≫ |𝑇| implies that many collisions exist

Def: a function  𝐻:𝑀 ⇾ 𝑇 is collision resistant if it is “hard” to find 
even a single collision for 𝐻 (we say 𝐻 is a CRHF)

Example:    SHA256:   {𝑥 : len(𝑥)<264 bytes}⇾ {0,1}256

details in CS255



Application:  committing to data on a blockchain

Alice has a large file  𝑚.     She posts   ℎ = 𝐻(𝑚) (32 bytes)

Bob reads ℎ.      Later he learns  𝑚’ s.t. 𝐻(𝑚’) = ℎ

𝐻 is a CRHF    ⇒ Bob is convinced that  𝑚’ = 𝑚
(otherwise,  𝑚 and 𝑚’ are a collision for 𝐻)

We say that ℎ = 𝐻(𝑚) is a binding commitment to 𝑚

(note:  not hiding,  ℎ may leak information about 𝑚)



Committing to a list    (of transactions)

Alice has    𝑆 = (𝑚1, 𝑚2, … ,𝑚𝑛)

Goal:   

- Alice posts a short binding commitment to 𝑆,  ℎ = commit(𝑆)

- Bob reads ℎ.      Given   𝑚𝑖, proof π𝑖 can check that   𝑆[𝑖] = 𝑚$

Bob runs    verify ℎ, 𝑖,𝑚𝑖, π𝑖 ⇾ accept/reject

security:    adv. cannot find  (𝑆, 𝑖, 𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖, 𝑚, 𝜋) = accept where   ℎ = commit(𝑆)

32 bytes



Merkle tree     (Merkle 1989)

Merkle tree
commitment

ℎ

𝑚1 𝑚2 𝑚3 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values  S

Goal:
• commit to list S of size n
• Later prove   𝑆[𝑖] = 𝑚$

commitment



Merkle tree     (Merkle 1989)

𝑚1 𝑚! 𝑚( 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values  S

ℎ

H H H H

H H

H

Goal:
• commit to list S of size n
• Later prove   𝑆[𝑖] = 𝑚$

To prove 𝑆 4 = 𝑚% ,

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦( 𝑦%

𝑦" 𝑦#

length of proof:  log2 𝑛

commitment



Merkle tree     (Merkle 1989)

𝑚1 𝑚! 𝑚( 𝑚% 𝑚" 𝑚&𝑚# 𝑚'

list of values  S

ℎ

H H H H

H H

H

To prove 𝑆 4 = 𝑚% ,

proof π = 𝑚(, 𝑦), 𝑦#

𝑦1 𝑦! 𝑦( 𝑦%

𝑦" 𝑦#

Bob does:
𝑦2 ⇽ 𝐻(𝑚3, 𝑚4)
𝑦5 ⇽ 𝐻(𝑦1, 𝑦2)
ℎ’ ⇽ 𝐻(𝑦5, 𝑦6)
accept if  ℎ = ℎ’

commitment



Merkle tree     (Merkle 1989)

Thm:   H CRHF  ⇒ adv. cannot find  (𝑆, 𝑖,𝑚, 𝜋) s.t. 𝑚 ≠ 𝑆[𝑖] and

verify(ℎ, 𝑖,𝑚, 𝜋) = accept where   ℎ = commit(𝑆)

(to prove, prove the contra-positive)

How is this useful?

• When writing a block of transactions 𝑆 to the blockchain, 
suffices to write commit(𝑆) to chain.    Keep chain small.

• Later, can prove contents of every Tx. 

Super useful.   Example



Merkle 
tree

Tx1 Tx2 …      Txn

Merkle 
tree

Tx1 Tx2 …      Txn

Merkle 
tree

Tx1 Tx2 …      Txn

Abstract block chain
blockchain

block header

⊥ Merkle
root

other
data

block header

hash Merkle
root

other
data

block header

hash Merkle
root

other
data

Merkle proofs are used to prove that a Tx is “on the block chain”



Another application:  proof of work  

Goal:   computational problem that
• takes time Ω(𝐷) to solve, but (D is called the difficulty)
• solution takes time O(1) to verify

How?       𝐻:𝑋 × 𝑌 ⇾ {0,1,2, … , 2𝑛 − 1} e.g.    𝑛 = 256

• puzzle:   input  𝑥 ∈ 𝑋,   output   𝑦 ∈ 𝑌 s.t. 𝐻(𝑥, 𝑦) < 2𝑛/𝐷

• verify(𝑥, 𝑦):    accept if    𝐻(𝑥, 𝑦) < 2𝑛/𝐷



Another application:  proof of work  

Thm:    if H is a “random function” then the best algorithm 
requires  𝐷 evaluations of 𝐻 in expectation.

Note:  this is a parallel algorithm
⇒ the more machines I have, the faster I solve the puzzle.

Proof of work is used in some consensus protocols (e.g., Bitcoin)

Bitcoin uses    𝐻(𝑥, 𝑦) = SHA256(SHA256(𝑥. 𝑦))



Cryptography background:
Digital Signatures

How to authorize a transaction



Signatures
Physical signatures:  bind transaction to author

Bob agrees to pay Alice 1$

Bob agrees to pay Alice 100$

Problem in the digital world:   

anyone can copy Bob’s signature from one doc to another



Digital signatures
Solution:  make signature depend on document

Bob agrees to pay Alice 1$

secret signing 
key  (sk)

signing
algorithm

signature

Signer

verifier

Verifier

public verification
key  (pk)

‘accept’
or

‘reject’



Digital signatures:   syntax
Def:    a signature scheme is a triple of algorithms:

• Gen():  outputs a key pair    (pk, sk)

• Sign(sk, msg)  outputs sig.  σ

• Verify(pk, msg, σ)  outputs ‘accept’ or  ‘reject’

Secure signatures:   (informal) 

Adversary who sees signatures on many messages of his choice,
cannot forge a signature on a new message.



Families of signature schemes
1. RSA signatures (old … not used in blockchains):

• long sigs and public keys (≥256 bytes),    fast to verify

2. Discrete-log signatures:   Schnorr and  ECDSA
• short sigs (48 or 64 bytes) and public key (32 bytes)

3. BLS signatures:  48 bytes,   aggregatable,   easy threshold

4. Post-quantum signatures:    long  (≥768 bytes)

(Ethereum 2.0, Chia, Dfinity)

(Bitcoin, Ethereum)

details in CS255



Signatures on the blockchain
Signatures are used everywhere:
• ensure Tx authorization,
• governance votes,
• consensus protocol votes.

verify
Tx

verify
Tx

verify
Tx

data signatures

data signatures

sk1

sk2



Next lecture:   the Bitcoin blockchain

END  OF  LECTURE


