CS251 Fall 2021
(https://cs251.stanford.edu)

Cryptocurrencies and

Blockchain Technologies

Dan Boneh Benedikt Blinz

Stanford University

[videos on canvas, discussions on edstem, homework on gradescope]

What is a blockchain?

Abstract answer: a blockchain provides
 coordination between many parties,
 when there is no single trusted party

if trusted party exists = no need for a blockchain

[financial systems: often no trusted party]

What is all the excitement about?

(1) Basic application: a digital currency (stored value)
* Current largest: Bitcoin (2009), Ethereum (2015)
* Global: accessible to anyone with an Internet connection

Che New Hork Eimes

Bitcoin Has Saved My Family

“Borderless money” is more than a buzzword when you live in a
collapsing economy and a collapsing dictatorship.

By Carlos Hernandez
Mr. Hernandez is a Venezuelan economist.
I

Feb. 23, 2019 f w - I:J

What is all the excitement about?

(2) Beyond stored value: decentralized applications (DAPPs)

 DeFi: financial instruments managed by public programs

 examples: stablecoins, lending, exchanges,
* Asset management (NFTs): art, game assets, domain names.

* Decentralized organizations (DAOs): (decentralized governance)
 DAO:s for investment, for donations, for collecting art, etc.

(3) New programming model: writing decentralized programs

Assets managed by DAPPs

Total Value Locked (USD) in DeFi
TVL (USD) Sep. 2021

$100B
$80B
$60B
$40B
$20B

$0
Oct Dec Feb Apr Jun Aug

Transaction volume

24h volume Sep. 2021
Bitcoin « BTC $30.6B
& FEthereum -+ ETH $19.2B

4% Cardano * ADA $2.3B

Central Bank Digital Currency (CBDC)

EQL,_';. o1 I‘Dnr

China Moves Forward With National Digital
3 Currency

What is a blockchain?

user facing tools (cloud servers)

applications (DAPPs, smart contracts)

compute layer (blockchain computer)

\w

A public append-only data structure:

Consensus layer (informal

achieved by replication

~

Persistence: once added, data can never be removed*
Safety: all honest participants have the same data**
Liveness: honest participants can add new transactions

Open(?): anyone can add data (no authentication)

~ comsensuslayer

How are blocks added to chain?

| am the
leader

blockchain
verify

skAcgii 1 (D%,
verify = block
block

How are blocks added to chain?

blockchain
NN

.
&
9
L
O
ek
Q.
e
b
(0]
i -
(O
(Vy)
=
(V)]
c
Q
(V)]
c
(@
&
e
>
=

Tx3

Tx1

Tx4

Tx2

o

Tx1, Tx2, Tx3, Tx4

Why is consensus a hard problem?

Problems:
* Network delay
* Network partition |

Tx2

Tx4

o
O

‘o
— Tx1, Tx2, Tx3, Tx4

Why is consensus a hard problem?

Tx1
Problems: — Q
e crash
* malice I
_ 2 N,
‘ ~ U

o
O

s
@)
Tx1, Tx2, Tx4

The blockchain computer

DAPP logic is encoded in a program that runs on blockchain

* Rules are enforced by a public program (public source code)

= transparency: no single trusted 3" party

* The DAPP program is executed by parties who create new blocks

= public verifiability: everyone can verify state transitions

compute layer

Decentralized applications (DAPPS)

Run on

blockchain | @ O Q'S o/« =)
computer

applications (DAPPs, smart contracts)

blockchain computer

Common DAPP architecture

Top layer: user facmg servers g

end user

DAPP

on-chain .
state blockchain computer

DAPP

— Payments

o0 X
Protocol

=

Dai Card

OPEN PLATFORM

xDai Chain

Groundhog

request
network

A

~

Ethereum’s DeFi

-2 tI1ON

A argent O TRUST
’ METAMASK

Q) Balance

ke MyCrypto

0.

......

[source the Block Genesis] —

THE

BLOCK
—~————— |nfrastructure -~ KYC & Identity Stablecoins — Insurance
= nnexi b4 Bxcert GSELFKEY$ %ETHEMS?
Qcircoin SOVHHQJOL;:rt Nexus efe Mutual
wedutchX ‘Ethlance . C'V'C°:~ Bloom /| &GEMINI « iXIedger
K‘) Ox % FOAM NB[oruv'\\l‘tol?ﬁ‘ i\; Efnr;::ti;@s > \ | R €O VouchForMe
_E Change:g;‘;;qg’xnm exps LM @rrt;;b;o L gang
bober)‘1 rkDelta @ LENDROID C8 CARBON Credit & Lendingor:”
AT OIDEX *slowtrcde RA%R 6Y/6X ‘DAXI/_\ Reserve @ LENDROID \
@’ﬂi‘ TOTLE hydro ‘7LUIIPRINB @ Terra o C
2 Bancor @ Ren a bZx VARIABL AmP]t‘ﬁ‘”
I/? Investing m Ao’i.vlarketplaceS\ :re.d|ct|on MarketsW ,;;~ I !m
O, HARBOR ® FETCH Rare Bits 96“”‘"@8”9“ o 9‘ rHLend
) MELONPORT W 2 @ districtox|| @ Bodhi Marblg>'"s‘a°“'°'°
¥ Brickblock SPIiCE bskt MERIDIO 2RIGIN I_OX ¢ BLO. BsoﬁR;T
; BET@KEN @SLICE | ~ . R
Q SCIENCE ‘U’ GNOSIS

—) .

t—_"- COLENDJI_’

lots of experiments ...

locked
1. Aave Multichain Lending $16.00B
2 Maker Ethereum Lending $13.32B
<. Curve Finance Multichain DEXes $12.73B
4. InstaDApp Ethereum Lending $12.53B
5. Compound Ethereum Lending $10.91B
6: Uniswap Ethereum DEXes $6.54B

T Convex Finance Ethereum Assets $6.51B

This course

Cryptography Distributed systems

Economics

Course organization

o Uk W N e

The starting point: Bitcoin mechanics
Consensus protocols

Ethereum and decentralized applications
Economics of decentralized applications
Scaling the blockchain: 10K Tx/sec

Private transactions on a public blockchain
(SNARKs and zero knowledge proofs)

Interoperability among chains: bridges and wrapped coins

Course organization

cs251.stanford.edu

 Three homework problems, four projects, final exam(?)
* Optional weekly sections on Friday

Please tell us how we can improve ...
Don’t wait until the end of the quarter

Let’s get started ...

Cryptography Background

(1) cryptographic hash functions

An efficiently computable function H: M — T
where |M| > |T|
32 bytes

., r = (o)

Collision resistance

Def: acollisionfor H:M = Tispair x # yEM s.t. | H(x) = H(y)

|IM| > |T| implies that many collisions exist

Def: afunction H: M — T is collision resistant if it is “hard” to find
even a single collision for H (we say H is a CRHF)

Example: SHA256: {x :len(x)<2* bytes} — {0,1}25¢

details in CS255

Application: committing to data on a blockchain

Alice has a large file m. She posts h = H(m) (32 bytes)

Bob reads h. Laterhelearns m’ st. H(m’) = h

H isa CRHF = Bobisconvinced that m’=m
(otherwise, m and m’ are a collision for H)

We say that h = H(m) is a binding commitment to m

(note: not hiding, h may leak information about m)

CO mm itti ng tO d I iSt (of transactions)

Alice has S = (my,m,,..,m,)

32 bytes

/

Goal:

|

- Alice posts a short binding commitmentto S, h = commit(S)

- Bobreadsh. Given (m; proofm;) cancheckthat S[i] = m;

Bob runs verify(h, i, m, ;) = accept/reject

security:

adv. cannot find (S,i,m,m) st. m = S[i] and

verify(h,i,m,) = accept where h = commit(S)

Merkle tree (Merkle 1989)

commitment |—— Goal:
e commit to list S of size n
* Later prove S[i] = m;

Merkle tree
commitment

m; m, m; my Mg Mg M; Mg

L J
I

list of values S

Merkle tree (Merkle 1989)

Y1

[\

m; my

commitment ———

Vs \Y6

% &%

ms My m5 Mme My m8

i
list of values S

Goal:
e committo list S of size n
* Later prove S[i] = m;

To prove S[4] = m, ,
proof T = (M3, y1,¥s)

length of proof: log, n

Merkle tree (Merkle 1989)

Y1

[\

m; my

commitment ———

Vs \Y6

% &%

ms My m5 Mme My m8

i
list of values S

To prove S[4] = m, ,
proof T = (M3, y1,Ys)

Bob does:
y, + H(mgzm,)
s — H(y1,¥2)

h' — H(ys Vo)
acceptif h=~h

Merkle tree (Merkle 1989)

Thm: HCRHF = adv.cannotfind (S,i,m,m) s.t. m # S[i] and

verify(h,i,m,m) = accept where h = commit(5)

(to prove, prove the contra-positive)

How is this useful? Super useful. Example

* When writing a block of transactions S to the blockchain,
suffices to write commit(S) to chain. Keep chain small.

* Later, can prove contents of every Tx.

Abstract block chain

blockchain
block header 7~ i block header / ‘l, block header
Merkle Merkle Merkle
tree tree tree
Txqy Txp ... Txq Txqy Txy ... Txq Xy Txg ... Txp

Merkle proofs are used to prove that a Tx is “on the block chain”

Another application: proof of work

Goal: computational problem that

* takes time Q(D) to solve, but (D is called the difficulty)

e solution takes time O(1) to verify

How? H:X XY —={0,1,2,..,2"—1} e.g. n =256

* puzzle: input x € X, output yeY st. H(x,y) <2"/D

* verify(x, y):

accept if

H(x,y) <2"/D

Another application: proof of work

Thm: if His a “random function” then the best algorithm
requires D evaluations of H in expectation.

Note: this is a parallel algorithm
= the more machines | have, the faster | solve the puzzle.

Proof of work is used in some consensus protocols (e.g., Bitcoin)

Bitcoin uses H(x,y) = SHA256(SHA256(x.y))

Cryptography background:

Digital Signatures

How to authorize a transaction

Physical signatures: bind transaction to author

] —/
]
|1 —

—]

Bob agrees to pay Alice 15—

= N

—]

Bob agrees to pay Alice 1005

20

Problem in the digital world:

anyone can copy Bob’s signature from one doc to another

Digital signatures

Solution: make signature depend on document

Signer

" [—]
]
=E_

[———|

Bob agrees to pay Alice 15

l signature

Verifier

‘accept’
e —> Or

=

secret signing
key (sk)

‘reject’

e=={p
public verification
key (pk)

Digital sighatures: syntax

Def: a signature scheme is a triple of algorithms:
* Gen(): outputs a key pair (pk, sk)
e Sign(sk, msg) outputs sig. o

* Verify(pk, msg, o) outputs ‘accept’ or ‘reject’

Secure signatures: (informal)

Adversary who sees signatures on many messages of his choice,
cannot forge a signature on a new message.

Families of signature schemes

RSA signhatures (old ... not used in blockchains):

* |long sigs and public keys (2256 bytes), fast to verify

Discrete-log signatures: Schnorr and ECDSA (Bitcoin, Ethereum)
* short sigs (48 or 64 bytes) and public key (32 bytes)

BLS signatures: 48 bytes, aggregatable, easy threshold

(Ethereum 2.0, Chia, Dfinity)
Post-quantum signatures: long (=768 bytes)

details in CS255

Signatures on the blockchain

Signatures are used everywhere:

* ensure Tx authorization,
* governance votes,
e consensus protocol votes.

data | signatures

a data | signatures

sk

sk,

END OF LECTURE

Next lecture: the Bitcoin blockchain

