
Ethereum: mechanics

CS251 Fall 2020
(cs251.stanford.edu)

Dan Boneh

Note: HW#2 is posted on the course web site. Due Oct. 12.

Limitations of Bitcoin

Recall: UTXO contains (hash of) ScriptPK
• simple script: indicates conditions when UTXO can be spent

Limitations:
• Difficult to maintain state in multi-stage contracts
• Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.
• Desired policy: can only transfer 2BTC per day out of my wallet

An example: NameCoin

Domain name system on the blockchain: [google.com ⇾ IP addr]

Need support for three operations:
• Name.new(OwnerAddr, DomainName): intent to register
• Name.update(DomainName, newVal, newOwner, OwnerSig)
• Name.lookup(DomainName)

Note: also need to ensure no front-running on Name.new()

A broken implementation

Name.new() and Name.upate() create a UTXO with ScriptPK:

DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG
VERIFY <NameCoin> <DomainName> <IPaddr> <1>

only owner can “spend” this UTXO to update domain data

Contract: (should be enforced by miners)
if domain google.com is registered,
no one else can register that domain

Problem: this contract cannot be enforced using Bitcoin script

What to do?

NameCoin: fork of Bitcoin that implements this contract
(see also the handshake project)

Can we build a blockchain that natively supports generic
contracts like this?

⇒ Ethereum

Ethereum: enables many applications
About 3000 Ethereum Decentralized Apps (DAPPs)

• New coins: ERC-20 interface to DAPP

• DeFi: exchanges, lending, stablecoins, derivatives, etc.

• Insurance

• Games: assets managed on chain (e.g. CryptoKitties)

• Managing distinguished assets (ERC-821)

stateofthedapps.com, dapp.review

Bitcoin as a state transition system

UTXO1
UTXO2

⋮

world state

…
UTXO1
UTXO3

⋮

updated world state

…input

Tx: UTXO2⇾ UTXO3

Fbitcoin : S × I ⇾ S

S: set of all possible world states, s0 ∈ S genesis state
I: set of all possible inputs

Bitcoin rules:

Ethereum as a state transition system

Much richer state transition functions

⇒ one transition executes an entire program

Running a program on a blockchain (DAPP)

consensus layerLayer 1:

compute layer (executed by miners)Layer 2:

state0

program
code

… blockchain …

state1Tx1 Tx2 state2

create a DAPP

…

The Ethereum system

Layer 1: PoW consensus. Block reward = 2 ETH + Tx fees (gas)

avg. block rate = 15 seconds.

(variant of Nakamoto)

about 150 Tx per block.

Ethereum Layer 1.5: compute layer

World state: set of accounts identified by 160-bit address.

Two types of accounts:
(1) owned accounts: controlled by ECDSA signing key pair (PK,SK).

SK known only to account owner

(2) contracts: controlled by code.
code set at account creation time, does not change

Data associated with an account
Account data Owned Contracts

address (computed): H(PK) H(CreatorAddr, CreatorNonce)

code: ⊥ CodeHash

storage root (state): ⊥ StorageRoot

balance (in Wei): balance balance (1018 Wei = 1 ETH)

nonce: nonce nonce

(#Tx sent) + (#accounts created): anti-replay mechanism

Account state: persistent storage
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]
• Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d

root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:

≤ 2×|S|

|S| = # non-zero cells

State transitions: Tx and messages
Transactions: signed data by initiator
• To: 32-byte address of target (0 ⇾ create new account)
• From, Signature: initiator address and signature on Tx

• Value: # Wei being sent with Tx
• gasPrice, gasLimit: Tx fees (later)

• if To = 0: create new contract code = (init, body)

• if To ≠ 0: data (what function to call & arguments)
• nonce: must match current nonce of sender (prevents Tx replay)

State transitions: Tx and messages

Transaction types:

owned ⇾ owned: transfer ETH between users
owned ⇾ contract: call contract with ETH & data

Example (block #10993504)

From To msg.value Tx fee (ETH)

Messages: virtual Tx initiated by a contract

Same as Tx, but no signature (contract has no signing key)

contract ⇾ owned: contract sends funds to user
contract ⇾ contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx processed. Composability!

Tx from owned addr ⇾ contract ⇾ another contract
another contract ⇾ different owned

Example Tx

world state (four accounts)

An Ethereum Block

Miners collect Txs from users ⇒ leader creates a block of n Tx
• Miner does:

• for i=1,…,n: execute state change of Txi
(can change state of >n accounts)

• record updated world state in block

Other miners re-execute all Tx to verify block
• Miners should only build on a valid block
• Miners are not paid for verifying block (note: verifier’s dilemma)

Block header data (simplified)

(1) consensus data: parent hash, difficulty, PoW solution, etc.

(2) address of gas beneficiary: where Tx fees will go

(3) world state root: updated world state

Merkle Patricia Tree hash of all accounts in the system

(4) Tx root: Merkle hash of all Tx processed in block

(5) Tx receipt root: Merkle hash of log messages generated in block

(5) Gas used: tells verifier how much work to verify block

The Ethereum blockchain: abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Amount of memory to run a node (in GB)

ETH total blockchain size: 5.2 TB (Oct. 2020)

323GB

An example contract: NameCoin

contract nameCoin { // Solidity code (next lecture)

struct nameEntry {
address owner; // address of domain owner
bytes32 value; // IP address

}

// array of all registered domains
mapping (bytes32 => nameEntry) data;

An example contract: NameCoin

function nameNew(bytes32 name) {

// registration costs is 100 Wei

if (data[name] == 0 && msg.value >= 100) {
data[name].owner = msg.sender // record domain owner
emit Register(msg.sender, name) // log event

}}

Code ensures that no one can take over a registered name

An example contract: NameCoin
function nameUpdate(

bytes32 name, bytes32 newValue, address newOwner) {

// check if message is from domain owner,
// and update cost of 10 Wei is paid

if (data[name].owner == msg.sender && msg.value >= 10) {

data[name].value = newValue; // record new value
data[name].owner = newOwner; // record new owner

}}}

An example contract: NameCoin

function nameLookup(bytes32 name) {

return data[name];
}

} // end of contract

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

⇒ compile to EVM bytecode
(recent projects use WASM or BPF bytecode)

⇒ miners use the EVM to execute contract bytecode
in response to a Tx

The EVM

Stack machine (like Bitcoin) but with JUMP
• max stack depth = 1024
• program aborts if stack size exceeded; miner keeps gas
• contract can create or call another contract

In addition: two types of zero initialized memory
• Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
• Volatile memory (for single Tx): MLOAD, MSTORE (cheap)
• LOG0(data): write data to log

Gas prices: examples

SSTORE addr (32 bytes), value (32 bytes)

• zero ⇾ non-zero: 20,000 gas

• non-zero ⇾ non-zero: 5,000 gas

• non-zero ⇾ zero: 15,000 gas refund

SUICIDE: kill current contract. 24,000 gas refund

Refund is given for reducing size of blockchain state

Gas calculation

Tx fees (gas) prevents submitting Tx that runs for many steps

Every EVM instruction costs gas:
• Tx specifies gasPrice: conversion: gas ⇾ Wei

gasLimit: max gas for Tx

Gas calculation

Tx specifies gasPrice: conversion gas ⇾ Wei
gasLimit: max gas for Tx

(1) if gasLimit×gasPrice > msg.sender.balance: abort
(2) deduct gasLimit×gasPrice from msg.sender.balance
(3) set Gas = gasLimit
(4) execute Rx: deduct gas from Gas for each instruction

if (Gas < 0): abort, miner keeps gasLimit×gasPrice
(5) Refund Gas×gasPrice to msg.sender.balance

Transactions are becoming more complex

GasLimit is increasing over time ⇒ each Tx takes more instructions to execute

Gas prices: spike during congestion

GasPrice in Gwei:
83B Gwei = 83×10-9 ETH

Average Tx fee in USD

Next lecture: writing Solidity contracts

END OF LECTURE

