
Randomness Beacons and VDFs

CS251 Fall 2020
(cs251.stanford.edu)

Benedikt Bünz

Recap: Nakamoto Consensus

Prev
Time

Nonce
Root

Genesis
H

coinbase Tx

BH2

BH2
Time

Nonce
Root

BH1

HPrev
Time

Nonce
Root

H

BH2 BH3
Time

Root

H

BH3

BH3
Time

Root

Nakamoto Properties
• Anonymous participation
• Nodes can join/leave
• Very scalable
• Sleeping Beauty property

• Leader not known beforehand
• Makes bribing harder

• Up to ½ corruptions

• Slow
• Even when everyone

is honest
• Resource intensive
• PoS based possible

• Long forks possible
• No guarantees under

long delays

Difficulty Resets

• Computation increases
• But block time ~constant

• Every two weeks difficulty
reset based on prior two
weeks

• Based on time stamps
• Slightly lagging
• Miners accept heaviest chain

Difficulty Reset Attacks
• Attacker with 1/3 hash power, Difficulty 1
• Fork 100 blocks deep
• Modifies time stamps on private fork such that blocks look like

they are mined in short succession
• Increases difficulty to 200
• Probability that attacker will mine 1 block of difficulty 200 while

honest chain produces 100 blocks of difficulty 1:
• Poisson distribution with expectation 1/6th

• Pr 𝑋 ≥ 1, 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 !
"

=15.3%
• Defense: Max difficulty change 4x, 1/4th (Magic number)

Changing the rules/Governance
• Protocol upgrades
• New Transaction types (Add Smart Contracts)
• New Consensus (Switch from PoW to PoS)
• Increase Blocksize (1MB) Bitcoin/Bitcoin Cash

• How do we reach consensus on these things

Soft/Hard Fork Activiation

V 2.0 V 2.0 V 1.0 V2.0 V2.0

Activated

V2.0 V2.0 V2.0

V1.0 V1.0

V 1.0

V2.0 V2.0 V2.0

Hard Fork

Soft Fork (Backwards compatible)

Hard Forks
• Technically the simplest
• New protocol version (new software)
• Everyone upgrades
• New protocol incompatible with old protocol
• Everyone needs to upgrade
• Ethereum/Zcash/Monero do this semi regularly
• Contentious Hard Fork: Both versions exists
• Need to worry about replay attacks

Soft Forks
• Rules become more restrictive
• Disabling old OP_CODES
• Further specifying signatures (ECDSA)
• Old clients still work but their transactions may get

rejected
• If >50% upgrade then new rules enforced
• Segregated Witness was a contentious soft fork

Case Study: Bitcoin vs Bitcoin Cash
• Bitcoin Blocks are limited to 1MB
• ~Roughly 7 tx/s
• Proposal to increase block size
• Opinion 1: “Larger blocks increase network

delay, decreases security, transactions should
be moved off the chain.”

• Opinion 2: “Bitcoin can support more
transactions we should increase block size.”

• Split in 2017: Every Bitcoin user got same
amount of Bitcoin Cash (sum is less than sum of
parts).

Case Study: Ethereum vs. Classic
• Ethereum had a smart contract called DAO
• Smart contract had a bug
• July 2016, $50 Million USD of Ether stolen
• Proposal to hard fork Ethereum and return funds
• Stake vote was held

• 87% in favor but only 5.5% participated
• 4 days later Ethereum forked
• “Classic” is the old version including stolen funds

• Ethereum Foundation owns trademark and branded Fork Ethereum
• Later more divergence: Ethereum will move to PoS, Classic stay on

PoW

Recap Byzantine Consensus
• Fast
• Partially Synchronous
• No wasted energy

• Known committee
• (must communicate)

• Large committee
• Large communication

• Predictable Leader
• Bribing 💸

Proof of Stake
Replace Sybill resistance of PoW with money

💸 Stakes coins (through transaction)
Staking
pool

💸💸💸💸💸
Voting Power: Proportional to relative stake

Can’t use staked coins for anything else!

Incentives: Get’s rewards/fees. Can use punishments/slashing

Scaling Byzantine Consensus
Sub select a set of
participants to run BC

Many stake weighted participants

Scaling Byzantine Consensus
Sub select a set of
participants to run BC

What fraction of committee will be corrupted?

Scaling Byzantine Consensus

>1000s of nodes
80% Honest

100s of nodes
>67% Honest

Random Selection

How to choose committee?

Proposal:
• Each staker computes H(block number,PK)
• If H(block number,PK)< target

• Become part of committee for round
• If BC succeeds add Block to chain
• Target such that ~1000 nodes win

Broken! Attacker can choose PK such that they win

Randomness beacon

19

An ideal service that regularly publishes random
value which no party can predict or manipulate

01010001 01101011 10101000 11110000

Random Selection with Beacon

How to choose committee?

• Each Block wait for beacon randomness
• Each staker computes H(block number beacon, PK)
• If H(block number beacon,PK)< target

• Become part of committee for round
• If BC succeeds add Block to chain

Beacon unpredictable so can’t choose PK
Even better: Compute deterministic (BLS) signature on Beacon
and use as ticket (prevents others from seeing who won) VRF

Leader Selection

We can also make leader election
random with a beacon!

Can make BC resilient vs.
adversary that corrupts adaptively
(Bribing)

See Algorand reading

Lotteries

``Public displays”
can be corrupted
A beacon can be
used to run a fair
lottery

How to build a Beacon?
NIST (NSA) Beacon

Collect randomness approach
Alice Bob Claire Zoe

Blockchain

ra rb rc rz

output beacon = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Zoe controls the final seed !!
24

Mildly
synchronous

Commit and Reveal
Alice Bob Claire Zoe

Blockchain

H(ra)

output beacon = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Beacon can be biased by not opening!!
K parties, k bits of influence 25

Mildly
synchronous

H(rb) H(rc) H(rz)R1:
R2: ra rb rc rz

Verifiable Delay Function (VDF)

26

• Function – unique output for every
input

• Delay – can be evaluated in time T
cannot be evaluated in time (1-𝜖)T
on parallel machine

• Verifiable – correctness of output can
be verified efficiently

𝐹

Verifier

𝑥, 𝑦, 𝜋
𝐹 𝑥
= 𝑦

Security Properties (Informal)

“Soundness”: if Verify(pp, x, y, π) = Verify(pp, x, y’, π’) = yes
then y = y’

“𝜎-Sequentiality”: if 𝐴 is a PRAM algorithm, time(A) ≤ 𝜎(𝑇),
e.g. 𝜎(𝑇) = 1 − 𝜖 𝑇 then Pr[A(pp, x) = y] < negligible(λ)

• Setup(λ, T) ⟶ public parameters pp

• Eval(pp, x) ⟶ output y, proof π (requires T steps)

• Verify(pp, x, y, π) ⟶ { yes, no }

27

Collect randomness approach
Alice Bob Claire Zoe

Blockchain

ra rb rc rz

output beacon = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Zoe controls the final seed !!
28

Mildly
synchronous

Solution: slow things down with a VDF [LW’15]

Alice Bob Claire Zoe

Public Bulletin Board (blockchain)

ra rb rc rz

Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

VDF beacon, πH
29

Solution: slow things down with a VDF [LW’15]

Public Bulletin Board (blockchain)

Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

VDF beacon, πH

VDF delay ≫ max-Δ-time(Alice ⟶ Zoe)

Uniqueness: ensures no ambiguity about output

30

VDF Beacon in a blockchain

Block i

Committee i Initializes VDF Beacon Committee i+1

Block i+1

How to build a VDF

Choose a “Group of unknown order”:
• Pick two primes p,q, Let 𝑁 = 𝑝 ⋅ 𝑞
• Computing 𝑔#! 𝑚𝑜𝑑 𝑁 takes T repeated squarings
• Can’t be parallelized
• Unless factorization of N is known
• Taking roots mod N is hard!

• Let 𝐻 be a hash function that maps to [0, 𝑁 − 1]

32
Eval(pp, x): output 𝐻 𝑥 .! How to verify?

𝑥, 𝑦, 𝑇 : 𝑥.! = 𝑦

y

Random 𝜆 bit prime l

Computes
q,r s.t.
2/ = 𝑞 ⋅ 𝑙 + 𝑟
and 0 ≤ 𝑟 < 𝑙

𝜋 = 𝑥0 Computes
𝑟 = 2/ 𝑚𝑜𝑑 𝑙
Checks:

𝜋1𝑥2 = 𝑦
𝑥0⋅1𝑥2 = 𝑥.!

VDF Proof [Wesolowski’18]

log(𝑇)steps

33

𝑥, 𝑦, 𝑇 : 𝑥.! = 𝑦

y

Random 𝜆 bit prime l

Computes
q,r s.t.
2/ = 𝑞 ⋅ 𝑙 + 𝑟
and 0 ≤ 𝑟 < 𝑙

𝜋 = 𝑥0 Computes
𝑟 = 2/ 𝑚𝑜𝑑 𝑙
Checks:

𝜋1𝑥2 = 𝑦
𝑥0⋅1𝑥2 = 𝑥.!

Security intuition

34

Must compute 𝜋

s.t. 𝜋 = 4
5"

#
$

Taking roots is
hard
See reading

𝑥, 𝑦, 𝑇 : 𝑥.! = 𝑦

y

Computes
q,r s.t.
2/ = 𝑞 ⋅ 𝑙 + 𝑟
and 0 ≤ 𝑟 < 𝑙

𝜋 = 𝑥0, 𝑙 Computes
𝑟 = 2/ 𝑚𝑜𝑑 𝑙
Checks: 𝑙 = 𝐻 𝑥, 𝑦, 𝑇

𝜋1𝑥2 = 𝑦
𝑥0⋅1𝑥2 = 𝑥.!

VDF Proof [Wesolowski’18]

35

𝑙 = 𝐻 𝑥, 𝑦, 𝑇 ∈ 𝑃𝑟𝑖𝑚𝑒𝑠

Next lecture:
Ethereum and Smart Contracts

END OF LECTURE

