CS251 Fall 2020
(cs251.stanford.edu)

Final topics: Cute Crypto Tricks

Dan Boneh

Quick Recap: Rollup with privacy

rollup server

Siga
atomic swap: / !l
[B—Z: 1 ETH]
[Z—+B: 2 BAT] root - | block 354 |

Layer 1 blockchain

[A—B: 2 ETH],
. (e.g. Ethereum)

Alice: Bob: Zoe:

5 DAI 2 ETH 1ETH
3 ETH 3 BAT

Quick Recap: Rollup with privacy

rollup server

Siga A'
" !

[B—Z: 1 ETH]
[Z—-B: 2 BAT] /GW root %- | block 354 |
- sigp Sig% .m %R/(]
/ Alice: Bob: Zoe:
a TX)

Layer 1 blockchain
(e.g. Ethereum)

[A—B: 2 ETH],

atomic swap:

5 DAI 3 ETH 2 ETH
1ETH 2 BAT 1 BAT

The Rollup server sees:
e all account balances, and

e all transactions.

Can we hide this from the Rollup server?

Yes! Using zkSNARKs

Replace balances with commitments (simplified)

rollup server

_/,i'

[A—com SNARK], sig4

open of com

AEIETZE Layer 1 blockchain

(e.g. Ethereum)

Alice: Bob: Zoe:

com, comg com,

(commitment to balances)

Replace balances with commitments (simplified)

rollup server

_/,i'

[A-com, SNARK], sigy

/ new root %Q M
.m :9 I‘%S"Ve

open of com

AEIETZE Layer 1 blockchain

(e.g. Ethereum)

Alice: Bob: Zoe:

4 ’
com’, com’y com,

(commitment to balances)

Replace balances with commitments (simplified)

rollup server

AEIETZE Layer 1 blockchain

(e.g. Ethereum)

| block 354 \

Tx
/ new root ~X dag,
/ \jsﬁ%SIV@
’V4R/g'\-| block 357 |

open of com

[A-com, SNARK], sigy

Alice: Bob: Zoe:

4 ’
com’, com’y com,

(commitment to balances)

Problem: Rollup server sees identity of payer and payee

* Better data structure enables fully private Tx

... can even run DAPPs privately (e.g., ZEXE)

General discussion

Discussion Topics

* Open problems in blockchains

* The future of blockchains and crypto currencies
 Where is this headed?

* A career in blockchains?

* Where can | learn more?
e EE374: Scaling blockchains (Winter 2021)
e (CS255 and CS355: Cryptography
» Stanford blockchain conference (SBC)

Fun crypto tricks

BLS signatures

Tx1:

Tx2:

Tx3:

Tx4:

one Bitcoin block

iInputs outputs

~sig-"sig

L...w.L...w.L.N.IL_JA
L.F;A
L.,J;.,.I_g

Signatures make up
most of Tx data.

Can we compress
signatures?

* Yes: aggregation!
* not possible for ECDSA

BLS Signatures

Used in modern blockchains: Ehtereum 2.0, Dfinity, Chia, etc.

The setup:

e G={1,g, ..,g9"} acyclic group of prime order q

* H:M X G— G a hash function (e.g., based on SHA256)

BLS Signatures

KeyGen(): choose random «a in {1,...,q}

output | sk=a , pk=g% €G

Sign(sk, m): output | sig=H(m,pk)* €G

Verify(pk, m, sig): output accept if Iogg(pk) = IogH(mlpk)(sig)

Note: signature on mis unique! (no malleability)

How does verify work?

A pairing: an efficiently computable function e:GXG— G’

such that

e(g% gP) = e(g, 9)*

and is not degenerate: e(g,g) # 1

Observe: Iogg(pk) = IogH(mipk)(sig)

forall a,B € {1, ...q}

if and only if

/

e(g, sig) = e(pk, H(m,pk)) <

e(g, HI

m,pk)*) = e(g% H(m,pk))

Properties: sighature aggregation s

Anyone can compress n signatures into one

pk, , m;y — 0 Verify(pk, m, ¢*) = “accept”

aggregate| — 0~ | convinces verifier that
fori=1,...,n:
user i sighed msg m,

pkn , My — Oy

single short signature

Aggregation: how

user1: pk,=g*, m; — 01=H(m1,pk1)a1\>

: Gholooo Gn
] /

usern: pk,=g*, m, — o.,=H(m,pk)%"

Verifying an aggregate signature: (incomplete)

n_e(H(m,pk), g) £ e(o,g)
/i \

1y e(H(mizpki)ai; g) = e(Hi=1H(mi1pki)aiz g)

Tx1:

Tx2:

Tx3:

Tx4:

Compressing the blockchain with BLS

one Bitcoin block

inputs outputs Llsen
sig-"sig "

L...w.L...w.L.N.IL_JA
L.F;A
L.,J;.,.I_g

if needed:

compress all
signatures in a block
into a single
aggregate signatures

= shrink block

or: aggregate in smaller
batches

Reducing Miner State

UTXO set size

=/70M UTXOs

ction Outputs (UTXOs)

Unspent Transa

~r Blockchain

Miners need to keep all UTXOs in memory to validate Txs

Can we do better?

Recall: polynomial commitments

* commit(pp, f, r) > com; commitmenttof € [Fz(fd) | X]

* eval: goal: foragivencom; and x,y € [F,,

construct a SNARK to prove that f(x) =Y.

Homomorphic polynomial commitment

A polynomial commitment is homomorphic if

there are efficient algorithms such that:

* commit(pp, f;, r;) - comy commit(pp, f,, r,) = com,
Then:
(i) forall a,beF, : comy ,coms, — €COMyuspes

(ii) comg; —> COMyxpy

Committing to a set (of UTXOs)

let §={Uy,..,Un}€F, beasetof UTXOs (accumulator)

Define: f(X) =X —Uy) - (X—Un) €FSV[X]

Set: com;=commit(pp, f,7) — short commitmentto S

For UET,: ueS ifandonlyif f(U)=0

Toadd UtoS: comy = comysxq ¢ < short commitmentto S U {U}

How does this help?

Miners maintain two commitments:
(i) commitment to set T of all UTXOs } < 1KB
(ii) commitment to set S of spent TXOs B

comy;, Comg
Tx format: ’

 everyinput U includes a proof (U€ET && U &)
Two eval proofs: T(U) =0 && S(U) #0 (short)

Tx processing: miners check eval proofs, and if valid, @
add inputs to set S and outputstosetT. That’s it!

Does this work ??

Problem: how does a user prove that her UTXO U satisfies
T(U)=0 && SW)#=0 ???

This requires knowledge of the entire blockchain
= user needs large memory and compute time
= ... can be outsourced to an untrusted 3" party

UTXO U , fee | I polynomials
) oDoo 4 SandT
Oo00o0oo ~ ’

proof i
spend U The proof factory

Is this practical?

Not quite ...

* Problem: the factory’s work per proof is linear in the
number of UTXOs ever created

 Many variations on this design:
* can reduce factory’s work to log,(# current UTXOs) per proof

e Factory’s memory is linear in (# current UTXOs)

End result: outsource memory requirements to a
small number of 37 party service providers

Taproot: semi-private

scripts in Bitcoin

Taproot is coming ...

Taproot Has Been
Merged Into Bitcoin

Core: Here's What That
Means

Oct 15, 2020 at 7:48 am. PDT = Updated Oct 15, 2020 at 9:14 a.m. PDT

Script privacy

Currently: Bitcoin scripts must be fully revealed in spending Tx

Can we keep the script secret?

Answer: Yes, easily! when all goes well ...

How?

ECDSA and Schnorr public keys:
 KeyGen(): sk=a, pk=g% €G for a in {1,..,q}

Suppose sky,=a , skz=p.
* Alice and Bob can sign with respectto pk=pk, - -pkg =g
= an interactive protocol between Alice and Bob

a+f

(note: much simpler with BLS)

= Alice & Bob can imply consent to Tx by signing with pk = g“+3

How?

S: Bitcoin script that must be satisfied to spend a UTXO U
Sinvolves only Alice and Bob. Let pksp = pk, - pkpg

Goal: keep S secret when possible.

How: modify S so that a signature with respect to
pk o pkAB . gH(pkAB »S)

is sufficient to spend UTXO, without revealing S !!

The main point

e |If parties agree to spend UTXO,
= sign with respect to pk 45 and spend while keeping S secret

* If disagreement, Alice can reveal S
and spend UTXO by proving that she can satisfy S.

Taproot pk compactly supports both ways to spend the UTXO

END OF LECTURE

Next lecture: super cool final guest lecture

