
Final topics: Cute Crypto Tricks

CS251 Fall 2020
(cs251.stanford.edu)

Dan Boneh

Quick Recap: Rollup with privacy
rollup server

Alice:
5 DAI
3 ETH

Bob:
2 ETH

… Zoe:
1 ETH
3 BAT

Merkle Tree

root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔!

[B⇾Z: 1 ETH]
[Z⇾B: 2 BAT]
𝑠𝑖𝑔" 𝑠𝑖𝑔#

atomic swap:

Tx

Quick Recap: Rollup with privacy
rollup server

Alice:
5 DAI
1 ETH

Bob:
3 ETH
2 BAT

… Zoe:
2 ETH
1 BAT

Merkle Tree

new root

Layer 1 blockchain
(e.g. Ethereum)

block 354

[A⇾B: 2 ETH], 𝑠𝑖𝑔!

[B⇾Z: 1 ETH]
[Z⇾B: 2 BAT]
𝑠𝑖𝑔" 𝑠𝑖𝑔#

atomic swap:

Tx

block 357

Tx data , [SNARK]

Privacy?

The Rollup server sees:
• all account balances, and
• all transactions.

Can we hide this from the Rollup server?

Yes! Using zkSNARKs

Tx

Replace balances with commitments (simplified)

rollup server

Alice:
comA

Bob:
comB

… Zoe:
comZ

Merkle Tree

root

Layer 1 blockchain
(e.g. Ethereum)

block 354

(commitment to balances)

open of comA

A ⇾ B: 2 ETH

[Δ-com, SNARK], 𝑠𝑖𝑔!

Tx

Replace balances with commitments (simplified)

rollup server

Alice:
com’A

Bob:
com’B

… Zoe:
comZ

Merkle Tree

new root

Layer 1 blockchain
(e.g. Ethereum)

block 354

(commitment to balances)

open of comA

A ⇾ B: 2 ETH

block 357

Tx data , [recursiveSNARK]

[Δ-com, SNARK], 𝑠𝑖𝑔!

Tx

Replace balances with commitments (simplified)

rollup server

Alice:
com’A

Bob:
com’B

… Zoe:
comZ

Merkle Tree

new root

Layer 1 blockchain
(e.g. Ethereum)

block 354

(commitment to balances)

open of comA

A ⇾ B: 2 ETH

block 357

Tx data , [recursiveSNARK]

[Δ-com, SNARK], 𝑠𝑖𝑔!

(zk)2-Rollup

Problem: Rollup server sees identity of payer and payee

• Better data structure enables fully private Tx

… can even run DAPPs privately (e.g., ZEXE)

General discussion

Discussion Topics
• Open problems in blockchains

• The future of blockchains and crypto currencies
• Where is this headed?

• A career in blockchains?

• Where can I learn more?
• EE374: Scaling blockchains (Winter 2021)
• CS255 and CS355: Cryptography
• Stanford blockchain conference (SBC)

Fun crypto tricks

BLS signatures

inputs outputs
sig sigsig

sig sigsig sig

sig sig

sig sigsig

Tx1:

Tx2:

Tx3:

Tx4:

one Bitcoin block

Signatures make up
most of Tx data.

Can we compress
signatures?
• Yes: aggregation!
• not possible for ECDSA

BLS Signatures

Used in modern blockchains: Ehtereum 2.0, Dfinity, Chia, etc.

The setup:

• G = {1, g, …, gq-1} a cyclic group of prime order q

• H: M × G ⇾ G a hash function (e.g., based on SHA256)

BLS Signatures

KeyGen(): choose random 𝛼 in {1, … , 𝑞}

output sk = 𝛼 , pk = 𝑔! ∈ G

Sign(sk, 𝑚): output sig = 𝐻(𝑚, pk)! ∈ G

Verify(pk, 𝑚, sig): output accept if logg(pk) = logH(m,pk)(sig)

Note: signature on 𝑚 is unique! (no malleability)

How does verify work?

A pairing: an efficiently computable function e:G×G ⇾ G’

such that e(𝑔!, 𝑔") = 𝑒(𝑔, 𝑔)!" for all 𝛼, 𝛽 ∈ {1,… 𝑞}

and is not degenerate: 𝑒(𝑔, 𝑔) ≠ 1

Observe: logg(pk) = logH(m,pk)(sig)

if and only if e(g, sig) = e(pk, H(m,pk))

e(g, H(m,pk)𝛼) = e(g𝛼, H(m,pk))

= =

verify test

Properties: signature aggregation [BGLS’03]
Anyone can compress n signatures into one

pk1 , m1 ⟶ σ1

pkn , mn ⟶ σn

⋮ aggregate ⟶ σ*

Verify(pk , m , σ*) = “accept”
convinces verifier that

for i=1,…,n:
user i signed msg mi

single short signature

Aggregation: how

Verifying an aggregate signature: (incomplete)

user 1: pk1 = gα1 , m1 ⟶ σ1=H(m1,pk1)α1

user n: pkn = gαn , mn ⟶ σn=H(mn,pkn)αn

σ ⟵ σ1⋯ σn

∏$%&
' e(H(mi,pki), g

αi) ≟ e(σ, g)

Pi=1 e(H(mi,pki)
αi, g) = e(Pi=1H(mi,pki)

αi, g)

= =

Compressing the blockchain with BLS

inputs outputs
sig sigsig

sig sigsig sig

sig sig

sig sigsig

Tx1:

Tx2:

Tx3:

Tx4:

one Bitcoin block if needed:
compress all
signatures in a block
into a single
aggregate signatures

⇒ shrink block

or: aggregate in smaller
batches

sig*

Reducing Miner State

UTXO set size

≈70M UTXOs

Miners need to keep all UTXOs in memory to validate Txs

Can we do better?

Recall: polynomial commitments

• commit(pp, f, r) ⇾ comf commitment to f ∈ 𝔽(
(*+) 𝑋

• eval: goal: for a given comf and x, y ∈ 𝔽(,

construct a SNARK to prove that f(x) = y.

Homomorphic polynomial commitment

A polynomial commitment is homomorphic if

there are efficient algorithms such that:

• commit(pp, f1, r1) ⇾ comf1 commit(pp, f2, r2) ⇾ comf2

Then:

(i) for all 𝑎, 𝑏 ∈ 𝔽(: comf1 , comf2 ⇾ coma*f1+b*f2

(ii) comf1 ⇾ comX*f1

Committing to a set (of UTXOs)
Let 𝑆 = {𝑈1, … , 𝑈𝑛} ∈ 𝔽(be a set of UTXOs

Define: 𝑓 𝑋 = (𝑋 − 𝑈1) ⋯ (𝑋 − 𝑈𝑛) ∈ 𝔽(
(*') 𝑋

Set: comf = commit(𝑝𝑝, 𝑓, 𝑟) ⇽ short commitment to 𝑆

For 𝑈 ∈ 𝔽(: 𝑈 ∈ 𝑆 if and only if 𝑓(𝑈) = 0

To add U to S: comf ⇾ comX*f−U*f ⇽ short commitment to 𝑆 ∪ {𝑈}

(accumulator)

How does this help?
Miners maintain two commitments:

(i) commitment to set T of all UTXOs
(ii) commitment to set S of spent TXOs

≤ 1KB

comT, comSTx format:
• every input 𝑈 includes a proof (𝑈 ∈ 𝑇 && U ∉ 𝑆)

Two eval proofs: 𝑇(𝑈) = 0 && 𝑆(𝑈) ≠ 0 (short)

Tx processing: miners check eval proofs, and if valid,
add inputs to set S and outputs to set T. That’s it!

Does this work ??
Problem: how does a user prove that her UTXO 𝑈 satisfies

𝑇(𝑈) = 0 && 𝑆(𝑈) ≠ 0 ???

This requires knowledge of the entire blockchain
⇒ user needs large memory and compute time
⇒ … can be outsourced to an untrusted 3rd party

The proof factory

polynomials
S and T

UTXO 𝑈 , fee

proof 𝜋
spend 𝑈

Is this practical?
Not quite …
• Problem: the factory’s work per proof is linear in the

number of UTXOs ever created

• Many variations on this design:
• can reduce factory’s work to log2(# current UTXOs) per proof
• Factory’s memory is linear in (# current UTXOs)

End result: outsource memory requirements to a
small number of 3rd party service providers

Taproot: semi-private
scripts in Bitcoin

Taproot is coming …

Script privacy

Currently: Bitcoin scripts must be fully revealed in spending Tx

Can we keep the script secret?

Answer: Yes, easily! when all goes well …

How?

ECDSA and Schnorr public keys:
• KeyGen(): sk = 𝛼 , pk = 𝑔! ∈ G for 𝛼 in {1, … , 𝑞}

Suppose skA = 𝛼 , skB = 𝛽.
• Alice and Bob can sign with respect to pk = 𝑝𝑘- N 𝑝𝑘. = 𝑔!/"

⇒ an interactive protocol between Alice and Bob
(note: much simpler with BLS)

⇒ Alice & Bob can imply consent to Tx by signing with pk = 𝑔!/"

How?

S: Bitcoin script that must be satisfied to spend a UTXO 𝑈
S involves only Alice and Bob. Let 𝑝𝑘-. = 𝑝𝑘- N 𝑝𝑘.

Goal: keep S secret when possible.

How: modify S so that a signature with respect to

pk = 𝑝𝑘-. N 𝑔0((1!" , 3)

is sufficient to spend UTXO, without revealing S !!

The main point

• If parties agree to spend UTXO,
⇒ sign with respect to 𝑝𝑘-. and spend while keeping S secret

• If disagreement, Alice can reveal S
and spend UTXO by proving that she can satisfy S.

Taproot pk compactly supports both ways to spend the UTXO

Next lecture: super cool final guest lecture

END OF LECTURE

