
Recursive SNARKs

CS251 Fall 2020
(cs251.stanford.edu)

Benedikt Bünz

Hitchhikers guide to the galaxy

Input Output (42)

Long Computation

What if we want to verify
that computation?

Recap: Non-interactive Proof Systems
A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and
verifier

(Sp, Sv) is called a reference string

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

SNARKs for long computations

Input Output (42)
P(Sp, 𝒙,𝒘) ⇾ 𝜋
V(Sv, 𝒙, 𝜋) ⇾ acceptLong Computation, Transcript

C – Circuit for long
computation
S(𝐶) ⇾ (Sp, Sv)
𝒙 = 𝒊𝒏𝒑𝒖𝒕, 𝒐𝒖𝒕𝒑𝒖𝒕
𝒘 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕

Issues:
-P takes very long
-Starts after proving after
computation finished
-Can’t hand off computation
-S also runs at least linear in
|C|
(ok if many proofs)

Handing off computation

Input Output (42), 𝜋!

𝐶"– Circuit for long intermediate computation

S(𝐶") ⇾ (Sp, Sv)
𝒙𝟏 = 𝒊𝒏𝒑𝒖𝒕, 𝒊𝒏𝒕𝟏 , 𝒘𝟏 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝟏
𝒙𝟐 = 𝒊𝒏𝒕𝟏, 𝒊𝒏𝒕𝟐 , 𝒘𝟐 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝟐
𝒙𝟑 = 𝒊𝒏𝒕𝟐, 𝒐𝒖𝒕𝒑𝒖𝒕 , 𝒘𝟑 = 𝒕𝒓𝒂𝒏𝒔𝒄𝒓𝒊𝒑𝒕𝟑
P(Sp, 𝒙𝒊, 𝒘𝒊) ⇾𝜋'

Int1,𝜋(Int2,𝜋)
transcript1 transcript2 transcript3

V(Sv, 𝒙𝟏, 𝝅𝟏)
V(Sv, 𝒙𝟐, 𝝅𝟐)
V(Sv, 𝒙𝟑, 𝝅𝟑)
|𝜋|/ V linear in
#handoffs

Incremental Proofs

• We need updatable/incremental proofs

S(𝐶") ⇾ (Sp, Sv)

𝐶"– Circuit per computation step, 𝑡 number of steps/handoffs

P(Sp, 𝒙𝒊, 𝒘𝒊, 𝜋'*() ⇾ updated proof 𝜋' // 𝜋+ =⊥

V(Sv, 𝒙𝟎, 𝒙𝒕, 𝜋., t) ⇾ accept/reject

|𝜋'| = |𝜋'*(| // proofs don’t grow

PhotoProof

Allow valid updates of photo and provide proof

Viewer can still verify
authenticity

PhotoProof

Proof allows valid edits only, Incrementally updated

Recursive Proofs

• How can we build incremental proofs?

“Proof of a proof”:
A proof that 𝜋) that I know a proof 𝜋(that 𝐶 𝑥(, 𝑤(= 0

“Proof of a proof of a proof …”:
A proof that 𝜋) that I know a proof 𝜋(which proves knowledge of
a proof 𝜋+ that 𝐶 𝑥+, 𝑤+ = 0

SNARK of SNARK

𝑆 𝐶 → 𝑆/, 𝑆0
𝜋 ← 𝑃(𝑥,𝑤)

Now write a circuit 𝐶′ that verifies 𝜋:
• Input 𝑥′ is x
• Witness 𝑤′ is 𝜋
• 𝐶′(𝑥′, w’) = 0 iff V(𝑆0, 𝜋, 𝑥)=Accept
Finally:

𝑆 𝐶′ → 𝑆′/, 𝑆′0
𝜋′ ← 𝑃(𝑥′, 𝑤′)

10

SNARK of SNARK…

• Note that C’ depends only on V and Sv
• We can express V as a circuit:

𝑆! 𝑥 𝜋

+ −

×

0 = “𝐴𝑐𝑐𝑒𝑝𝑡”

SNARK of SNARK…

• We can also make 𝐶′ more complex…
• Input 𝑥′ is 𝑥!, 𝑥"
• Witness 𝑤#is 𝜋,𝑤"
• 𝐶# 𝑥#, 𝑤# = 0 iff 𝑉 𝑆$, 𝜋, 𝑥! = 𝐴𝑐𝑐𝑒𝑝𝑡 AND 𝐶 𝑥", 𝑤" = 0

12

SNARK of SNARK…

• We can also make 𝐶′ more complex…
• Input 𝑥′ is 𝑥!, 𝑥"
• Witness 𝑤#is 𝜋,𝑤", 𝑥!
• 𝐶# 𝑥#, 𝑤# = 0 iff 𝑉 𝑆$, 𝜋, 𝑥! = 𝐴𝑐𝑐𝑒𝑝𝑡 AND 𝐶 𝑥!, 𝑥", 𝑤" = 0

• What about proving verification of 𝜋#?
• Needs new 𝐶′′ that has 𝑆′$ hardcoded?
• Do we need to re-run setup for every additional level of recursion?
• In some applications we can use the same 𝑆$ over and over again

• Repeated application of single function
13

C implements 𝑥(= 𝐹(𝑥+)

SNARK of SNARK…
• Do verifiers need to re-run setup for every additional level of

recursion? Proposed solution: make 𝑺𝑽 part of the witness
• Modify definition 𝐶@A:

• Input 𝑥′ is 𝑥!, 𝑥", … , 𝑥%
• Witness 𝑤# is 𝜋,𝑤%, 𝑆$
• 𝐶# 𝑥#, 𝑤# = 0 iff 𝑉 𝑆$, 𝜋, 𝑥!, … , 𝑥%&" = 𝐴𝑐𝑐𝑒𝑝𝑡 AND
S C%&"# → 𝑆', 𝑆$ AND 𝐶 𝑥% , 𝑤% = 0

• Now 𝐶!" may accept as witness a proof 𝜋 that is a proof for 𝐶!#$"

generated using parameters 𝑆'%&", 𝑆$%&" ← 𝑆(𝐶%&"#). Prover still
needs to re-run setup as part of proving. 14

Universal SNARK Verifier

• What goes wrong when the setup is trusted? Making 𝑺𝑽 a
witness does not work.

- 𝑆0 ”exists” even for proofs of false statements
- Proof system only sound when prover does not know

the secrets involved in the generation of 𝑆0.
- The existence of (𝑆0, 𝜋) that the algorithm 𝑉 would

accept is meaningless.
• New solution: universal SNARK verifier

15

Universal SNARK verifier

• UC is a circuit that takes inputs (𝐶, 𝑥, 𝑤) and outputs 𝐶(𝑥,𝑤)
• 𝑆 𝑈𝐶 → (𝑈𝑆/, 𝑈𝑆0) are parameters of SNARK system for UC
• Think of UC as an x86 processor

• Takes in input and instructions and executes them
• Define 𝐶'A:

• Input 𝑥′ is 𝑥%, 𝑥$, … , 𝑥!
• Witness 𝑤" is 𝜋,𝑤!, 𝑆&
• 𝐶" 𝑥", 𝑤" = 0 iff 𝑉 𝑈𝑆&, 𝜋, 𝐶!#$" , 𝑥%, … , 𝑥!#$ = 𝐴𝑐𝑐𝑒𝑝𝑡 AND

AND 𝐶 𝑥!, 𝑤! = 0
16

Recap: SNARKRollup
Today: every miner must verify every posted Tx verify

all Tx

verify
all Tx

verify
all Tx

verify all Tx
⇒ short proof π

summary, π

verify
π

verifying proof is much easier than verifying 10K Tx

verify
π

Coordinator

Recap: Rollup
Today: every miner must verify every posted Tx verify

all Tx

verify
all Tx

verify
all Tx

verify all Tx
⇒ short proof π

summary, π

verify
π

verifying proof is much easier than verifying 10K Tx

verify
π

Coordinator

Rollup with many coordinators

summary2,

π1

verify
π

verify
π

Coordinator 1

Coordinator 2

summary1, π2

summary,
π

verify
π

SNARK2-Rollup
• Multiple coordinators/servers
• Each responsible for subset of users (no overlaps)
• Super coordinator (can be one of the coordinators)
• Super coordinator combines summaries (balance table)

and creates one proof that

SNARK2-Rollup
• Let rooti be the Merkle Tree Root of summary i

• S2, 𝑆3 ← 𝑺(𝐶4)// 𝐶4 coordinator circuit
• 𝐶54(x = S2, 𝐫𝐨𝐨𝐭; w = 𝑟𝑜𝑜𝑡6, 𝑟𝑜𝑜𝑡7… , 𝜋6, 𝜋7, …):
• V(S2, 𝑥 = 𝑟𝑜𝑜𝑡8 , 𝜋8) for all i and 𝐫𝐨𝐨𝐭=MT(𝑟𝑜𝑜𝑡8s)

Merkle tree
𝑟𝑜𝑜𝑡1 𝑟𝑜𝑜𝑡2 𝑟𝑜𝑜𝑡3 𝑟𝑜𝑜𝑡B

root

Build one root from summaries

SNARK2-Rollup
• Let rooti be the Merkle Tree Root of summary i

• S2, 𝑆3 ← 𝑺(𝐶4)// 𝐶4 coordinator circuit
• 𝐶54(x = S2, 𝐫𝐨𝐨𝐭; w = 𝑟𝑜𝑜𝑡6, 𝑟𝑜𝑜𝑡7… , 𝜋6, 𝜋7, …):
• V(S2, 𝑥 = 𝑟𝑜𝑜𝑡8 , 𝜋8) for all i and 𝐫𝐨𝐨𝐭=MT(𝑟𝑜𝑜𝑡8s)

Merkle tree
𝑟𝑜𝑜𝑡1 𝑟𝑜𝑜𝑡2 𝑟𝑜𝑜𝑡3 𝑟𝑜𝑜𝑡B

root

Build one root from summaries

SNARK3-Rollup

summary2,

π1

verify
π

verify
π

Coordinator 1

Coordinator 2

summary1, π2

summary,
π

𝜋.C

𝜋.C

𝜋.C

𝜋.C

verify
π

Enhancing transactions with SNARKs
• We’ve seen that private transactions require zero-

knowledge proofs
• Add ZK-SNARKs to every transaction
• Level 1 coordinators verify transaction by verifying

transaction ZK-SNARKs
• Additionally we can have more complicated

transactions (Smart Contracts)
• Transaction verification is constant time regardless

of proof complexity

SNARK3-Rollup
• Smart Contract SCi

• 𝐶9 = Commit(Smart Contract State t,𝑟9)
• 𝐶9:6 = Commit(Smart Contract State t+1, 𝑟9:6)
• S2! , 𝑆3" ← 𝑺 𝑍𝐾 − 𝑆𝐶8 // Zero-Knowledge SC
• Key-root=MT(S2!s) // Merke tree of all verification keys
• 𝑍𝐾 − 𝑆𝐶8(𝑥8 = 𝐶9 , 𝐶9:6; 𝑤8 = 𝑠𝑡𝑎𝑡𝑒𝑠 𝑡, 𝑡 + 1, 𝑟9 , 𝑟9:6):
• 𝐶9, 𝐶9:6 commit to 𝑠𝑡𝑎𝑡𝑒𝑠 𝑡, 𝑡 + 1 and transition is

valid

SNARK3-Rollup

• Each user creates 𝜋8 ← 𝑷(𝑆3" , 𝑥8 , w;) (ZK) and outputs
• 𝐶9:6,8 , 𝜋8

• Level 1 coordinator takes many outputs and produces one
proof using Key-root to select the correct verification key

• The coordinator does not care about which key is used just
that it’s the correct one

• Possible to hide state transition AND smart contract details

Constant size blockchains

• Rollup reduces the verification cost
• Still linear in the number of state updates
• When a node joins the network they need to verify

one rollup proof per block!
• In general starting a full node requires verification of

all blocks
• Can take days!

Constant size Blockchain
𝜋6

State-MT1
TX-MT1

Merkle tree

Transactions

𝜋7
State-MT2

TX-MT2

𝜋<
State-MT3

TX-MT3

𝜋=
State-MT4

TX-MT4

𝜋' prooves that transactions
are valid with respect to the
state
AND
𝜋'*(was valid for the
previous block

Constant size Blockchain
𝜋6

State-MT1
TX-MT1

Merkle tree

Transactions

𝜋7
State-MT2

TX-MT2

𝜋<
State-MT3

TX-MT3

𝜋=
State-MT4

TX-MT4

Old miner New minerHead and State 4

Verifies State-MT4
and 𝜋B

Constant size Blockchain

• Light clients can verify every block!
• Low memory, low computation
• Independent of length of chain or #transactions

• Relies on data serving nodes for synching

• Practical today!

Next lecture: Crypto tricks and open discussion
Please attend last two lectures if you can

END OF LECTURE

