CS251 Fall 2020

(cs251.stanford.edu)

Recursive SNARKs

Benedikt Bünz

Hitchhikers guide to the galaxy

What if we want to verify that computation?

Input

Long Computation

Recap: Non-interactive Proof Systems

A non-interactive proof system is a triple (S, P, V):

S(C) → public parameters (S_p, S_v) for prover and verifier

 (S_p, S_v) is called a *reference string*

- $P(S_p, x, w) \rightarrow \text{proof } \pi$
- $V(S_{v}, x, \pi) \rightarrow \text{accept or reject}$

SNARKs for long computations

lssues:

- -P takes very long
- -Starts after proving *after* computation finished
- -Can't hand off computation
- -S also runs at least linear in

C – Circuit for long computation $S(C) \rightarrow (S_p, S_v)$ x = (input, output)w = transcript

Input

(ok if many proofs)

Long Computation, Transcript

Output (42) $P(S_p, x, w) \rightarrow \pi$ $V(S_v, x, \pi) \rightarrow \text{accept}$

Handing off computation

 C_I – Circuit for long intermediate computation

$$\mathbf{S}(C_{I}) \rightarrow (\mathbf{S}_{p}, \mathbf{S}_{v})$$

$$x_{1} = (input, int_{1}), w_{1} = transcript_{1}$$

$$x_{2} = (int_{1}, int_{2}), w_{2} = transcript_{2}$$

$$x_{3} = (int_{2}, output), w_{3} = transcript_{3}$$

$$\mathbf{P}(\mathbf{S}_{p}, x_{i}, w_{i}) \rightarrow \pi_{i}$$

$$\mathbf{V}(\mathbf{S}_{v}, x_{1}, \pi_{1})$$

$$\mathbf{V}(\mathbf{S}_{v}, x_{2}, \pi_{2})$$

$$\mathbf{V}(\mathbf{S}_{v}, x_{3}, \pi_{3})$$

$$|\pi|/ \mathbf{V} \text{ linear in } \# \text{handoffs}$$
Output (42), π_{3}

transcript₁

transcript₂

transcript₃

Incremental Proofs

• We need updatable/incremental proofs

 C_I - Circuit per computation step, t number of steps/handoffs $\mathbf{S}(C_I) \rightarrow (\mathbf{S}_{p}, \mathbf{S}_{v})$ $\mathbf{P}(\mathbf{S}_{p}, \mathbf{x}_{i}, \mathbf{w}_{i}, \pi_{i-1}) \rightarrow \text{updated proof } \pi_i // \pi_0 = \perp$ $\mathbf{V}(\mathbf{S}_{v}, \mathbf{x}_{0}, \mathbf{x}_{t}, \pi_{t}, \mathbf{t}) \rightarrow \text{accept/reject}$

 $|\pi_i| = |\pi_{i-1}|$ // proofs don't grow

PhotoProof

Allow valid updates of photo and provide proof

PhotoProof

Proof allows valid edits only, Incrementally updated

Recursive Proofs

• How can we build incremental proofs?

"Proof of a proof": A proof that π_2 that I know a proof π_1 that $C(x_1, w_1) = 0$

"Proof of a proof of a proof ...": A proof that π_2 that I know a proof π_1 which proves knowledge of a proof π_0 that $C(x_0, w_0) = 0$

$$S(C) \to S_P, S_V$$
$$\pi \leftarrow P(x, w)$$

Now write a circuit C' that verifies π :

- Input x' is x
- Witness w' is π
- C'(x', w') = 0 iff $V(S_V, \pi, x) = Accept$ Finally:

$$S(C') \to S'_P, S'_V \\ \pi' \leftarrow P(x', w')$$

- Note that C' depends only on V and S_v
- We can express **V** as a circuit:

- We can also make C' more complex...
 - Input x' is x_0, x_1
 - Witness w' is π , w_1
 - C'(x', w') = 0 iff $V(S_V, \pi, x_0) = Accept \text{ AND } C(x_1, w_1) = 0$

- We can also make C' more complex...
 - Input x' is x_0, x_1 C implements $x_1 = F(x_0)$
 - Witness w' is π , w_1 , x_0
 - C'(x', w') = 0 iff $V(S_V, \pi, x_0) = Accept \text{ AND } C(x_0, x_1, w_1) = 0$
- What about proving verification of π' ?
- Needs new C'' that has S'_V hardcoded?
- Do we need to re-run setup for every additional level of recursion?
- In some applications we can use the same S_V over and over again
 - Repeated application of single function

- Do verifiers need to re-run setup for every additional level of recursion? Proposed solution: make S_V part of the witness
- Modify definition C'_i :
 - Input x' is $x_0, x_1, ..., x_i$
 - Witness w' is π, w_i, S_V
 - C'(x', w') = 0 iff $V(S_V, \pi, x_0, \dots, x_{i-1}) = Accept$ AND $S(C'_{i-1}) \rightarrow (S_P, S_V)$ AND $C(x_i, w_i) = 0$
- Now C'_i may accept as witness a proof π that is a proof for C'_{i-1} generated using parameters $(S_P^{i-1}, S_V^{i-1}) \leftarrow S(C'_{i-1})$. Prover still needs to re-run setup as part of proving.

Universal SNARK Verifier

- What goes wrong when the setup is trusted? Making S_V a witness does not work.
 - S_V "exists" even for proofs of false statements
 - Proof system only sound when prover does not know the secrets involved in the generation of S_V .
 - The existence of (S_V, π) that the algorithm V would accept is meaningless.
- New solution: **universal SNARK verifier**

Universal SNARK verifier

- UC is a circuit that takes inputs (C, x, w) and outputs C(x, w)
- $S(UC) \rightarrow (US_P, US_V)$ are parameters of SNARK system for UC
- Think of UC as an x86 processor
 - Takes in input and instructions and executes them
- Define C'_i :
 - Input x' is $x_0, x_1, ..., x_i$
 - Witness w' is π , w_i , S_V
 - C'(x', w') = 0 iff $V(US_V, \pi, C'_{i-1}, x_0, \dots, x_{i-1}) = Accept$ AND AND $C(x_i, w_i) = 0$

Recap: SNARKRollup

Recap: Rollup

Rollup with many coordinators

SNARK²-Rollup

- Multiple coordinators/servers
- Each responsible for subset of users (no overlaps)
- Super coordinator (can be one of the coordinators)
- Super coordinator combines summaries (balance table) and creates one proof that

SNARK²-Rollup

• Let **root**_i be the Merkle Tree Root of summary i

- $C_{SC}(x = S_V, root; w = root_1, root_2 ..., \pi_1, \pi_2, ...)$:
- $V(S_V, x = root_i, \pi_i)$ for all i and **root**=MT($root_i$ s)

SNARK²-Rollup

• Let **root**_i be the Merkle Tree Root of summary i

- $C_{SC}(x = S_V, root; w = root_1, root_2 ..., \pi_1, \pi_2, ...)$:
- $V(S_V, x = root_i, \pi_i)$ for all i and **root**=MT($root_i$ s)

SNARK³-Rollup

Enhancing transactions with SNARKs

- We've seen that private transactions require zeroknowledge proofs
- Add ZK-SNARKs to every transaction
- Level 1 coordinators verify transaction by verifying transaction ZK-SNARKs
- Additionally we can have more complicated transactions (Smart Contracts)
 - Transaction verification is constant time regardless of proof complexity

SNARK³-Rollup

- Smart Contract SC_i
- $C_t = \text{Commit}(\text{Smart Contract State t}, r_t)$
- $C_{t+1} = \text{Commit}(\text{Smart Contract State t+1}, r_{t+1})$
- $S_{V_i}, S_{P_i} \leftarrow S(ZK SC_i) // Zero-Knowledge SC$
- Key-root=MT(S_{V_i} s) // Merke tree of all verification keys
- $ZK SC_i(x_i = C_t, C_{t+1}; w_i = states t, t + 1, r_t, r_{t+1})$:
 - C_t , C_{t+1} commit to *states* t, t + 1 and transition is valid

SNARK³-Rollup

- Each user creates $\pi_i \leftarrow \mathbf{P}(S_{P_i}, x_i, w_i)$ (**ZK**) and outputs
 - $C_{t+1,i}, \pi_i$
- Level 1 coordinator takes many outputs and produces one proof using Key-root to select the correct verification key
- The coordinator does not care about which key is used just that it's the correct one
- Possible to hide state transition AND smart contract details

Constant size blockchains

- Rollup reduces the verification cost
- Still linear in the number of state updates
- When a node joins the network they need to verify one rollup proof per block!
- In general starting a full node requires verification of all blocks
 - Can take days!

Constant size Blockchain

Constant size Blockchain

Constant size Blockchain

- Light clients can verify every block!
 - Low memory, low computation
 - Independent of length of chain or #transactions
- Relies on data serving nodes for synching

• Practical today!

END OF LECTURE

Next lecture: Crypto tricks and open discussion Please attend last two lectures if you can