CS251 Fall 2020
(cs251.stanford.edu)

Recursive SNARKs

Benedikt Blinz

Hitchhikers guide to the galaxy

What if we want to verify
that computation?

Input > Output (42)

Long Computation

Recap: Non-interactive Proof Systems

A non-interactive proof system is a triple (S, P, V):

* S(C) — public parameters (S, S,) for prover and
verifier

(S, S,) is called a reference string
* P(S,, x,w) — proof 7

* V(S, x,) — accept or reject

SNARKSs for long computations

Ssues:
-P takes very long

-Starts after proving after
computation finished

-Can’t hand off computation
-S also runs at least linear in
Cl

(ok if many proofs)

C — Circuit for long
computation

S(C) = (Sp, Sy)

3 x = (input, output)
% w = transcript

Input

> Output (42)

Long Computation, Transcript

P(S,, x,w) > m
V(S,, x,) = accept

Handing off computation

C;— Circuit for leng intermediate computation

x1 = (input, int,), wy = transcript,
S(Cr) = (Sps SV) Xy = (intq,inty), wp = transcript,

x3 = (int,, output), w3 = transcripts

P(S,, x;, w;) —=m; V(S,, x1,mT1)
V(S,, x2,12)
V(S,, x3,m3)
||/ V linear in
#handoffs

Output (42), 13

Input > Inty, T4 > Int,, 1T,

transcript, transcript, transcript,

Incremental Proofs

* We need updatable/incremental proofs

C;— Circuit per computation step, t number of steps/handoffs
S(C7) = (Sp, Sy)

P(Sp, x;,w;,m;_;) — updated proof m; //my =1
V(S,, xg, x;, s, t) — accept/reject

|t;| = |m;—1]| /] proofs don’t grow

PhotoProof

editor; editor,
' 4 3 > -%’r]
|
- ;\L?J 1@:’;’."
signin | | |
c:?mer% Viewer can still verify

authenticity

viewer

Allow valid updates of photo and provide proof

signing
camera

| signature

PhotoProof

Image,

Image;

proof;

G(00

editor,

S viewer

viewer

Proof allows valid edits only, Incrementally updated

Recursive Proofs

* How can we build incremental proofs?

“Proof of a proof”:
A proof that m, that | know a proof w4 that C(x{,w;) =0

“Proof of a proof of a proof ...”:
A proof that 5, that | know a proof m; which proves knowledge of

a proof y that C(xg, wy) = 0

SNARK of SNARK

S(C) = Sp, Sy
T« P(x,w)

Now write a circuit C' that verifies :
* |nput x’isx

e Witnessw'ism

o C'(x',wW’)=0iff V(Sy, T, x)=Accept

Finally:
S(C,) - S,PI S,V
T« P(x',w')

10

SNARK of SNARK...

* Note that C’ depends onlyonV and S,

* We can express V as a circuit:

0 = “Accept”

A

SNARK of SNARK...

* We can also make C' more complex...
* Input x'is xg, x;
* Witness w'is m, w;
« C'(x",w') =0iff V(Sy,m x9) = Accept AND C(x{,w;) =0

12

SNARK of SNARK...

* We can also make C' more complex...
* Input x is %g, X4 Cimplements x; = F(xg)
* Witness w'is T, wq, X
c C'(x",w") =0iff V(Sy, m, x9) = Accept AND C(xq,x,Ww;) =0
* What about proving verification of ©'?
* Needs new C'' that has S’ hardcoded?
Do we need to re-run setup for every additional level of recursion?
* In some applications we can use the same Sy, over and over again

* Repeated application of single function
13

SNARK of SNARK...

Do verifiers need to re-run setup for every additional level of
recursion? Proposed solution: make Sy part of the witness

Modify definition Cj’:

* Input x’is xg, Xq, ..., X;

* Witness w'is m,w;, Sy

« C'(x",w') =0iff V(Sy,m, xq, ..., X;—1) = Accept AND

S(C{_1) = (Sp, Sy) AND Cx;, w;) = 0

Now C; may accept as witness a proof i that is a proof for C;_,
generated using parameters (S5™%, S;71) « S(C;_;). Prover still
needs to re-run setup as part of proving. »

Universal SNARK Verifier

What goes wrong when the setup is trusted? Making Sy a
witness does not work.
- Sy "exists” even for proofs of false statements

- Proof system only sound when prover does not know
the secrets involved in the generation of Sy,.

- The existence of (Sy,) that the algorithm V would
accept is meaningless.
New solution: universal SNARK verifier

15

Universal SNARK verifier

* UCis a circuit that takes inputs (C, x, w) and outputs C(x, w)

« S(UC) —» (USp,USy) are parameters of SNARK system for UC

* Think of UC as an x86 processor E
* Takes in input and instructions and executes them

* Define Cj:

* Input x'is xg, X1, ..., X;

* Witness w' is T, w;, Sy,
« C'(x",w') =0iff V(USy,m, C/_{, xg, ..., xj_1) = Accept AND
AND C(xl-, Wi) =0

16

Recap: SNARKRollup

Today: every miner must verify every posted Tx

verify all Tx _
= short proof Tt Y

I /Coimator

verifying proof is much easier than verifying 10K Tx

Recap: Rollup

Today: every miner must verify every posted Tx

verify all Tx _
= short proof Tt Y

I /Coimator

verifying proof is much easier than verifying 10K Tx

Rollup with many coordinators

I

@ ik

Coordmator 2 / summary, @
@ /ummafvl

l

Coor Inator 1

SNARK?-Rollup

Multiple coordinators/servers
Each responsible for subset of users (no overlaps)
Super coordinator (can be one of the coordinators)

Super coordinator combines summaries (balance table)
and creates one proof that

SNARK?-Rollup

* Let root; be the Merkle Tree Root of summary i
root

Build one root from summaries

Merkle tree

root; root; root; root,
* Sy,Sp « S(C;)// Cr coordinator circuit

* Csc(x = Sy, root; w =rooty,root, ..., My, Ty, ...):
* V(Sy,x = root;, m;) for all i and root=MT(root;s)

SNARK?-Rollup

* Let root; be the Merkle Tree Root of summary i
root

Build one root from summaries

Merkle tree

root; root; root; root,
* Sy,Sp « S(C;)// Cr coordinator circuit

* Csc(x = Sy, root; w =rooty,root, ..., My, Ty, ...):
* V(Sy,x = root;, m;) for all i and root=MT(root;s)

SNARK3-Rollup

I

O 4 | =
verity verify
/1 \ . ' °
Coordinator 2 y summary,

4
7Ttx 4 II
m -~ O 7

] §
summawl' : @
A @

Coordinator 1

Enhancing transactions with SNARKSs

* We've seen that private transactions require zero-
knowledge proofs

 Add ZK-SNARKs to every transaction

* Level 1 coordinators verify transaction by verifying
transaction ZK-SNARKSs

* Additionally we can have more complicated
transactions (Smart Contracts)

* Transaction verification is constant time regardless
of proof complexity

SNARK3-Rollup

Smart Contract SC,

C; = Commit(Smart Contract State t,7;)

Ci+1 = Commit(Smart Contract State t+1, 1,)

Sv,, Sp; < S(ZK — SC;) // Zero-Knowledge SC
Key-root=MT(Sy.s) // Merke tree of all verification keys
ZK — SCi(x; = C¢, Cepq;w; = states t, t + 1,14, 7441):

* (i, Cspq commit to states t,t + 1 and transition is
valid

SNARK3-Rollup

* Each user creates m; < P(Sp,, x;, Wi) (ZK) and outputs
* G410 T

* Level 1 coordinator takes many outputs and produces one
proof using Key-root to select the correct verification key

* The coordinator does not care about which key is used just
that it’s the correct one

e Possible to hide state transition AND smart contract details

Constant size blockchains

* Rollup reduces the verification cost
e Still linear in the number of state updates

* When a node joins the network they need to verify
one rollup proof per block!

* In general starting a full node requires verification of
all blocks

e Can take days!

Constant size Blockchain

; prooves that transactions
are valid with respect to the
state

AND

;1 was valid for the
previous block

Merkle tree

Transactions

Constant size Blockchain

Merkle tree

Head and State 4 New miner

Verifies State-MT4
and 1,

Transactions Old miner

Constant size Blockchain

* Light clients can verify every block!

* Low memory, low computation

* Independent of length of chain or #transactions
* Relies on data serving nodes for synching

* Practical today!

END OF LECTURE

Next lecture: Crypto tricks and open discussion
Please attend last two lectures if you can

