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Recap:  high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency



Recap:  non-interactive proof systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽𝑝
public statement in 𝔽!" secret witness in 𝔽!#

Let  𝒙 ∈ 𝔽!" .      Two standard goals for prover P:

(1) Soundness:  convince Verifier that  ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,  ∃𝒘 such that  [ 𝐻(𝒘) = 𝒙 and  0 < 𝒘 < 260 ]   )

(2) Knowledge:   convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,   P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)



Non-interactive Proof Systems    (for NP)

A non-interactive proof system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (Sp, Sv)    for prover and verifier

(Sp, Sv)  is called a reference string

• P(Sp, 𝒙,𝒘)  ⇾ proof  𝜋

• V(Sv, 𝒙, 𝝅)  ⇾ accept or reject



proof systems: properties   (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete:  ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept

Proof of knowledge: V accepts  ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

in some cases, soundness is sufficient: ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

Zero knowledge (optional):   (𝒙, 𝜋)  “reveals nothing” about 𝒘



SNARK:  succinct argument of knowledge

Succinct:

• Proof  𝜋 should be short [ i.e.,  |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆) ]

• Verifying  𝜋 should be fast [ i.e.,  time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆) ]

note:   if SNARK is zero-knowledge, then called a zkSNARK

Goal:  P wants to show that it knows  𝒘 s.t. 𝐶(𝒙,𝒘) = 0



A simple PCP-based SNARK
[Kilian’92, Micali’94]



A simple construction: PCP-based SNARK
The PCP theorem:    Let   𝐶(𝑥,𝑤) be an arithmetic circuit.

there is a proof system that for every 𝑥 proves  ∃𝑤: 𝐶 𝑥,𝑤 = 0
as follows:

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
read only 𝑂(𝜆) bits of 𝜋,
output accept or reject

proof  𝜋

size of proof is   𝑝𝑜𝑙𝑦(|𝐶|).           (not succinct)

V always accepts valid proof.     If no 𝑤, then V rejects with high prob.



Converting a PCP proof to a SNARK

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

Merkle
𝜋

ℎ

open 𝑘 positions of 𝜋 (𝑘 = 𝑂(𝜆))

𝑘 opening and Merkle proofs
output accept or reject

Verifier sees 𝑂(𝜆 log |𝐶|) data  ⇒ succinct proof.                                      

Merkle root  ℎ 1 hash

𝑂(𝑘 log |𝐶|) hashes

Problem: interactive



Making the proof non-interactive
The Fiat-Shamir heuristic:
• public-coin interactive protocol  ⇒ non-interactive protocol

public coin:  all verifier randomness is public (no secrets)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
msg1

r

msg2
accept or reject

choose random bits r



Making the proof non-interactive
Fiat-Shamir heuristic:   𝐻:𝑀 ⇾ 𝑅 a cryptographic hash function

• idea:  prover generates random bits on its own (!)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

𝜋 = (msg1, msg2)
|π| = O(𝜆 log |𝐶|)

r ⇽ H(𝒙, msg1)

accept or reject

r ⇽ H(𝒙, msg1)
generate msg1

generate msg2

Thm: this is a secure SNARK assuming H is a random oracle



Why is this an argument of knowledge?   (can skip)

Let’s build an extractor 𝐸 for the interactive protocol:
• After prover commits to Merkle root of proof

𝐸 asks prover to open many batches of  𝑘 = 𝑂(𝜆) positions of 𝜋
(by rewinding prover)

• 𝐸 fails to extract cell #j of  𝜋 if 
(1) prover produces a false Merkle proofs  (efficient prover cannot), or
(2)   prover fails (i.e., verifier rejects) whenever j is in batch to open:

Pr[prover fails]   ≥   Pr[ j in batch ]   = 1 – (1 − 1/|𝜋|)𝑘 .
so:   this cannot happen if   𝑘 is sufficiently large

⇒ 𝐸 extracts entire proof 𝜋.       Once 𝜋 is known, 𝐸 can obtain  𝒘 from 𝜋.



Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news:   an impractical SNARK --- Prover time too high

Better SNARKs:      Goal:  Time(Prover) = F𝑂(|C|)



Building an efficient SNARK



General paradigm

Many SNARKs are built in two steps:

polynomial
commitment

scheme

polynomial
interactive

oracle proofs
(poly-IOP)

(zk)SNARK for general circuits



Recall:  commitments

Two algorithms:

• commit(m, r) ⇾ com

• verify(m, com, r) ⇾ accept or reject

Properties:

• binding: cannot produce two valid openings for com.

• hiding: com reveals nothing about committed data



(1) Polynomial commitment schemes
Notation:

Fix a finite field:   𝔽! = 0,1,… , 𝑝 − 1

𝔽!
(*+) 𝑋 : all polynomials in 𝔽![X] of degree ≤ d.   



(1) Polynomial commitment schemes
• setup(𝑑) ⇾ pp,      public parameters for polynomials of degree ≤ 𝑑

• commit(pp, f, r) ⇾ comf commitment to f ∈ 𝔽!
(*+) 𝑋

• eval:    goal:   for a given comf and  x, y ∈ 𝔽! ,  prove that  f(x) = y.

Formally:   eval = (P, V) is a SNARK for:

statement  st = (pp, comf , x,  y)   with  witness = 𝑤 = (f, r)

where  𝐶(st, 𝑤) = 0  iff

[ f(x) = y   and  f ∈ 𝔽!
(*+) 𝑋 and   commit(pp, f, r) = comf ]



(1) Polynomial commitment schemes
Properties:  

• Binding: cannot produce two valid openings (f1, r1), (f2, r2)  for comf.

• eval is an argument of knowledge  (can extract  (f, r) from a successful prover)

• optional:   

• commitment is hiding

• eval is zero knowledge



Constructing polynomial commitments
Not today …     (see readings or CS355)

Properties of the best ones:

• transparent setup:   no secret randomness in setup

• comf is constant size  (a single group element)

• eval proof size for f ∈ 𝔽!
(*+) 𝑋 is  O(log 𝑑)  group elements

• eval verify time is O(log 𝑑)          Prover time:   O(𝑑)

simple construction
without this requirement 



(2)  Polynomial IOP
Goal:   polynomial commitment scheme  ⇒

SNARK for a general circuit 𝐶 𝑥,𝑤 .

… done using a polynomial-IOP

Fix an arithmetic circuit 𝐶 𝑥,𝑤 .     Let 𝑥 ∈ 𝔽!" .

Poly-IOP:   a proof system that proves  ∃𝑤: 𝐶 𝑥,𝑤 = 0 as follows:



(2)  Polynomial IOP
Prover P(𝒙,𝒘) Verifier V(𝒙)

𝑓1 ∈ 𝔽!
(#$) 𝑋

𝑟1 ⇽ 𝔽!
𝑟1

𝑓𝑡 ∈ 𝔽!
(#$) 𝑋

𝑟2 ⇽ 𝔽!
𝑓2 ∈ 𝔽!

(#$) 𝑋

𝑟2

⋮
𝑟,-. ⇽ 𝔽!

𝑟,-.

verifyf1, …, ft(𝑟1, …,𝑟,-.)

can evaluate fi
at any x in 𝔽!



Properties

• complete: if   ∃𝑤: 𝐶 𝑥,𝑤 = 0 then verifier always accepts

• Soundness   or   proof of knowledge:   (informal)    Let 𝑥 ∈ 𝔽!".
P*: a prover that convinces the verifier with prob. ≥  1/106

then there is an efficient extractor  𝐸 s.t.

Pr[ 𝐸(𝑥, 𝑓1, 𝑟1, … , 𝑟,-., 𝑓𝑡) = 𝑤 s.t. 𝐶(𝑥,𝑤) = 0 ] ≥  1/106

• Optional:   zero knowledge



The resulting SNARK
Poly-IOP params:    #polynomials = t,    # eval queries in verify = q
The SNARK:
• During interactive phase of poly-IOP:  send t poly commitments
• During poly-IOP verify:   run poly-commit eval protocol q times
• Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof:   t poly-commits  +  q eval proofs
SNARK verify time:   q poly eval proof verifications + time(IOP-verify)
SNARK prover time:  t poly commits + time(IOP-prover)



Constructing a Poly-IOP

First some useful tricks …

The fundamental theorem of algebra:     for  0 ≠ 𝑓 ∈ 𝔽!
(*+) [𝑋]

for 𝑟⇽ 𝔽! :         Pr[ 𝑓(𝑟) = 0 ] ≤

⇒ suppose  p ≈ 2256 and   d ≤ 240 then   𝑑/𝑝 is negligible

⇒ for 𝑟⇽ 𝔽! ,      if  𝑓(𝑟) = 0 then   𝑓 is identically zero w.h.p

⇒ simple zero test for a committed polynomial

𝑑/𝑝



Some useful gadgets

Let   𝜔 ∈ 𝔽& be a primitive 𝑘-th root of unity     (𝜔' = 1)
Set H := { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 }.      

Let   𝑓 ∈ 𝔽&
()*) [𝑋] and     𝑏, 𝑐 ∈ 𝔽& .            (𝑑 ≥ 𝑘)

Want poly-IOPs for the following tasks:

Task 1 (zero-test):   prove that  f  is identically zero on H

Tast 2 (sum-check): prove that   ∑,∈. 𝑓 𝑎 = 𝑏

Task 3 (prod-check): prove that   ∏,∈/ 𝑓(𝑎) = 𝑐



Zero test on H      ( H = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 } )

Prover P(𝑓,⊥) Verifier V( 𝑓 )
𝑞(𝑋) ⇽ 𝑓(𝑋)/(𝑋𝑘 – 1)

𝑞 ∈ 𝔽!
(#$) 𝑋

𝑟 ⇽ 𝔽!
eval 𝑞(𝑋) and 𝑓(𝑋) at  𝑟

learn 𝑞 𝑟 , 𝑓(𝑟)

accept if   𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ (𝑟/ − 1)

Thm:   this protocol is complete and sound,  assuming  𝑑/𝑝 is negligible.

Verifier time:  O(log 𝑘)  and  two eval verify  (but can be done in one)

if 𝑓 is zero on H then 
𝑓 𝑋 is divisible by 𝑋' − 1

(implies that  𝑓(𝑋) = 𝑞(𝑋)(𝑋% − 1) )



Product check on H:     ∏!∈# 𝑓(𝑎) = 1

Let   𝑡 ∈ 𝔽!
(*/) [𝑋] be the degree-𝑑 polynomial:

𝑡(1) = 𝑓(1), 𝑡(𝜔s) = ∏567
8 𝑓(𝜔i) for 𝑠 = 1,… , 𝑘 − 1

Then     t(𝜔/-.) =

and 𝑡(𝜔 ⋅ x) = 𝑡(𝑥) ⋅ 𝑓(𝜔 ⋅ x) for all   𝑥 ∈ 𝐻 (including  𝑥 = 𝜔%&' )

Lemma: if (1)    t(𝜔/-.) = 1 and
(2)    𝑡 𝜔 ⋅ x − 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x = 0 for all   𝑥 ∈ 𝐻

then    ∏;∈=𝑓(𝑎) = 1

∏;∈=𝑓(𝑎) = 1



Product check on H     (unoptimized)

Prover P((𝑓, 𝑐),⊥) Verifier V( 𝑓 )
construct  𝑡 𝑋 ∈ 𝔽!

(#') ,					𝑡1(𝑋) = 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)
and   q(𝑋) = 𝑡1(𝑋)/(𝑋' − 1) ∈ 𝔽!

(#')

q, 𝑡 ∈ 𝔽!
(#') 𝑋

eval  𝑡(𝑋) at   𝜔'() , 𝑟, 𝜔𝑟
learn 𝑡(𝜔%&'),   t(r),   𝑡(𝜔𝑟),   𝑞(𝑟),  𝑓(𝜔𝑟)

eval 𝑞 𝑋 at  𝑟 , and  𝑓(𝑋) at 𝜔𝑟

accept if    𝑡(𝜔'()) ≟ 1    and
𝑡 𝜔𝑟 − 𝑡(𝑟)𝑓(𝜔𝑟) ≟ 𝑞(𝑟) ⋅ (𝑟' − 1)

𝑟 ⇽ 𝔽!

𝑡1(𝐻) = 0 :



PLONK:  a poly-IOP for a general circuit  𝐶(𝑥, 𝑤)

Step 1:   compile circuit to a sequence of ops    (gate fan-in = 2)

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1+ 𝑥2)(𝑥2+ 𝑤1)

(0) (1)

(2) compile 0:   inp1 , inp2 :    +
1:   inp2 , inp3 :    +
2:   out0, out1 :   ×

Program P

output(topological sort of gates)



Encoding the inputs to the circuit

Step 2:      let  𝑑 = 3 𝐶 + |𝐼| and     H = { 1, 𝜔, 𝜔2, …, 𝜔+-. } 
|𝐶| = total # of gates in 𝐶 ,      |𝐼| = |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

• encode the 𝑥-inputs to the circuit in a polynomial  𝑣 ∈ 𝔽!
(*|C!|)[X]

for  𝑗 = 1, . . , |𝐼D|: 𝑣(𝜔-E) = input #j

• constructing  𝑣(𝑋) takes time proportional to the size of the input

• Let  Hinp = { 𝜔-., 𝜔-F, … , 𝜔- C! } (points encoding the input)



Encoding the circuit internal values
The plan:

Define a polynomial  𝑃 ∈ 𝔽!
(*+)[X] such that   ∀ 𝑙 = 0,… , 𝐶 − 1:   

• P(𝜔3𝑙): left input to gate #𝑙

• P(𝜔3𝑙+1): right input to gate #𝑙

• P(𝜔3𝑙+2): output of gate #𝑙

and   P(𝜔-E) = input #j

example: x1=5,	x2=6,	𝑤1=1

𝜔-1,  𝜔-2, 𝜔-3 :  5,  6,  1
0: 𝜔0,  𝜔1,  𝜔2 :   5,  6,  11
1: 𝜔3,  𝜔4,  𝜔5 :  6,  1,  7
2: 𝜔6,  𝜔7,  𝜔8 :  11,  7,  77for j = 1, …, |𝐼|

(all inputs)

(prover uses FFT to compute coefficients of P in time  𝑑 log2𝑑 )



Encoding the gates of the circuit
Step 3:   encode gate types using a selector polynomial  S(X)

define  S(X) ∈ 𝔽!
(*+)[X]   such that   ∀ 𝑙 = 0,… , 𝐶 − 1:   

S(𝜔3𝑙) = 1   if   gate #𝑙 is an addition gate
S(𝜔3𝑙) = 0   if   gate #𝑙 is a multiplication gate

Then, ∀ x ∈ Hgates = { 1, 𝜔3, 𝜔6, 𝜔9, …, 𝜔G( H -.) }:

S(x)⋅[P(x) + P(𝜔x)] + (1 – S(x))⋅P(x)⋅P(𝜔x)  = P(𝜔2x)



Encoding the circuit wiring

Step 4:   encode the wires of  𝐶:
P(𝜔-2) = P(𝜔1) = P(𝜔3)
P(𝜔-1) = P(𝜔0)
P(𝜔2) = P(𝜔6)
P(𝜔-3) = P(𝜔4)

Define a polynomial   W: H ⇾ H   that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2 )  ,     W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) ,  …

Lemma:   ∀ 𝑥∈H:   P(𝑥) = P(W(𝑥))   ⇒ wire constraints are satisfied

example: x1=5,	x2=6	,	𝑤1=1

𝜔-1,  𝜔-2, 𝜔-3 :  5,  6,  1
𝜔0,  𝜔1,  𝜔2 :   5,  6,  11
𝜔3,  𝜔4,  𝜔5 :  6,  1,  7
𝜔6,  𝜔7,  𝜔8 :  11,  7,  77



Encoding the circuit wiring

Problem:    the constraint   P(𝑥) = P(W(𝑥))    has degree  d2

⇒ prover would need to manipulate polynomials of degree d2

⇒ quadratic time prover !!     (goal:  linear time prover)

Cute trick: use prod-check proof to reduce this to a 
constraint of linear degree



Reducing wiring check to a linear degree
Lemma:   P(𝑥) = P(W(𝑥))  for all 𝑥∈H    if and only if    𝐿(𝑌, 𝑍) ≡ 1,

where   𝐿 𝑌, 𝑍 = ∏*∈,
- * ./01 * .2
- * ./0*.2

To prove that   𝐿 𝑌, 𝑍 ≡ 1 do:
(1) verifier chooses random  𝑦, 𝑧 ∈ 𝔽!

(2) prover builds   𝐿1(X)   s.t. 𝐿1(𝑥) = - * .301 * .4
- * .30*.4

for all  𝑥∈H

(3) run prod-check to prove   ∏*∈, 𝐿1(𝑥) = 1

(4) validate 𝐿1:  run zero-test to prove  𝐿2(𝑥) = 0   for all 𝑥∈H  where

𝐿2(x) = (𝑃 𝑥 + 𝑦 P 𝑥 + 𝑧) 𝐿1(𝑥)  – (𝑃 𝑥 + 𝑦 P 𝑊 𝑥 + 𝑧)



The final  (S, P, V)  SNARK
Setup(𝐶):    Sv = ( poly commitment to  S(X)  and  W(X) )

Prover P(𝒙,𝐰) Verifier V(𝑆𝑣, 𝒙)

build  𝑣(𝑋) ∈ 𝔽!
(#|6#|) [X]build    P(𝑋) ∈ 𝔽!

(#$)[X]

Prove:  

(1)   S(x)⋅[P(x) + P(𝜔x)]  + (1 – S(x))⋅P(x)⋅P(𝜔x) − P(𝜔2x) = 0 ∀ x ∈ Hgates

(2)   P(x) − 𝑣(x) = 0 ∀ x ∈ Hinp

(3)   P(x) − P(W(x)) = 0 ∀ x ∈ H

(4)   P(𝜔7 8 ()) = 0 (output of last gate = 0)

𝑃

gates:

inputs:

wires:

output:



Many extensions …

• Can handle circuits with more general gates than  +  and  ×
• PLOOKUP:    efficient SNARK for circuits with lookup tables

• The SNARK can easily be made into a zkSNARK

• Main challenge:   reduce prover time



Next lecture:   recursive SNARKs

END  OF  LECTURE


