CS251 Fall 2020

(cs251.stanford.edu)

Building a SNARK

Dan Boneh

Recap: high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency

Recap: non-interactive proof systems (for NP)

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}_p$ public statement in $\mathbb{F}_p^n \longrightarrow \mathbb{F}_p^m$ secret witness in \mathbb{F}_p^m

- Let $x \in \mathbb{F}_p^n$. Two standard goals for prover P:
- (1) <u>Soundness</u>: convince Verifier that $\exists w$ s.t. C(x, w) = 0(e.g., $\exists w$ such that $[H(w) = x \text{ and } 0 < w < 2^{60}]$)
- (2) <u>Knowledge</u>: convince Verifier that P "knows" w s.t. C(x, w) = 0(e.g., P knows a w such that H(w) = x)

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

- S(C) → public parameters (S_p, S_v) for prover and verifier
 (S_p, S_v) is called a *reference string*
- $P(S_p, x, w) \rightarrow \text{proof } \pi$
- $V(S_{v}, x, \pi) \rightarrow \text{accept or reject}$

proof systems: properties (informal)

Complete: $\forall x, w: C(x, w) = 0 \Rightarrow V(S_v, x, P(S_p, x, w)) = accept$

Proof of knowledge: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0

in some cases, **soundness** is sufficient: $\exists w$ s.t. C(x, w) = 0

Zero knowledge (optional): (x, π) "reveals nothing" about w

SNARK: succinct argument of knowledge

Goal: P wants to show that it knows w s.t. C(x, w) = 0

note: if SNARK is zero-knowledge, then called a **zkSNARK**

A simple PCP-based SNARK

[Kilian'92, Micali'94]

A simple construction: PCP-based SNARK

<u>The PCP theorem</u>: Let C(x, w) be an arithmetic circuit. there is a proof system that for every x proves $\exists w: C(x, w) = 0$ as follows:

V always accepts valid proof. If no *w*, then V rejects with high prob.

size of proof is poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Making the proof non-interactive

The Fiat-Shamir heuristic:

public-coin interactive protocol ⇒ non-interactive protocol
 public coin: all verifier randomness is public (no secrets)

Making the proof non-interactive

<u>Fiat-Shamir heuristic</u>: $H: M \rightarrow R$ a cryptographic hash function

• idea: prover generates random bits on its own (!)

<u>Thm</u>: this is a secure SNARK assuming H is a random oracle

Let's build an extractor *E* for the interactive protocol:

- After prover commits to Merkle root of proof
 E asks prover to open many batches of *k* = *O*(λ) positions of π (by rewinding prover)
- *E* fails to extract cell #j of π if
 - (1) prover produces a false Merkle proofs (efficient prover cannot), or
 - (2) prover fails (i.e., verifier rejects) whenever j is in batch to open:

Pr[prover fails] \geq Pr[j in batch] = $1 - (1 - 1/|\pi|)^k$.

so: this cannot happen if k is sufficiently large

 \Rightarrow *E* extracts entire proof π . Once π is known, *E* can obtain *w* from π .

Are we done?

Simple transparent SNARK from the PCP theorem

- Use Fiat-Shamir heuristic to make non-interactive
- We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = $\tilde{O}(|C|)$

Building an efficient SNARK

General paradigm

Many SNARKs are built in two steps:

polynomial interactive oracle proofs (poly-IOP)

(zk)SNARK for general circuits

Recall: commitments

Two algorithms:

- *commit*(m, r) → *com*
- *verify*(m, *com*, r) → accept or reject

Properties:

- binding: cannot produce two valid openings for *com*.
- hiding: *com* reveals nothing about committed data

(1) Polynomial commitment schemes

Notation:

Fix a finite field:
$$\mathbb{F}_p = \{0, 1, \dots, p-1\}$$

$\mathbb{F}_p^{(\leq d)}[X]$: all polynomials in $\mathbb{F}_p[X]$ of degree $\leq d$.

(1) Polynomial commitment schemes

- <u>setup</u>(d) $\rightarrow pp$, public parameters for polynomials of degree $\leq d$
- <u>commit(pp</u>, f, r) \rightarrow **com**_f commitment to $f \in \mathbb{F}_p^{(\leq d)}[X]$
- <u>eval</u>: goal: for a given com_f and $x, y \in \mathbb{F}_p$, prove that f(x) = y.

Formally: *eval* = (P, V) is a SNARK for:

statement $st = (pp, com_f, x, y)$ with witness = w = (f, r)where C(st, w) = 0 iff

[f(x) = y and
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$
 and commit(pp, f, r) = com_f]

(1) Polynomial commitment schemes

Properties:

- Binding: cannot produce two valid openings (f_{1}, r_{1}) , (f_{2}, r_{2}) for **com**_f.
- eval is an argument of knowledge (can extract (f, r) from a successful prover)
- optional:
 - commitment is hiding
 - eval is zero knowledge

Constructing polynomial commitments

Not today ... (see readings or CS355)

simple construction without this requirement

Properties of the best ones:

- transparent setup: no secret randomness in setup
- *com*_f is constant size (a single group element)
- eval proof size for $f \in \mathbb{F}_p^{(\leq d)}[X]$ is $O(\log d)$ group elements
- eval verify time is O(log d) Prover time:

O(d)

(2) Polynomial IOP

Goal: polynomial commitment scheme \Rightarrow SNARK for a general circuit C(x, w).

... done using a polynomial-IOP

Fix an arithmetic circuit C(x, w). Let $x \in \mathbb{F}_p^n$.

<u>Poly-IOP</u>: a proof system that proves $\exists w: C(x, w) = 0$ as follows:

(2) Polynomial IOP

Properties

- complete: if $\exists w: C(x, w) = 0$ then verifier always accepts
- Soundness or proof of knowledge: (informal) Let $x \in \mathbb{F}_p^n$. P*: a prover that convinces the verifier with prob. $\geq 1/10^6$ then there is an efficient extractor E s.t.

$$\Pr[E(x, f_1, r_1, \dots, r_{t-1}, f_t) = w \text{ s.t. } C(x, w) = 0] \ge 1/10^6$$

• Optional: zero knowledge

The resulting SNARK

Poly-IOP params: #polynomials = t, # eval queries in verify = q The SNARK:

- During interactive phase of poly-IOP: send t poly commitments
- During poly-IOP verify: run poly-commit eval protocol q times
- Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof: t poly-commits + q eval proofs SNARK verify time: q poly eval proof verifications + time(IOP-verify) SNARK prover time: t poly commits + time(IOP-prover)

Constructing a Poly-IOP

First some useful tricks ...

The fundamental theorem of algebra: for $0 \neq f \in \mathbb{F}_p^{(\leq d)}[X]$ for $r \leftarrow \mathbb{F}_p$: $\Pr[f(r) = 0] \leq d/p$

- \Rightarrow suppose p $\approx 2^{256}$ and d $\leq 2^{40}$ then d/p is negligible
- \Rightarrow for $r \leftarrow \mathbb{F}_p$, if f(r) = 0 then f is identically zero w.h.p

 \Rightarrow simple zero test for a committed polynomial

Some useful gadgets

Let
$$\omega \in \mathbb{F}_p$$
 be a primitive k-th root of unity $(\omega^k = 1)$
Set $H := \{1, \omega, \omega^2, ..., \omega^{k-1}\}.$

Let
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$
 and $b, c \in \mathbb{F}_p$. $(d \geq k)$

Want poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f is identically zero on H

Tast 2 (sum-check): prove that $\sum_{a \in H} f(a) = b$

Task 3 (**prod-check**): prove that $\prod_{a \in H} f(a) = c$

Verifier time: $O(\log k)$ and two eval verify (but can be done in one)

Product check on H: $\prod_{a \in H} f(a) = 1$

Let $t \in \mathbb{F}_p^{(\leq k)}[X]$ be the degree-*d* polynomial: $t(1) = f(1), \quad t(\omega^s) = \prod_{i=0}^s f(\omega^i) \text{ for } s = 1, \dots, k-1$

Then
$$t(\omega^{k-1}) = \prod_{a \in H} f(a) = 1$$

and $t(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in H$ (including $x = \omega^{k-1}$)

Lemma: if (1)
$$t(\omega^{k-1}) = 1$$
 and
(2) $t(\omega \cdot x) - t(x) \cdot f(\omega \cdot x) = 0$ for all $x \in H$
then $\prod_{a \in H} f(a) = 1$

Product check on H (unoptimized)

Prover P((f, c),
$$\bot$$
)
construct $t(X) \in \mathbb{F}_{p}^{(\leq k)}$, $t_{1}(X) = t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X)$
and $q(X) = t_{1}(X)/(X^{k} - 1) \in \mathbb{F}_{p}^{(\leq k)}$

$$q, t \in \mathbb{F}_{p}^{(\leq k)} [X]$$

$$r \leftarrow \mathbb{F}_{p}$$

$$eval t(X) at \omega^{k-1}, r, \omega r$$

$$r \leftarrow \mathbb{F}_{p}$$

$$eval q(X) at r, and f(X) at \omega r$$

$$t_{1}(H) = 0:$$

$$accept if t(\omega^{k-1}) \stackrel{?}{=} 1 and$$

$$t(\omega r) - t(r)f(\omega r) \stackrel{?}{=} q(r) \cdot (r^{k} - 1)$$

PLONK: a poly-IOP for a general circuit C(x, w)

Step 1: compile circuit to a sequence of ops (gate fan-in = 2)

Encoding the inputs to the circuit

- **Step 2**: let d = 3 |C| + |I| and $H = \{1, \omega, \omega^2, ..., \omega^{d-1}\}$ |C| = total # of gates in C, $|I| = |I_x| + |I_w| = \text{# inputs to } C$
- encode the *x*-inputs to the circuit in a polynomial $v \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ for $j = 1, ..., |I_x|$: $v(\omega^{-j}) = \text{input } \#j$
- constructing v(X) takes time proportional to the size of the input
- Let $H_{inp} = \{ \omega^{-1}, \omega^{-2}, \dots, \omega^{-|I_{\chi}|} \}$ (points encoding the input)

Encoding the circuit internal values

The plan: (prover uses FFT to compute coefficients of P in time $d \log_2 d$)

Define a polynomial $P \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall l = 0, ..., |C| - 1$:

- $P(\omega^{3l})$: left input to gate #l
- $P(\omega^{3l+1})$: right input to gate #*l*
- $P(\omega^{3l+2})$: output of gate #*l*

and
$$P(\omega^{-j}) = input \# j$$
 for $j = 1, ..., |I|$ (all inputs)

example: $x_1=5, x_2=6, w_1=1$ $\omega^{-1}, \omega^{-2}, \omega^{-3}: 5, 6, 1$ 0: $\omega^0, \omega^1, \omega^2: 5, 6, 11$ 1: $\omega^3, \omega^4, \omega^5: 6, 1, 7$ 2: $\omega^6, \omega^7, \omega^8: 11, 7, 77$

Encoding the gates of the circuit

Step 3: encode gate types using a <u>selector</u> polynomial S(X)

define
$$S(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 such that $\forall l = 0, ..., |C| - 1$:
 $S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate
 $S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

Then,
$$\forall x \in H_{gates} = \{1, \omega^3, \omega^6, \omega^9, ..., \omega^{3(|C|-1)}\}$$
:

$$S(x) \cdot [P(x) + P(\omega x)] + (1 - S(x)) \cdot P(x) \cdot P(\omega x) = P(\omega^2 x)$$

Encoding the circuit wiring

Step 4 : encode the wires of <i>C</i> :	-
$\int P(\omega^{-2}) = P(\omega^{1}) = P(\omega^{3})$	
$P(\omega^{-1}) = P(\omega^{0})$	
$P(\omega^2) = P(\omega^6)$	
$P(\omega^{-3}) = P(\omega^4)$	

example:
$$x_1=5, x_2=6, w_1=1$$

 $\omega^{-1}, \omega^{-2}, \omega^{-3}: 5, 6, 1$
 $\omega^0, \omega^1, \omega^2: 5, 6, 11$
 $\omega^3, \omega^4, \omega^5: 6, 1, 7$
 $\omega^6, \omega^7, \omega^8: 11, 7, 77$

Define a polynomial W: $H \rightarrow H$ that implements a rotation: W($\omega^{-2}, \omega^1, \omega^3$) = ($\omega^1, \omega^3, \omega^{-2}$), W(ω^{-1}, ω^0) = (ω^0, ω^{-1}), ...

Lemma: $\forall x \in H$: $P(x) = P(W(x)) \Rightarrow$ wire constraints are satisfied

Encoding the circuit wiring

<u>Problem</u>: the constraint P(x) = P(W(x)) has degree d^2

- \Rightarrow prover would need to manipulate polynomials of degree d²
- ⇒ quadratic time prover !! (goal: linear time prover)

Cute trick: use prod-check proof to reduce this to a constraint of linear degree

Reducing wiring check to a linear degree

Lemma: P(x) = P(W(x)) for all $x \in H$ if and only if $L(Y, Z) \equiv 1$, where $L(Y, Z) = \prod_{x \in H} \frac{P(x) + Y \cdot W(x) + Z}{P(x) + Y \cdot x + Z}$

To prove that $L(Y, Z) \equiv 1$ do:

- (1) verifier chooses random $y, z \in \mathbb{F}_p$
- (2) prover builds $L_1(X)$ s.t. $L_1(x) = \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z}$ for all $x \in H$
- (3) run prod-check to prove $\prod_{x \in H} L_1(x) = 1$
- (4) validate L_1 : run zero-test to prove $L_2(x) = 0$ for all $x \in H$ where $L_2(x) = (P(x) + y \cdot x + z) L_1(x) - (P(x) + y \cdot W(x) + z)$

The final (S, P, V) SNARK

Setup(C): $S_v = ($ poly commitment to S(X) and W(X))

Prover P(x, w)Verifier V(S_v, x)build
$$P(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 P build $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$

Prove:

gates: (1) $S(x) \cdot [P(x) + P(\omega x)] + (1 - S(x)) \cdot P(x) \cdot P(\omega x) - P(\omega^2 x) = 0 \quad \forall x \in H_{gates}$ inputs: (2) $P(x) - v(x) = 0 \qquad \forall x \in H_{inp}$ wires: (3) $P(x) - P(W(x)) = 0 \qquad \forall x \in H$ output: (4) $P(\omega^{3|C|-1}) = 0$ (output of last gate = 0)

Many extensions ...

- Can handle circuits with more general gates than + and ×
 - PLOOKUP: efficient SNARK for circuits with lookup tables

• The SNARK can easily be made into a zkSNARK

• Main challenge: reduce prover time

END OF LECTURE

Next lecture: recursive SNARKs