CS251 Fall 2020
(cs251.stanford.edu)

Building a SNARK

Dan Boneh

Recap: high-level goals

* Private transactions on a public blockchain

* Blockchain scaling, such as proof-based Rollup

* Privately prove compliance, such as a private proof of solvency

Recap: non-interactive proof systems (ornr)

Public arithmetic circuit: C(x, w) — [,
public statement in IFg —J L— secret withess in IFg‘

Let x € IFg . Two standard goals for prover P:

(1) Soundness: convince Verifier that dw s.t. C(x,w) =0
(e.g., 3w suchthat [H(w) =x and 0 <w < 200])

(2) Knowledge: convince Verifier that P “knows” w s.t. C(x,w) =0

(e.g., P knows aw such that H(w) = x)

Non-interactive Proof Systems (corne)

A non-interactive proof system is a triple (S, P, V):

* S(C) — public parameters (S,,S,) for prover and verifier

(Sy, S,) is called a reference string
* P(S,, x,w) — proof 7

* V(S, x,) — accept or reject

proof systems: properties (informal)

Prover P(pp, X, W) Verifier V (pp, X, TT)
proof TT

accept or reject

Complete: vx,w: C(x,w) =0 = V(S, x, P(s,, x, w)) = accept

Proof of knowledge: V accepts = P “knows” ws.t. C(x,w) =0

in some cases, soundness is sufficient: Iw s.t. C(x,w) =0

Zero knowledge (optional): (x,) “reveals nothing” about w

SNARK: succinct argument of knowledge

Goal: P wants to show that it knows w s.t. C(x,w) =0

Succinct:

* Proof m should beshort [i.e., || = 0(log(|C]), 1)]

-

e Verifying m should be fast [i.e., time(V)=0(|x|, log(|C])|, 2)]

note: if SNARK is zero-knowledge, then called a zkSNARK

A simple PCP-based SNARK

[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK

The PCP theorem: Let C(x,w) be an arithmetic circuit.

there is a proof system that for every x proves Iw: C(x,w) =0
as follows:

Prover P(S,, X, w) Verifier V(S,. x)

proof read only 0() bits of T,
— ||||| = output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

size of proofis poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Prover P(S,, xX,W) Verifier V(S,. X)
A&
ML LTI TTTTT] Merkle root b 1.t

open k positions of T (k. = 0(1))

» O(klog|C]|) hashes

k opening and Merkle proofs
output accept or reject

Verifier sees 0(1log|C|) data = succinct proof. | Problem: interactive

Making the proof non-interactive

The Fiat-Shamir heuristic:
* public-coin interactive protocol = non-interactive protocol
public coin: all verifier randomness is public (no secrets)

Prover P(S,, X, w) Verifier V(S,. X)
msgl
r choose random bits r
msg2
accept or reject

Making the proof non-interactive

Fiat-Shamir heuristic: H: M — R a cryptographic hash function

* idea: prover generates random bits on its own (!)

Prover P(S,, X, w) Verifier V(S,. X)

generate msgl

r «— H(x, msgl) 1 = (msgl, msg2) |re H(x, msgl)

generate msg2 In| =0(xlog |C])

accept or reject

Thm: this is a secure SNARK assuming H is a random oracle

Why is this an argument of knowledge? (cns«ip)

Let’s build an extractor E for the interactive protocol:

* After prover commits to Merkle root of proof
E asks prover to open many batches of k = 0(1) positions of &

(by rewinding prover)
e [E fails to extract cell #j of m if
(1) prover produces a false Merkle proofs (efficient prover cannot), or
(2) prover fails (i.e., verifier rejects) whenever j is in batch to open:
Pr[prover fails] = Pr[jinbatch] = 1-(1—1/|m|)*.
so: this cannot happen if k is sufficiently large

= FE extracts entire proof t. Once i is known, E can obtain w from m.

Are we done?

Simple transparent SNARK from the PCP theorem
e Use Fiat-Shamir heuristic to make non-interactive

* We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = O(|C|)

Building an efficient SNARK

General paradigm

Many SNARKs are built in two steps:

Polynomial polynomial
Interactive commitment
oracle proofs scheme
w)

)
Fe

\\—> (zk)SNARK for general circuits

Recall: commitments

Two algorithms:

commit(m, r) = com

verify(m, com, r) = accept or reject

Properties:

binding: cannot produce two valid openings for com.

hiding: com reveals nothing about committed data

(1) Polynomial commitment schemes

Notation:

Fix a finite field: F, ={0,1,...,p — 1}

IFgfd) [X]: all polynomials in IF,,[X] of degree < d.

(1) Polynomial commitment schemes

« setup(d) = pp, public parameters for polynomials of degree < d

* commit(pp, f,r) = com; commitmenttof € [Fz(fd) |1 X]

* eval: goal: foragivencomy and x,y € IF,,, prove that f(x) =y.

Formally: eval = (P, V) is a SNARK for:

statement st = (pp, com;, x, y) with witness=w = (f, r)

where C(st, w) =0 iff

[f(x)=y and f€E IFz(fd) [X] and commit(pp, f, r) = com; |

(1) Polynomial commitment schemes

Properties:

* Binding: cannot produce two valid openings (f; ry), (f, r,) for com,.
e evalisan argument of knowledge (can extract (f, r) from a successful prover)

e optional:
e commitment is hiding

* eval is zero knowledge

Constructing polynomial commitments

Not today ... (see readings or CS355)

Properties of the best ones:

* transparent setup: no secret randomness in setup

e com; is constant size (a single group element)

* eval proof size for f € IFz(fd) | X] is| O(log d)| group elements

e eval verify time is/O(log d) Prover time:| O(d)

(2) Polynomial IOP

Goal: polynomial commitment scheme =
SNARK for a general circuit C (x, w).

... done using a polynomial-IOP

Fix an arithmetic circuit C(x,w). Letx € ;.

Poly-IOP: a proof system that proves Iw: C(x,w) = 0 as follows:

(2) Polynomial IOP

Prover P(x, w) Verifier V(x)
fi€ Fy? [X]

ry
<d
£, e ¥E9 11 |
» 1, [F
7"2 p
Te 1o
t—1 rt—lq_IFp

£ e FEY x|

verify's - tr,, 1)

 complete:if Iw:C(x,w) = 0 then verifier always accepts

 Soundness or proof of knowledge: (informal) LethIFg.

P*: a prover that convinces the verifier with prob. > 1/10°
then there is an efficient extractor E s.t.

Pr[E(x, fi, 7 o, Teey, f) =W st C(x,w) =0] 2 1/10¢

e Optional: zero knowledge

The resulting SNARK

Poly-IOP params: #polynomials =t, # eval queriesin verify =q
The SNARK:

* During interactive phase of poly-IOP: send t poly commitments
* During poly-IOP verify: run poly-commit eval protocol g times
e Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof: t poly-commits + g eval proofs
SNARK verify time: q poly eval proof verifications + time(IOP-verify)
SNARK prover time: t poly commits + time(IOP-prover)

Constructing a Poly-IOP

First some useful tricks ...

The fundamental theorem of algebra: for 0% f € IFz(fd) | X]

forre T, : Prlf() =0]< d/p

= suppose p=2%® and d<2% then d/p isnegligible
= forre1T,, if f(r) =0 then f isidentically zerow.h.p

= simple zero test for a committed polynomial

Some useful gadgets

Let w € IF, be a primitive k-th root of unity (w" =1)
Set H:={1 w, w? .., wk}.

let f € IFz(fd) [X] and b,c€TF,. (d = k)

Want poly-10Ps for the following tasks:

Task 1 (zero-test): prove that f isidentically zero on H

Tast 2 (sum-check): provethat) ,cyf(a) =b

Task 3 (prod-check): prove that [],eyf(a) =c

Zero teston H (H={1 w, w? .., w*1})
Prover P(f, 1) Verifier V([£])

q(X) = fF(X)/(X*-1)

q € Fy " [X]

r eI,
eval g(X) and f(X) at r earn q(), ()

IS zero on accept if f(?”) 2 CI(T) . (Tk _ 1)
(implies that f(X) = q(X)(X* —-1))

f£(X) is divisible by X* — 1

Thm: this protocol is complete and sound, assuming d/p is negligible.

Verifier time: O(log k) and two eval verify (but can be done in one)

Product checkon H: [],.45f(a) =1

let t € IFz(fk) |X] be the degree-d polynomial:

t()=f1), tw)=Ii.gf(w) for s=1,...,k—1

Then tw*)= [l,enf(a@) =1
and t(w-x)=t(x) -f(w-x) forall xe H

(including x = w

Lemma: if (1) t(w* 1) =1 and
(2) t(w-x)—t(x) f(w-x)=0
then [lgenf(a) =1

forall x € H

Product check on H (unoptimized)
Prover P((f,c), 1) Verifier V(m)

construct t(X) € FS9 , £,(X) = t(w-X) —t(X) f(w - X)
and q(X) = t,(X)/(X* - 1) € FS©

g, t € Fy) [X]

r<1—IFp
>

learn t(w"*™1), t(r), t(wr), q(), f(wr)
.eval g(X) at r,and f(X) at wr

.eval t(X) at w1 r or

acceptif t(w®1)Z1 and
t,(H) = 0: t(wr) —t()f(wr) Zq@) - @*-1)

PLONK: a poly-IOP for a general circuit C(x,w)

Step 1: compile circuit to a sequence of ops

(x1 + x2) (%2 + wy)

I (2)
©

(0) (1)

S &

compile

(gate fan-in = 2)

(topological sort of gates)

Program P
0: inp;, inp, +
1: inp,, inpy : +
2: out, out; X

Encoding the inputs to the circuit

Step2: let d =3|C|+|I|] and H={1, w, w? .., w* 1}
|C| =total #of gatesinC, |I|=|I,|+|l,|] =#inputsto C

* encode the x-inputs to the circuit in a polynomial v € IFI(f“xD[X]

for j=1,..,|I;]: v(w™)) =input#

* constructing v(X) takes time proportional to the size of the input

e Let H. 1

mp=1{ w7, w72, ..., w } (points encoding the input)

Encoding the circuit internal values

The plan: (prover uses FFT to compute coefficients of P in time d log,d)

Define a polynomial P € IFz(fd)[X] suchthat VvI=0,..,|C|—1:

e P(w3!): leftinput to gate #I example: x,=5,x,=6, w;=1
e P(w3"1): right input to gate #I wl, w?w3:5 6,1

0. w? wl, w?: 5, 6,11
1. w3, w* w?: 61,7

: b T 8
and P(w™/) =input#j forj=1,..|I| 22 w?, w', w1l 7,

(all inputs)

e P(w3*2): output of gate #l

Encoding the gates of the circuit

Step 3: encode gate types using a selector polynomial S(X)

define S(X) € IFz(fd)[X] suchthat vI=0,...,|C| — 1:
S(w3!) =1 if gate #l is an addition gate

S(w3!) =0 if gate #l is a multiplication gate

Then, V X € Hes = { 1, @3, 0°, w0, ..., w3UCI=1)y.

S(x)[P(x) + P(wx)] + (1 —5(x))-P(x)-P(wx) = P(w?X)

Encoding the circuit wiring

Step 4: encode the wires of C: example: x;=5,x,=6,w;=1
—P(a)'z) = P(w?) = P(w3) w?l w? w3:5, ?, 1
P(w™) = P(w°) 0, w!, w?: 5,6, 11
| P(w?) = P(w) w3, w* wb: 6,/ 1, 7
_P(w?) = P(w?) Wb, wl, w8: 11, 7, 77

Define a polynomial W:H — H that implements a rotation:

W(w?, w!, w3) = (w!, w3, w?), Ww! w’)=(w’, w?), ..

Lemma: V x€H: P(x)=P(W(x)) = wire constraints are satisfied

Encoding the circuit wiring

Problem: the constraint P(x)=P(W(x)) has degree d?

= prover would need to manipulate polynomials of degree d?

= quadratic time prover !! (goal: linear time prover)

Cute trick: use prod-check proof to reduce this to a
constraint of linear degree

Reducing wiring check to a linear degree

Lemma: P(x)=P(W(x)) forallxeH ifandonlyif L(Y,Z)=1,

P(x)+Y-W(x)+Z
P(x)+Y-x+Z

where L(Y,Z) = [l ey

To prove that L(Y,Z) =1 do:
(1) verifier chooses random y,z € F,

P(xX)+y-W(x)+z

for all xeH
P(x)+y-x+z

(2) prover builds L{(X) s.t. L{(x)=

(3) run prod-check to prove [l eyLi(x) =1
(4) validate L;: run zero-test to prove L,(x) =0 forall x€H where

Ly(x) = (P(x) +y - x+2z) Li(x) - (P(x) +y - W(x) + 2)

The final (S, P, V) SNARK

Setup(C): S, =(poly commitmentto S(X) and W(X))

Prover P(x, w) Verifier V(S,, x)
P
build P(X) € FS VIX] * build v(X) € FS"V [x]
Prove:

gates: (1) S(x)-[P(x) + P(wx)] +(1—S(x))-P(x)-P(wx) — P(w?x) =0 V X € Hyates
inputs: (2) P(x) —v(x)=0 V X € Hiy,
wires: (3) P(x) — P(W(x)) =0 vxeH

output: (4) P(w3¢I-1) =0 (output of last gate = 0)

Many extensions ...

e Can handle circuits with more general gates than + and X
* PLOOKUP: efficient SNARK for circuits with lookup tables

 The SNARK can easily be made into a zkSNARK

* Main challenge: reduce prover time

END OF LECTURE

Next lecture: recursive SNARKs

