
Building a SNARK

CS251 Fall 2020
(cs251.stanford.edu)

Dan Boneh

Recap: high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency

Recap: non-interactive proof systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽𝑝
public statement in 𝔽!" secret witness in 𝔽!#

Let 𝒙 ∈ 𝔽!" . Two standard goals for prover P:

(1) Soundness: convince Verifier that ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., ∃𝒘 such that [𝐻(𝒘) = 𝒙 and 0 < 𝒘 < 260])

(2) Knowledge: convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

(Sp, Sv) is called a reference string

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

proof systems: properties (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete: ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept

Proof of knowledge: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

in some cases, soundness is sufficient: ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

Zero knowledge (optional): (𝒙, 𝜋) “reveals nothing” about 𝒘

SNARK: succinct argument of knowledge

Succinct:

• Proof 𝜋 should be short [i.e., |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)]

• Verifying 𝜋 should be fast [i.e., time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)]

note: if SNARK is zero-knowledge, then called a zkSNARK

Goal: P wants to show that it knows 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

A simple PCP-based SNARK
[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK
The PCP theorem: Let 𝐶(𝑥,𝑤) be an arithmetic circuit.

there is a proof system that for every 𝑥 proves ∃𝑤: 𝐶 𝑥,𝑤 = 0
as follows:

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
read only 𝑂(𝜆) bits of 𝜋,
output accept or reject

proof 𝜋

size of proof is 𝑝𝑜𝑙𝑦(|𝐶|). (not succinct)

V always accepts valid proof. If no 𝑤, then V rejects with high prob.

Converting a PCP proof to a SNARK

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

Merkle
𝜋

ℎ

open 𝑘 positions of 𝜋 (𝑘 = 𝑂(𝜆))

𝑘 opening and Merkle proofs
output accept or reject

Verifier sees 𝑂(𝜆 log |𝐶|) data ⇒ succinct proof.

Merkle root ℎ 1 hash

𝑂(𝑘 log |𝐶|) hashes

Problem: interactive

Making the proof non-interactive
The Fiat-Shamir heuristic:
• public-coin interactive protocol ⇒ non-interactive protocol

public coin: all verifier randomness is public (no secrets)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
msg1

r

msg2
accept or reject

choose random bits r

Making the proof non-interactive
Fiat-Shamir heuristic: 𝐻:𝑀 ⇾ 𝑅 a cryptographic hash function

• idea: prover generates random bits on its own (!)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

𝜋 = (msg1, msg2)
|π| = O(𝜆 log |𝐶|)

r ⇽ H(𝒙, msg1)

accept or reject

r ⇽ H(𝒙, msg1)
generate msg1

generate msg2

Thm: this is a secure SNARK assuming H is a random oracle

Why is this an argument of knowledge? (can skip)

Let’s build an extractor 𝐸 for the interactive protocol:
• After prover commits to Merkle root of proof

𝐸 asks prover to open many batches of 𝑘 = 𝑂(𝜆) positions of 𝜋
(by rewinding prover)

• 𝐸 fails to extract cell #j of 𝜋 if
(1) prover produces a false Merkle proofs (efficient prover cannot), or
(2) prover fails (i.e., verifier rejects) whenever j is in batch to open:

Pr[prover fails] ≥ Pr[j in batch] = 1 – (1 − 1/|𝜋|)𝑘 .
so: this cannot happen if 𝑘 is sufficiently large

⇒ 𝐸 extracts entire proof 𝜋. Once 𝜋 is known, 𝐸 can obtain 𝒘 from 𝜋.

Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = F𝑂(|C|)

Building an efficient SNARK

General paradigm

Many SNARKs are built in two steps:

polynomial
commitment

scheme

polynomial
interactive

oracle proofs
(poly-IOP)

(zk)SNARK for general circuits

Recall: commitments

Two algorithms:

• commit(m, r) ⇾ com

• verify(m, com, r) ⇾ accept or reject

Properties:

• binding: cannot produce two valid openings for com.

• hiding: com reveals nothing about committed data

(1) Polynomial commitment schemes
Notation:

Fix a finite field: 𝔽! = 0,1,… , 𝑝 − 1

𝔽!
(*+) 𝑋 : all polynomials in 𝔽![X] of degree ≤ d.

(1) Polynomial commitment schemes
• setup(𝑑) ⇾ pp, public parameters for polynomials of degree ≤ 𝑑

• commit(pp, f, r) ⇾ comf commitment to f ∈ 𝔽!
(*+) 𝑋

• eval: goal: for a given comf and x, y ∈ 𝔽! , prove that f(x) = y.

Formally: eval = (P, V) is a SNARK for:

statement st = (pp, comf , x, y) with witness = 𝑤 = (f, r)

where 𝐶(st, 𝑤) = 0 iff

[f(x) = y and f ∈ 𝔽!
(*+) 𝑋 and commit(pp, f, r) = comf]

(1) Polynomial commitment schemes
Properties:

• Binding: cannot produce two valid openings (f1, r1), (f2, r2) for comf.

• eval is an argument of knowledge (can extract (f, r) from a successful prover)

• optional:

• commitment is hiding

• eval is zero knowledge

Constructing polynomial commitments
Not today … (see readings or CS355)

Properties of the best ones:

• transparent setup: no secret randomness in setup

• comf is constant size (a single group element)

• eval proof size for f ∈ 𝔽!
(*+) 𝑋 is O(log 𝑑) group elements

• eval verify time is O(log 𝑑) Prover time: O(𝑑)

simple construction
without this requirement

(2) Polynomial IOP
Goal: polynomial commitment scheme ⇒

SNARK for a general circuit 𝐶 𝑥,𝑤 .

… done using a polynomial-IOP

Fix an arithmetic circuit 𝐶 𝑥,𝑤 . Let 𝑥 ∈ 𝔽!" .

Poly-IOP: a proof system that proves ∃𝑤: 𝐶 𝑥,𝑤 = 0 as follows:

(2) Polynomial IOP
Prover P(𝒙,𝒘) Verifier V(𝒙)

𝑓1 ∈ 𝔽!
(#$) 𝑋

𝑟1 ⇽ 𝔽!
𝑟1

𝑓𝑡 ∈ 𝔽!
(#$) 𝑋

𝑟2 ⇽ 𝔽!
𝑓2 ∈ 𝔽!

(#$) 𝑋

𝑟2

⋮
𝑟,-. ⇽ 𝔽!

𝑟,-.

verifyf1, …, ft(𝑟1, …,𝑟,-.)

can evaluate fi
at any x in 𝔽!

Properties

• complete: if ∃𝑤: 𝐶 𝑥,𝑤 = 0 then verifier always accepts

• Soundness or proof of knowledge: (informal) Let 𝑥 ∈ 𝔽!".
P*: a prover that convinces the verifier with prob. ≥ 1/106

then there is an efficient extractor 𝐸 s.t.

Pr[𝐸(𝑥, 𝑓1, 𝑟1, … , 𝑟,-., 𝑓𝑡) = 𝑤 s.t. 𝐶(𝑥,𝑤) = 0] ≥ 1/106

• Optional: zero knowledge

The resulting SNARK
Poly-IOP params: #polynomials = t, # eval queries in verify = q
The SNARK:
• During interactive phase of poly-IOP: send t poly commitments
• During poly-IOP verify: run poly-commit eval protocol q times
• Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof: t poly-commits + q eval proofs
SNARK verify time: q poly eval proof verifications + time(IOP-verify)
SNARK prover time: t poly commits + time(IOP-prover)

Constructing a Poly-IOP

First some useful tricks …

The fundamental theorem of algebra: for 0 ≠ 𝑓 ∈ 𝔽!
(*+) [𝑋]

for 𝑟⇽ 𝔽! : Pr[𝑓(𝑟) = 0] ≤

⇒ suppose p ≈ 2256 and d ≤ 240 then 𝑑/𝑝 is negligible

⇒ for 𝑟⇽ 𝔽! , if 𝑓(𝑟) = 0 then 𝑓 is identically zero w.h.p

⇒ simple zero test for a committed polynomial

𝑑/𝑝

Some useful gadgets

Let 𝜔 ∈ 𝔽& be a primitive 𝑘-th root of unity (𝜔' = 1)
Set H := { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 }.

Let 𝑓 ∈ 𝔽&
()*) [𝑋] and 𝑏, 𝑐 ∈ 𝔽& . (𝑑 ≥ 𝑘)

Want poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f is identically zero on H

Tast 2 (sum-check): prove that ∑,∈. 𝑓 𝑎 = 𝑏

Task 3 (prod-check): prove that ∏,∈/ 𝑓(𝑎) = 𝑐

Zero test on H (H = { 1, 𝜔, 𝜔2, …, 𝜔𝑘-1 })

Prover P(𝑓,⊥) Verifier V(𝑓)
𝑞(𝑋) ⇽ 𝑓(𝑋)/(𝑋𝑘 – 1)

𝑞 ∈ 𝔽!
(#$) 𝑋

𝑟 ⇽ 𝔽!
eval 𝑞(𝑋) and 𝑓(𝑋) at 𝑟

learn 𝑞 𝑟 , 𝑓(𝑟)

accept if 𝑓 𝑟 ≟ 𝑞(𝑟) ⋅ (𝑟/ − 1)

Thm: this protocol is complete and sound, assuming 𝑑/𝑝 is negligible.

Verifier time: O(log 𝑘) and two eval verify (but can be done in one)

if 𝑓 is zero on H then
𝑓 𝑋 is divisible by 𝑋' − 1

(implies that 𝑓(𝑋) = 𝑞(𝑋)(𝑋% − 1))

Product check on H: ∏!∈# 𝑓(𝑎) = 1

Let 𝑡 ∈ 𝔽!
(*/) [𝑋] be the degree-𝑑 polynomial:

𝑡(1) = 𝑓(1), 𝑡(𝜔s) = ∏567
8 𝑓(𝜔i) for 𝑠 = 1,… , 𝑘 − 1

Then t(𝜔/-.) =

and 𝑡(𝜔 ⋅ x) = 𝑡(𝑥) ⋅ 𝑓(𝜔 ⋅ x) for all 𝑥 ∈ 𝐻 (including 𝑥 = 𝜔%&')

Lemma: if (1) t(𝜔/-.) = 1 and
(2) 𝑡 𝜔 ⋅ x − 𝑡 𝑥 ⋅ 𝑓 𝜔 ⋅ x = 0 for all 𝑥 ∈ 𝐻

then ∏;∈=𝑓(𝑎) = 1

∏;∈=𝑓(𝑎) = 1

Product check on H (unoptimized)

Prover P((𝑓, 𝑐),⊥) Verifier V(𝑓)
construct 𝑡 𝑋 ∈ 𝔽!

(#') ,					𝑡1(𝑋) = 𝑡(𝜔 ⋅ 𝑋) − 𝑡(𝑋) ⋅ 𝑓(𝜔 ⋅ 𝑋)
and q(𝑋) = 𝑡1(𝑋)/(𝑋' − 1) ∈ 𝔽!

(#')

q, 𝑡 ∈ 𝔽!
(#') 𝑋

eval 𝑡(𝑋) at 𝜔'() , 𝑟, 𝜔𝑟
learn 𝑡(𝜔%&'), t(r), 𝑡(𝜔𝑟), 𝑞(𝑟), 𝑓(𝜔𝑟)

eval 𝑞 𝑋 at 𝑟 , and 𝑓(𝑋) at 𝜔𝑟

accept if 𝑡(𝜔'()) ≟ 1 and
𝑡 𝜔𝑟 − 𝑡(𝑟)𝑓(𝜔𝑟) ≟ 𝑞(𝑟) ⋅ (𝑟' − 1)

𝑟 ⇽ 𝔽!

𝑡1(𝐻) = 0 :

PLONK: a poly-IOP for a general circuit 𝐶(𝑥, 𝑤)

Step 1: compile circuit to a sequence of ops (gate fan-in = 2)

𝑥1 𝑥2 𝑤1

+ +

×

(𝑥1+ 𝑥2)(𝑥2+ 𝑤1)

(0) (1)

(2) compile 0: inp1 , inp2 : +
1: inp2 , inp3 : +
2: out0, out1 : ×

Program P

output(topological sort of gates)

Encoding the inputs to the circuit

Step 2: let 𝑑 = 3 𝐶 + |𝐼| and H = { 1, 𝜔, 𝜔2, …, 𝜔+-. }
|𝐶| = total # of gates in 𝐶 , |𝐼| = |𝐼𝑥| + |𝐼𝑤| = # inputs to 𝐶

• encode the 𝑥-inputs to the circuit in a polynomial 𝑣 ∈ 𝔽!
(*|C!|)[X]

for 𝑗 = 1, . . , |𝐼D|: 𝑣(𝜔-E) = input #j

• constructing 𝑣(𝑋) takes time proportional to the size of the input

• Let Hinp = { 𝜔-., 𝜔-F, … , 𝜔- C! } (points encoding the input)

Encoding the circuit internal values
The plan:

Define a polynomial 𝑃 ∈ 𝔽!
(*+)[X] such that ∀ 𝑙 = 0,… , 𝐶 − 1:

• P(𝜔3𝑙): left input to gate #𝑙

• P(𝜔3𝑙+1): right input to gate #𝑙

• P(𝜔3𝑙+2): output of gate #𝑙

and P(𝜔-E) = input #j

example: x1=5,	x2=6,	𝑤1=1

𝜔-1, 𝜔-2, 𝜔-3 : 5, 6, 1
0: 𝜔0, 𝜔1, 𝜔2 : 5, 6, 11
1: 𝜔3, 𝜔4, 𝜔5 : 6, 1, 7
2: 𝜔6, 𝜔7, 𝜔8 : 11, 7, 77for j = 1, …, |𝐼|

(all inputs)

(prover uses FFT to compute coefficients of P in time 𝑑 log2𝑑)

Encoding the gates of the circuit
Step 3: encode gate types using a selector polynomial S(X)

define S(X) ∈ 𝔽!
(*+)[X] such that ∀ 𝑙 = 0,… , 𝐶 − 1:

S(𝜔3𝑙) = 1 if gate #𝑙 is an addition gate
S(𝜔3𝑙) = 0 if gate #𝑙 is a multiplication gate

Then, ∀ x ∈ Hgates = { 1, 𝜔3, 𝜔6, 𝜔9, …, 𝜔G(H -.) }:

S(x)⋅[P(x) + P(𝜔x)] + (1 – S(x))⋅P(x)⋅P(𝜔x) = P(𝜔2x)

Encoding the circuit wiring

Step 4: encode the wires of 𝐶:
P(𝜔-2) = P(𝜔1) = P(𝜔3)
P(𝜔-1) = P(𝜔0)
P(𝜔2) = P(𝜔6)
P(𝜔-3) = P(𝜔4)

Define a polynomial W: H ⇾ H that implements a rotation:
W(𝜔-2, 𝜔1 , 𝜔3) = (𝜔1, 𝜔3, 𝜔-2) , W(𝜔-1, 𝜔0) = (𝜔0 , 𝜔-1) , …

Lemma: ∀ 𝑥∈H: P(𝑥) = P(W(𝑥)) ⇒ wire constraints are satisfied

example: x1=5,	x2=6	,	𝑤1=1

𝜔-1, 𝜔-2, 𝜔-3 : 5, 6, 1
𝜔0, 𝜔1, 𝜔2 : 5, 6, 11
𝜔3, 𝜔4, 𝜔5 : 6, 1, 7
𝜔6, 𝜔7, 𝜔8 : 11, 7, 77

Encoding the circuit wiring

Problem: the constraint P(𝑥) = P(W(𝑥)) has degree d2

⇒ prover would need to manipulate polynomials of degree d2

⇒ quadratic time prover !! (goal: linear time prover)

Cute trick: use prod-check proof to reduce this to a
constraint of linear degree

Reducing wiring check to a linear degree
Lemma: P(𝑥) = P(W(𝑥)) for all 𝑥∈H if and only if 𝐿(𝑌, 𝑍) ≡ 1,

where 𝐿 𝑌, 𝑍 = ∏*∈,
- * ./01 * .2
- * ./0*.2

To prove that 𝐿 𝑌, 𝑍 ≡ 1 do:
(1) verifier chooses random 𝑦, 𝑧 ∈ 𝔽!

(2) prover builds 𝐿1(X) s.t. 𝐿1(𝑥) = - * .301 * .4
- * .30*.4

for all 𝑥∈H

(3) run prod-check to prove ∏*∈, 𝐿1(𝑥) = 1

(4) validate 𝐿1: run zero-test to prove 𝐿2(𝑥) = 0 for all 𝑥∈H where

𝐿2(x) = (𝑃 𝑥 + 𝑦 P 𝑥 + 𝑧) 𝐿1(𝑥) – (𝑃 𝑥 + 𝑦 P 𝑊 𝑥 + 𝑧)

The final (S, P, V) SNARK
Setup(𝐶): Sv = (poly commitment to S(X) and W(X))

Prover P(𝒙,𝐰) Verifier V(𝑆𝑣, 𝒙)

build 𝑣(𝑋) ∈ 𝔽!
(#|6#|) [X]build P(𝑋) ∈ 𝔽!

(#$)[X]

Prove:

(1) S(x)⋅[P(x) + P(𝜔x)] + (1 – S(x))⋅P(x)⋅P(𝜔x) − P(𝜔2x) = 0 ∀ x ∈ Hgates

(2) P(x) − 𝑣(x) = 0 ∀ x ∈ Hinp

(3) P(x) − P(W(x)) = 0 ∀ x ∈ H

(4) P(𝜔7 8 ()) = 0 (output of last gate = 0)

𝑃

gates:

inputs:

wires:

output:

Many extensions …

• Can handle circuits with more general gates than + and ×
• PLOOKUP: efficient SNARK for circuits with lookup tables

• The SNARK can easily be made into a zkSNARK

• Main challenge: reduce prover time

Next lecture: recursive SNARKs

END OF LECTURE

