CS251 Fall 2020
(cs251.stanford.edu)

Using zkSNARKSs

Dan Boneh

Recap: high-level goals

* Private transactions on a public blockchain

* Blockchain scaling, such as proof-based Rollup

* Privately prove compliance, such as a private proof of solvency

Recap: non-interactive proof systems (ornr)

Public arithmetic circuit: C(x, w) — [,
public statement in IFg —J L— secret withess in IFg‘

Let x € IFg . Two standard goals for prover P:

(1) Soundness: convince Verifier that dw s.t. C(x,w) =0
(e.g., 3w suchthat [H(w) =x and 0 <w < 200])

(2) Knowledge: convince Verifier that P “knows” w s.t. C(x,w) =0

(e.g., P knows aw such that H(w) = x)

Non-interactive Proof Systems (corne)

A non-interactive proof system is a triple (S, P, V):

* S(C) — public parameters (S,,S,) for prover and verifier

(Sy, S,) is called a reference string
* P(S,, x,w) — proof 7

* V(S, x,) — accept or reject

proof systems: properties (informal)

Prover P(pp, X, W) Verifier V (pp, X, TT)
proof TT

accept or reject

Complete: vx,w: C(x,w) =0 = V(S, x, P(s,, x, w)) = accept

Proof of knowledge: V accepts = P “knows” ws.t. C(x,w) =0

in some cases, soundness is sufficient: Iw s.t. C(x,w) =0

Zero knowledge (optional): (x,) “reveals nothing” about w

SNARK: succinct argument of knowledge

Goal: P wants to show that it knows w s.t. C(x,w) =0

Succinct:

« Proof m should beshort [i.e., || = 0(log(|C]), 1)]

-

e Verifying m should be fast [i.e., time(V)=0(|x|, log(|C])|, 2)]

note: if SNARK is zero-knowledge, then called a zkSNARK

zkSNARK applications

Blockchain Applications

Scalability:
 SNARK Rollup (zkSNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
e Confidential transactions
e Zcash

Compliance:
* Proving solvency in zero-knowledge

» Zero-knowledge taxes

... but first: commitments

Cryptographic commitment: emulates an envelope

$ (K m §

Many applications: e.g., a DAPP for a sealed bid auction

* Every participant commits to its bid,

* Once all bids are in, everyone opens their commitment

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

i

[. | f . . |
secret randomnessin R commitment string

e commit(msg, r) = com

» verify(msg, com, r) — accept or reject

anyone can verify that commitment was opened correctly

Commitments: security properties

* binding: Bob cannot produce two valid openings for com.

Formally: no efficient adversary can produce
com, (my, ry), (M, ry)

such that verify(my, com, r;) = verify(m,, com, r,) = accept

and m; #m,.

* hiding: com reveals nothing about committed data

commit(m, r) = com, andrisuniformin R (r « R),
then com is statistically independent of m

Example 1: hash-based commitment

Fix a hash function H: M XR — C (e.g., SHA256)

where H is collision resistant, and |R| > |C]

e committm € M, r «~ R): com= H(m,r)

* verify(m,com,r): acceptif com= H(m,r)

binding: follows from collision resistance of H

hiding: follows from a mild assumption on H

Example 2: Pedersen commitment

G = finite cyclicgroup={1, g, g3 ..., g%} where g': g = gltimoda)

q= |G| is called the order of G. Assume q is a prime number.

Fix hinG and letR={0,1,..., g-1}. For m, r € R define
Him,r)=g"-h" € G

Fact: for a “cryptographic” group G, this H is collision resistant.

= commitment scheme: commit and verify asin example 1

commitm €R, r+— R) =H(m,r)=gm-h"

An interesting property

committm €R, r+— R) =H(m,r)=gm-h"

Suppose: commit(m; € R, r{ «+ R) — com,
commit(m, € R, r, < R) — com,

Then: com; X com, = gmi*m2.h*2 = commit(m;+m,, ry+r,)

= anyone can sum committed value

Confidential Transactions

Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

D c2561b292ed4878bb28478a8cafd1f99a01Ffaeb9c5a906715Fa595cac0e8d1d8 [F) mined Apr 10, 2017 12:38:00 AM

16k4365RzdeCPKGWJDNNBEKXj696MbChwx 0.53333328 BTC 4 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbD5CSPA 0.01031593 BTC (U
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 1.47877788 BTC 1AFLhD4EtG2uZmFxmfdXCyGUNqCqD5887u

¢ FEE:0.00179523BTC:>1— will not hide Tx fee ‘ 01031593 BTC ‘

= businesses cannot use for supply chain payments

Confidential Tx;: how?

Bitcoin Tx today: Google: 30 - Alice: 1, Google: 29
\ \

RN

8 bytes

The plan: replace amounts by commitments to amounts

Google: com; — Alice: com,, Google: com;
\ e

—~_

32 bytes

where com; = commit(30, r;), com, = commit(1, r,), com; = commit(29, r;)

Now blockchain hides amounts

D c2561b292ed4878bb28478a8cafd1f99a01faeb9c5a906715fa595cac0e8d1d8 [E) mined Apr 10, 2017 12:38:00 AM
16ka365RzdeCPKGWIDNNBEKs96Mbchwx Sbd6e25fqd ¢ 1JgVBpw5TDMTR0ZXg9XpPDQRRHENbD5CsPA ae23b452d8
1Bsh4KD9ZJT4dJcoo7S5uS1jvtmtVmRED7 8c528ad9fa 1AFLhD4EtG2uZmFxmFdXCyGUNGCqD5887u 187b6cf54a8

< FEE: 0.00179523 BTC > 1 CONFIRMATIONS ‘ 2.01031593 BTC ‘

How much was transferred ???

The problem: how will miners verify Tx?

Google: com; — Alice: com,, Google: com;

com, = commit(30, r;), com, = commit(1, r,), comz=commit(29, r;)

Solution:

zkSNARK (special purpose, optimized for this problem)

 Google:

CT arithmetic
circuit

(1) privately send r, to Alice
(2) construct a zkSNARK 1 where|statement = x = (com,, com,, com;)

witness =w = (my, ry, My, r,, My, r3)

and circuit C(x,w) outputs O if:

—

(i) com,=commit(m, r;) fori=1,2,3,
(ii) m;=m,+ m; + TxFees,
(iii) my20 and m;20

The problem: how will miners verify Tx?

* Google: (1) privately send r, to Alice
(2) construct zkSNARK proof r that Tx is valid
\ (3) append ™ toTx (need short proof! = zkSNARK)

)
Tx:| proofm, Google: com; — Alice:com,, Google: com,

 Miners: accept Tx if proof m is valid (need fast verification)
= learn Txis valid, but amounts are hidden

Optimized proof?

Note: Alice needs r, to spend her UTXO
otherwise: she cannot construct proof m

statement = x = (com,, com,, com;)

witness = w = (my, ry, m,, r,, Mg, r3) Easy to check with Pedersen:
set com = Coml/comz.comS.ngFees

circuit C(x,w) outputs O if: orove that com = commit(0, r]

(i) com,=commit(m; r;),
—{i}-my=my+mg+TxFees,—

(iii)m, 20 and m3;20 remaining proof is =400 bytes

Zcash (simplified)

Goal: fully private payments ... like cash, but across the Internet

challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:
* transparent TXO (asin Bitcoin)
e shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and TXOs

H,, H,, H3: cryptographic hash functions. sk needed to spend TXO
for address pk

(1) shielded address: random sk «+ X, pk=H,(sk)

(2) shielded TXO (note) owned by address pk:

- TXO owner has (from payer): valuev and r <+« R

- on blockchain: | coin =H,((pk, v), r) (commit to pk, v)

pk: addr. of owner, v:value of coin, r:random chosen by payer

The blockchain

coins nullifiers transparent-TXOs
coin, nf,
: similar
coin, nf, L.
to Bitcoin
Coing UTXO set
just Merkle root ... append only tree explicit list:

(coins are never removed)

one entry per spent coin

Transactions: an example

owner of coin = H,((pk, v), r) (Tx input)
wants to send coin funds to: shielded pk’, v’
., ,, (Txoutput)
(v=Vv' +Vv") transp. pk”, v

step 1: construct new coin: coin’ = H,((pk’, v’), r’)
by choosing random r’ < R (and sends V’, r’ to owner of pk’)

. pe . ind f coi
step 2: compute nullifier for spent coin nf = H;(sk, i'nnMeeXrﬁector'ene)

nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

Transactions: an example

step 3: construct a zZkSNARK proof m for

statement = x = (current Merkle root, coin’, nf, v"’)

witness=w =(sk, (v, r), (pk, Vv’ r’), Merkle proof for coin)

C(x, w) outputs 0 if: with coin := H,((pk=H4(sk), v), r)
" (1) Merkle proof for coin is valid,

The Zcash | (2) coin’ = H,((pk’, v'), r’)

circuit (3) v=Vv'+Vv” and v’ >0 and v’ 20, /

_(4) nf =H;(sk, index-of-coin-in-Merkle-tree)

check

from
Merkle
proof

What is sent to miners

step 4: send (coin’, nf, transparent-TXO, proof m) to miners,

send (v, r’) to owner of pk’

step 5: miners verify
(i) proof m and transparent-TXO
(ii) verify that nf is not in nullifier list (prevent double spending)

if so, add coin’ to Merkle tree, add nf to nullifier list,

add transparent-TXO to UTXO set.

* Tx hides which coin was spent

= coin is never removed from Merkle tree,
but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:
nf=H (Sk index of coin)
= M3

7 in Merkle tree

e Tx hides address of coin’ owner

* Miners can verify Tx is valid, but learn nothing about Tx details.

A simple PCP-based SNARK

[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK

The PCP theorem: Let C(x,w) be acircuit where x € IFy,.

there is a proof system that for every x proves Iw:C(x,w) =0
as follows:

Prover P(S,, X, w) Verifier V(S,. x)

proof read only 0() bits of T,
— ||||| = output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

size of proofis poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Prover P(S,, xX,W) Verifier V(S,. X)
A&
ML LTI TTTTT] Merkle root b 1.t

open 0(A) positions of 1T

» 0O(Alog|C|) hashes

0(A) opening and Merkle proofs
output accept or reject

Verifier sees 0(1log|C|) data = succinct proof. | Problem: interactive

Making the proof non-interactive

The Fiat-Shamir heuristic:
* public-coin interactive protocol = non-interactive protocol
public coin: all verifier randomness is public (no secrets)

Prover P(S,, X, w) Verifier V(S,. X)
msgl
r choose random bits r
msg2
accept or reject

Making the proof non-interactive

Fiat-Shamir heuristic: H: M — R a cryptographic hash function

* idea: prover generates random bits on its own (!)

Prover P(S,, X, w) Verifier V(S,. X)

generate msgl

r «— H(x, msgl) 1 = (msgl, msg2) |re H(x, msgl)

generate msg2 In| =0(xlog |C])

accept or reject

Thm: this is a secure SNARK assuming H is a random oracle

Are we done?

Simple transparent SNARK from the PCP theorem
e Use Fiat-Shamir heuristic to make non-interactive

* We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)

END OF LECTURE

Next lecture: How to build an efficient SNARK

