
Using zkSNARKs

CS251 Fall 2020
(cs251.stanford.edu)

Dan Boneh

Recap: high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency

Recap: non-interactive proof systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽𝑝
public statement in 𝔽!" secret witness in 𝔽!#

Let 𝒙 ∈ 𝔽!" . Two standard goals for prover P:

(1) Soundness: convince Verifier that ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., ∃𝒘 such that [𝐻(𝒘) = 𝒙 and 0 < 𝒘 < 260])

(2) Knowledge: convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

(Sp, Sv) is called a reference string

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

proof systems: properties (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete: ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept

Proof of knowledge: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

in some cases, soundness is sufficient: ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

Zero knowledge (optional): (𝒙, 𝜋) “reveals nothing” about 𝒘

SNARK: succinct argument of knowledge

Succinct:

• Proof 𝜋 should be short [i.e., |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)]

• Verifying 𝜋 should be fast [i.e., time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)]

note: if SNARK is zero-knowledge, then called a zkSNARK

Goal: P wants to show that it knows 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

zkSNARK applications

Blockchain Applications
Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes

… but first: commitments

Cryptographic commitment: emulates an envelope

Many applications: e.g., a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

• commit(msg, r) ⇾ com

• verify(msg, com, r) ⇾ accept or reject

anyone can verify that commitment was opened correctly

secret randomness in 𝑅 commitment string

Commitments: security properties

• binding: Bob cannot produce two valid openings for com.
Formally: no efficient adversary can produce

com, (m1, r1), (m2, r2)
such that verify(m1, com, r1) = verify(m2, com, r2) = accept

and m1 ≠ m2.

• hiding: com reveals nothing about committed data

commit(m, r) ⇾ com, and r is uniform in 𝑅 (𝑟 ⇽ 𝑅),
then com is statistically independent of m

Example 1: hash-based commitment

Fix a hash function 𝐻: 𝑀 × 𝑅 ⇾ 𝐶 (e.g., SHA256)

where 𝐻 is collision resistant, and |𝑅| ≫ |𝐶|

• commit(𝑚 ∈ 𝑀, 𝑟 ⇽ 𝑅): com= 𝐻(𝑚, 𝑟)

• verify(𝑚, com, 𝑟): accept if com= 𝐻(𝑚, 𝑟)

binding: follows from collision resistance of 𝐻
hiding: follows from a mild assumption on 𝐻

Example 2: Pedersen commitment
𝐺 = finite cyclic group = {1, g, g2, ..., gq-1} where gi ⋅ gj = g(i+j mod q)

q = |𝐺| is called the order of 𝐺. Assume q is a prime number.

Fix h in 𝐺 and let R = {0, 1 ,…, q-1}. For m, r ∈ R define

𝐻(m, r) = gm ⋅ hr ∈ 𝐺

Fact: for a “cryptographic” group 𝐺, this 𝐻 is collision resistant.

⇒ commitment scheme: commit and verify as in example 1

commit(𝑚 ∈ 𝑅, 𝑟 ⇽ 𝑅) = 𝐻(𝑚, 𝑟) = g𝑚 ⋅ h𝑟

An interesting property

commit(𝑚 ∈ 𝑅, 𝑟 ⇽ 𝑅) = 𝐻(𝑚, 𝑟) = g𝑚 ⋅ h𝑟

Suppose: commit(𝑚1 ∈ 𝑅, 𝑟1 ⇽ 𝑅) ⇾ com1

commit(𝑚2 ∈ 𝑅, 𝑟2 ⇽ 𝑅) ⇾ com2

Then: com1 × com2 =

⇒ anyone can sum committed value

gm1+m2 ⋅ hr1+r2 = commit(m1+m2, r1+r2)

Confidential Transactions

Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

⇒ businesses cannot use for supply chain payments

will not hide Tx fee

Confidential Tx: how?

Bitcoin Tx today: Google: 30 ⇾ Alice: 1, Google: 29

8 bytes

The plan: replace amounts by commitments to amounts

Google: com1 ⇾ Alice: com2, Google: com3

32 bytes
where com1 = commit(30, r1), com2 = commit(1, r2), com3 = commit(29, r3)

Now blockchain hides amounts

3bd6e25fqd

8c528ad9fa

ae23b452d8

187b6cf54a8

How much was transferred ???

The problem: how will miners verify Tx?

Solution: zkSNARK (special purpose, optimized for this problem)
• Google: (1) privately send r2 to Alice

(2) construct a zkSNARK 𝜋 where statement = x = (com1, com2, com3)
witness = w = (m1, r1, m2, r2, m3, r3)

and circuit 𝐶(x,w) outputs 0 if:
(i) comi = commit(mi, ri) for i=1,2,3,
(ii) m1 = m2 + m3 + TxFees,
(iii) m2 ≥ 0 and m3 ≥ 0

Google: com1 ⇾ Alice: com2, Google: com3

com1 = commit(30, r1), com2 = commit(1, r2), com3 = commit(29, r3)

CT arithmetic
circuit

The problem: how will miners verify Tx?

• Google: (1) privately send r2 to Alice
(2) construct zkSNARK proof 𝜋 that Tx is valid
(3) append 𝜋 to Tx

proof 𝜋 , Google: com1 ⇾ Alice: com2, Google: com3Tx:

• Miners: accept Tx if proof 𝜋 is valid (need fast verification)
⇒ learn Tx is valid, but amounts are hidden

(need short proof! ⇒ zkSNARK)

Optimized proof?
Note: Alice needs r2 to spend her UTXO

otherwise: she cannot construct proof 𝜋

statement = x = (com1, com2, com3)
witness = w = (m1, r1, m2, r2, m3, r3)

circuit 𝐶(x,w) outputs 0 if:
(i) comi = commit(mi, ri),
(ii) m1 = m2 + m3 + TxFees,
(iii) m2 ≥ 0 and m3 ≥ 0

Easy to check with Pedersen:
set com = com1/com2⋅com3⋅gTxFees

prove that com = commit(0, r)

remaining proof is ≈400 bytes

Zcash (simplified)

Zcash

Goal: fully private payments … like cash, but across the Internet
challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:

• transparent TXO (as in Bitcoin)

• shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and TXOs
H1, H2, H3: cryptographic hash functions.

(1) shielded address: random sk ⇽ X, pk = H1(sk)

(2) shielded TXO (note) owned by address pk:

- TXO owner has (from payer): value v and r ⇽ R

- on blockchain: coin = H2((pk, v) , r) (commit to pk, v)

pk: addr. of owner, v: value of coin, r: random chosen by payer

sk needed to spend TXO
for address pk

The blockchain

coin1

coin2

coin3

⋮

nf1

nf2

⋮

coins nullifiers transparent-TXOs

similar
to Bitcoin
UTXO set

just Merkle root … append only tree
(coins are never removed)

explicit list:
one entry per spent coin

Transactions: an example

owner of coin = H2((pk, v) , r) (Tx input)
wants to send coin funds to: shielded pk’, v’

transp. pk’’, v’’

step 1: construct new coin: coin’ = H2((pk’, v’) , r’)
by choosing random r’ ⇽ R (and sends v’, r’ to owner of pk’)

step 2: compute nullifier for spent coin nf = H3(sk,)
nullifier nf is used to “cancel” coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

(v = v’ + v’’)

index of coin
in Merkle tree

(Tx output)

Transactions: an example
step 3: construct a zkSNARK proof 𝜋 for

statement = x = (current Merkle root, coin’, nf, v’’)

witness = w = (sk, (v, r), (pk’, v’, r’), Merkle proof for coin)
𝐶(x, w) outputs 0 if: with coin := H2((pk=H1(sk), v), r) check

(1) Merkle proof for coin is valid,

(2) coin’ = H2((pk’, v’) , r’)
(3) v = v’ + v’’ and v’ ≥ 0 and v’’ ≥ 0,

(4) nf = H3(sk, index-of-coin-in-Merkle-tree)

The Zcash
circuit

from
Merkle
proof

What is sent to miners

step 4: send (coin’, nf, transparent-TXO, proof 𝜋) to miners,

send (v’ , r’) to owner of pk’

step 5: miners verify
(i) proof 𝜋 and transparent-TXO
(ii) verify that nf is not in nullifier list (prevent double spending)

if so, add coin’ to Merkle tree, add nf to nullifier list,

add transparent-TXO to UTXO set.

Summary

• Tx hides which coin was spent
⇒ coin is never removed from Merkle tree,

but cannot be double spent thanks to nullifer

note: prior to spending coin, only owner knows nf:
nf = H3(sk,)

• Tx hides address of coin’ owner

• Miners can verify Tx is valid, but learn nothing about Tx details.

index of coin
in Merkle tree

A simple PCP-based SNARK
[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK
The PCP theorem: Let 𝐶(𝑥,𝑤) be a circuit where 𝑥 ∈ 𝔽!".

there is a proof system that for every 𝑥 proves ∃𝑤: 𝐶 𝑥,𝑤 = 0
as follows:

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
read only 𝑂(𝜆) bits of 𝜋,
output accept or reject

proof 𝜋

size of proof is 𝑝𝑜𝑙𝑦(|𝐶|). (not succinct)

V always accepts valid proof. If no 𝑤, then V rejects with high prob.

Converting a PCP proof to a SNARK

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

Merkle
𝜋

ℎ

open 𝑂(𝜆) positions of 𝜋

𝑂(𝜆) opening and Merkle proofs
output accept or reject

Verifier sees 𝑂(𝜆 log |𝐶|) data ⇒ succinct proof.

Merkle root ℎ 1 hash

𝑂(𝜆 log |𝐶|) hashes

Problem: interactive

Making the proof non-interactive
The Fiat-Shamir heuristic:
• public-coin interactive protocol ⇒ non-interactive protocol

public coin: all verifier randomness is public (no secrets)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
msg1

r

msg2
accept or reject

choose random bits r

Making the proof non-interactive
Fiat-Shamir heuristic: 𝐻:𝑀 ⇾ 𝑅 a cryptographic hash function

• idea: prover generates random bits on its own (!)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

𝜋 = (msg1, msg2)
|π| = O(𝜆 log |𝐶|)

r ⇽ H(𝒙, msg1)

accept or reject

r ⇽ H(𝒙, msg1)
generate msg1

generate msg2

Thm: this is a secure SNARK assuming H is a random oracle

Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)

Next lecture: How to build an efficient SNARK

END OF LECTURE

