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Recap:  high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency



Recap:  non-interactive proof systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽𝑝
public statement in 𝔽!" secret witness in 𝔽!#

Let  𝒙 ∈ 𝔽!" .      Two standard goals for prover P:

(1) Soundness:  convince Verifier that  ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,  ∃𝒘 such that  [ 𝐻(𝒘) = 𝒙 and  0 < 𝒘 < 260 ]   )

(2) Knowledge:   convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,   P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)



Non-interactive Proof Systems    (for NP)

A non-interactive proof system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (Sp, Sv)    for prover and verifier

(Sp, Sv)  is called a reference string

• P(Sp, 𝒙,𝒘)  ⇾ proof  𝜋

• V(Sv, 𝒙, 𝝅)  ⇾ accept or reject



proof systems: properties   (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete:  ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept

Proof of knowledge: V accepts  ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

in some cases, soundness is sufficient: ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

Zero knowledge (optional):   (𝒙, 𝜋)  “reveals nothing” about 𝒘



SNARK:  succinct argument of knowledge

Succinct:

• Proof  𝜋 should be short [ i.e.,  |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆) ]

• Verifying  𝜋 should be fast [ i.e.,  time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆) ]

note:   if SNARK is zero-knowledge, then called a zkSNARK

Goal:  P wants to show that it knows  𝒘 s.t. 𝐶(𝒙,𝒘) = 0



zkSNARK applications



Blockchain Applications
Scalability:   

• SNARK Rollup    (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes



… but first:  commitments

Cryptographic commitment:  emulates an envelope

Many applications:   e.g.,  a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data



Cryptographic Commitments

Syntax:  a commitment scheme is two algorithms

• commit(msg,  r)  ⇾ com

• verify(msg, com, r)   ⇾ accept or  reject

anyone can verify that commitment was opened correctly

secret randomness in 𝑅 commitment string



Commitments: security properties

• binding:   Bob cannot produce two valid openings for com.
Formally:  no efficient adversary can produce   

com,  (m1, r1), (m2, r2)
such that verify(m1, com, r1) = verify(m2, com, r2) = accept

and   m1 ≠ m2.

• hiding:  com reveals nothing about committed data

commit(m, r) ⇾ com,    and r is uniform in 𝑅 (𝑟 ⇽ 𝑅),
then    com is statistically independent of m



Example 1:  hash-based commitment

Fix a hash function    𝐻: 𝑀 × 𝑅 ⇾ 𝐶 (e.g.,  SHA256)

where 𝐻 is collision resistant,  and   |𝑅| ≫ |𝐶|

• commit(𝑚 ∈ 𝑀, 𝑟 ⇽ 𝑅):       com= 𝐻(𝑚, 𝑟)

• verify(𝑚, com, 𝑟):    accept if   com= 𝐻(𝑚, 𝑟)

binding: follows from collision resistance of 𝐻
hiding: follows from a mild assumption on 𝐻



Example 2:  Pedersen commitment
𝐺 = finite cyclic group = {1,  g,  g2, ...,  gq-1}     where   gi ⋅ gj = g(i+j mod q)

q = |𝐺| is called the order of 𝐺.   Assume q is a prime number.

Fix   h in 𝐺 and   let R = {0, 1 ,…, q-1}.       For  m, r ∈ R  define

𝐻(m, r) = gm ⋅ hr ∈ 𝐺

Fact:  for a “cryptographic” group 𝐺,   this  𝐻 is collision resistant.

⇒ commitment scheme:     commit and  verify as in example 1

commit(𝑚 ∈ 𝑅, 𝑟 ⇽ 𝑅)  = 𝐻(𝑚, 𝑟) = g𝑚 ⋅ h𝑟



An interesting property

commit(𝑚 ∈ 𝑅, 𝑟 ⇽ 𝑅)  = 𝐻(𝑚, 𝑟) = g𝑚 ⋅ h𝑟

Suppose: commit(𝑚1 ∈ 𝑅, 𝑟1 ⇽ 𝑅)  ⇾ com1

commit(𝑚2 ∈ 𝑅, 𝑟2 ⇽ 𝑅)  ⇾ com2

Then:    com1 × com2 =

⇒ anyone can sum committed value

gm1+m2 ⋅ hr1+r2 = commit( m1+m2,  r1+r2)



Confidential Transactions



Confidential Tx     (CT)

Goal:  hide amounts in Bitcoin transactions.

⇒ businesses cannot use for supply chain payments

will not hide Tx fee



Confidential Tx:    how?

Bitcoin Tx today: Google: 30 ⇾ Alice: 1,    Google: 29

8 bytes

The plan: replace amounts by commitments to amounts

Google:  com1 ⇾ Alice: com2,    Google: com3

32 bytes
where   com1 = commit(30, r1),  com2 = commit(1, r2),  com3 = commit(29, r3) 



Now blockchain hides amounts

3bd6e25fqd

8c528ad9fa

ae23b452d8

187b6cf54a8

How much was transferred ???



The problem:  how will miners verify Tx?

Solution:   zkSNARK (special purpose, optimized for this problem)
• Google: (1) privately send  r2 to Alice

(2) construct a zkSNARK 𝜋 where statement = x = (com1, com2, com3)
witness = w = (m1, r1, m2, r2, m3, r3)

and circuit  𝐶(x,w)  outputs 0 if:
(i) comi = commit(mi, ri)  for i=1,2,3,
(ii) m1 = m2 + m3 + TxFees,   
(iii) m2 ≥ 0   and   m3 ≥ 0

Google:  com1 ⇾ Alice: com2,    Google: com3

com1 = commit(30, r1),   com2 = commit(1, r2),   com3 = commit(29, r3) 

CT arithmetic 
circuit



The problem:  how will miners verify Tx?

• Google: (1) privately send  r2 to Alice
(2) construct zkSNARK proof 𝜋 that Tx is valid
(3) append  𝜋 to Tx

proof 𝜋 ,    Google:  com1 ⇾ Alice: com2,    Google: com3Tx:

• Miners: accept  Tx  if proof 𝜋 is valid   (need fast verification)
⇒ learn Tx is valid,  but amounts are hidden

(need short proof!   ⇒ zkSNARK)



Optimized proof?
Note:    Alice needs  r2 to spend her UTXO

otherwise:  she cannot construct proof  𝜋

statement = x = (com1, com2, com3)
witness = w = (m1, r1, m2, r2, m3, r3)

circuit  𝐶(x,w)  outputs 0 if:
(i) comi = commit(mi, ri),    
(ii) m1 = m2 + m3 + TxFees,   
(iii) m2 ≥ 0   and   m3 ≥ 0

Easy to check with Pedersen:
set   com = com1/com2⋅com3⋅gTxFees

prove that     com =  commit(0, r)

remaining proof is ≈400 bytes



Zcash (simplified)



Zcash

Goal:  fully private payments  …  like cash, but across the Internet
challenge:   will governments allow this ???

Zcash blockchain supports two types of TXOs:

• transparent TXO    (as in Bitcoin)

• shielded   (anonymized)

a Tx can have both types of inputs, both types of outputs



Addresses and TXOs
H1, H2, H3:    cryptographic hash functions.

(1) shielded address:     random  sk ⇽ X,       pk = H1(sk)

(2)  shielded TXO  (note)  owned by address  pk:

- TXO owner has (from payer):     value v    and   r ⇽ R

- on blockchain:    coin = H2( (pk, v) ,  r) (commit to pk, v)

pk: addr. of owner,   v: value of coin,    r: random chosen by payer

sk needed to spend TXO 
for address pk



The blockchain

coin1

coin2

coin3

⋮

nf1

nf2

⋮

coins nullifiers transparent-TXOs

similar
to Bitcoin
UTXO set

just Merkle root … append only tree
(coins are never removed)

explicit list:
one entry per spent coin



Transactions:  an example

owner of  coin = H2( (pk, v) ,  r) (Tx input)
wants to send coin funds to: shielded  pk’, v’ 

transp.   pk’’, v’’

step 1: construct new coin:    coin’ = H2((pk’, v’) ,  r’)
by choosing random  r’ ⇽ R      (and sends v’, r’ to owner of pk’)

step 2: compute nullifier for spent coin   nf = H3(sk,                       )
nullifier  nf is used to “cancel” coin   (no double spends)

key point:  miners learn that some coin was spent, but not which one!

(v = v’ + v’’)

index of coin
in Merkle tree

(Tx output)



Transactions:  an example
step 3: construct a zkSNARK proof  𝜋 for

statement = x = (current Merkle root,   coin’,   nf,  v’’ )

witness = w = ( sk,   (v,  r),   (pk’, v’, r’),   Merkle proof for coin )
𝐶(x, w) outputs 0 if:      with  coin := H2( (pk=H1(sk), v), r)   check

(1) Merkle proof for coin is valid,

(2)  coin’ = H2((pk’, v’) ,  r’)
(3)  v = v’ + v’’   and   v’ ≥ 0  and  v’’ ≥ 0,

(4)  nf = H3(sk,  index-of-coin-in-Merkle-tree)

The Zcash
circuit

from
Merkle
proof



What is sent to miners

step 4: send   (coin’,  nf,  transparent-TXO,  proof 𝜋)   to miners,

send  (v’ , r’)  to  owner of pk’

step 5: miners verify
(i)  proof 𝜋 and    transparent-TXO
(ii)  verify that  nf is not in nullifier list  (prevent double spending)

if so, add  coin’ to Merkle tree,     add  nf to nullifier list,

add  transparent-TXO to UTXO set.



Summary

• Tx hides which coin was spent
⇒ coin is never removed from Merkle tree, 

but cannot be double spent thanks to nullifer

note:  prior to spending coin, only owner knows nf:      
nf = H3(sk,  )

• Tx hides address of coin’ owner

• Miners can verify Tx is valid, but learn nothing about Tx details.

index of coin
in Merkle tree



A simple PCP-based SNARK
[Kilian’92, Micali’94]



A simple construction: PCP-based SNARK
The PCP theorem:    Let   𝐶(𝑥,𝑤) be a circuit where  𝑥 ∈ 𝔽!".  

there is a proof system that for every 𝑥 proves  ∃𝑤: 𝐶 𝑥,𝑤 = 0
as follows:

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
read only 𝑂(𝜆) bits of 𝜋,
output accept or reject

proof  𝜋

size of proof is   𝑝𝑜𝑙𝑦(|𝐶|).           (not succinct)

V always accepts valid proof.     If no 𝑤, then V rejects with high prob.



Converting a PCP proof to a SNARK

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

Merkle
𝜋

ℎ

open 𝑂(𝜆) positions of 𝜋

𝑂(𝜆) opening and Merkle proofs
output accept or reject

Verifier sees 𝑂(𝜆 log |𝐶|) data  ⇒ succinct proof.                                      

Merkle root  ℎ 1 hash

𝑂(𝜆 log |𝐶|) hashes

Problem: interactive



Making the proof non-interactive
The Fiat-Shamir heuristic:
• public-coin interactive protocol  ⇒ non-interactive protocol

public coin:  all verifier randomness is public (no secrets)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
msg1

r

msg2
accept or reject

choose random bits r



Making the proof non-interactive
Fiat-Shamir heuristic:   𝐻:𝑀 ⇾ 𝑅 a cryptographic hash function

• idea:  prover generates random bits on its own (!)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

𝜋 = (msg1, msg2)
|π| = O(𝜆 log |𝐶|)

r ⇽ H(𝒙, msg1)

accept or reject

r ⇽ H(𝒙, msg1)
generate msg1

generate msg2

Thm: this is a secure SNARK assuming H is a random oracle



Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news:   an impractical SNARK --- Prover time too high

Better SNARKs:   next lecture!         Goal:  Time(Prover) = O(|C|)



Next lecture:   How to build an efficient SNARK

END  OF  LECTURE


