CS251 Fall 2020

(cs251.stanford.edu)

Using zkSNARKs

Dan Boneh

Recap: high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency

Recap: non-interactive proof systems (for NP)

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}_p$ public statement in $\mathbb{F}_p^n \longrightarrow \mathbb{F}_p^m$ secret witness in \mathbb{F}_p^m

- Let $x \in \mathbb{F}_p^n$. Two standard goals for prover P:
- (1) <u>Soundness</u>: convince Verifier that $\exists w$ s.t. C(x, w) = 0(e.g., $\exists w$ such that $[H(w) = x \text{ and } 0 < w < 2^{60}]$)
- (2) <u>Knowledge</u>: convince Verifier that P "knows" w s.t. C(x, w) = 0(e.g., P knows a w such that H(w) = x)

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

- S(C) → public parameters (S_p, S_v) for prover and verifier
 (S_p, S_v) is called a *reference string*
- $P(S_p, x, w) \rightarrow \text{proof } \pi$
- $V(S_{v}, x, \pi) \rightarrow \text{accept or reject}$

proof systems: properties (informal)

Complete: $\forall x, w: C(x, w) = 0 \Rightarrow V(S_v, x, P(S_p, x, w)) = accept$

Proof of knowledge: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0

in some cases, **soundness** is sufficient: $\exists w$ s.t. C(x, w) = 0

Zero knowledge (optional): (x, π) "reveals nothing" about w

SNARK: succinct argument of knowledge

Goal: P wants to show that it knows w s.t. C(x, w) = 0

note: if SNARK is zero-knowledge, then called a **zkSNARK**

zkSNARK applications

Blockchain Applications

Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain

- Confidential transactions
- Zcash

Compliance:

- Proving solvency in zero-knowledge
- Zero-knowledge taxes

... but first: commitments

Cryptographic commitment: emulates an envelope

Many applications: e.g., a DAPP for a sealed bid auction

- Every participant commits to its bid,
- Once all bids are in, everyone opens their commitment

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

• <u>verify</u>(*msg*, *com*, *r*) → accept or reject

anyone can verify that commitment was opened correctly

Commitments: security properties

- **binding**: Bob cannot produce two valid openings for **com**. Formally: no efficient adversary can produce **com**, (m_1, r_1) , (m_2, r_2) such that verify $(m_1, com, r_1) = verify(m_2, com, r_2) = accept$ $and <math>m_1 \neq m_2$.
- <u>hiding</u>: *com* reveals nothing about committed data $\operatorname{commit}(m, r) \rightarrow com$, and *r* is uniform in $R \quad (r \leftarrow R)$, then *com* is statistically independent of *m*

Example 1: hash-based commitment

Fix a hash function $H: M \times R \rightarrow C$ (e.g., SHA256) where H is collision resistant, and $|R| \gg |C|$

- commit($m \in M$, $r \leftarrow R$): com = H(m, r)
- verify(m, com, r): accept if com = H(m, r)

binding: follows from collision resistance of *H*hiding: follows from a mild assumption on *H*

Example 2: Pedersen commitment

G = finite cyclic group = {1, g, g^2 , ..., g^{q-1} } where $g^i \cdot g^j = g^{(i+j \mod q)}$ q = |*G*| is called the **order** of *G*. Assume q is a prime number.

Fix h in G and let R = {0, 1, ..., q-1}. For m, r \in R define $H(m, r) = g^m \cdot h^r \in G$

<u>Fact</u>: for a "cryptographic" group G, this H is collision resistant.

 \Rightarrow commitment scheme: **commit** and **verify** as in example 1

commit $(m \in R, r \leftarrow R) = H(m, r) = g^m \cdot h^r$

An interesting property

$$commit(m \in R, r \leftarrow R) = H(m, r) = g^m \cdot h^r$$

Suppose: commit(
$$m_1 \in R, r_1 \leftarrow R$$
) $\rightarrow com_1$
commit($m_2 \in R, r_2 \leftarrow R$) $\rightarrow com_2$

Then: $com_1 \times com_2 = g^{m_1+m_2} \cdot h^{r_1+r_2} = commit(m_1+m_2, r_1+r_2)$

 \Rightarrow anyone can sum committed value

Confidential Transactions

Confidential Tx (CT)

Goal: hide amounts in Bitcoin transactions.

⇒ businesses cannot use for supply chain payments

Confidential Tx: how?

The plan: replace amounts by commitments to amounts

Now blockchain hides amounts

How much was transferred ???

The problem: how will miners verify Tx?

Google: $com_1 \rightarrow Alice: com_2$, Google: com_3

 $com_1 = commit(30, r_1), com_2 = commit(1, r_2), com_3 = commit(29, r_3)$

<u>Solution: zkSNARK</u> (special purpose, optimized for this problem)

• Google: (1) privately send r_2 to Alice (2) construct a zkSNARK π where statement = x = (com₁, com₂, com₃) witness = w = (m₁, r₁, m₂, r₂, m₃, r₃) and circuit C(x,w) outputs 0 if: (i) com_i = commit(m_i, r_i) for i=1,2,3, (ii) m₁ = m₂ + m₃ + TxFees, (iii) m₂ ≥ 0 and m₃ ≥ 0

The problem: how will miners verify Tx?

- Google: (1) privately send r₂ to Alice
 - (2) construct zkSNARK proof π that Tx is valid

(3) append π to Tx (need short proof! \Rightarrow zkSNARK)

Tx: proof π , Google: **com**₁ \rightarrow Alice: **com**₂, Google: **com**₃

Miners: accept Tx if proof π is valid (need fast verification)
 ⇒ learn Tx is valid, but amounts are hidden

Optimized proof?

Note: Alice needs r_2 to spend her UTXO otherwise: she cannot construct proof π

statement = $x = (com_1, com_2, com_3)$ Easy to check with Pedersen: witness = w = $(m_1, r_1, m_2, r_2, m_3, r_3)$ set com = $com_1/com_2 \cdot com_3 \cdot g^{TxFees}$ circuit C(x,w) outputs 0 if: prove that com = commit(0, r)(i) $com_i = commit(m_i, r_i)$, $-(ii) m_1 = m_2 + m_3 + TxFees,$ (iii) $m_2 \ge 0$ and $m_3 \ge 0$ remaining proof is ≈400 bytes

Zcash (simplified)

Zcash

Goal: fully private payments ... like cash, but across the Internet challenge: will governments allow this ???

Zcash blockchain supports two types of TXOs:

- transparent TXO (as in Bitcoin)
- shielded (anonymized)

a Tx can have both types of inputs, both types of outputs

Addresses and TXOs

 H_1 , H_2 , H_3 : cryptographic hash functions.

sk needed to spend TXO for address pk

(1) shielded address: random $sk \leftarrow X$, $pk = H_1(sk)$

(2) **shielded TXO** (note) owned by address pk:

- TXO owner has (from payer): value v and r ← R

- on blockchain: $coin = H_2((pk, v), r)$

(commit to pk, v)

pk: addr. of owner, v: value of coin, r: random chosen by payer

The blockchain

owner of coin = $H_2((pk, v), r)$			(Tx input)
wants to send coin funds to:	shielded	pk', v'	(Tx output)
(v = v' + v'')	transp.	pk'', v''	

step 1: construct new coin: coin' = H₂((pk', v'), r')
by choosing random r' ← R (and sends v', r' to owner of pk')
step 2: compute nullifier for spent coin nf = H₃(sk, index of coin)
nullifier nf is used to "cancel" coin (no double spends)

key point: miners learn that some coin was spent, but not which one!

Transactions: an example

<u>step 3</u>: construct a zkSNARK proof π for

statement = x = (current Merkle root, coin', nf, v'')witness = w = (sk, (v, r), (pk', v', r'), Merkle proof for coin)

 $C(x, w) \text{ outputs 0 if: with coin := } H_2((pk=H_1(sk), v), r) \text{ check}$ (1) Merkle proof for coin is valid, $(2) \text{ coin'} = H_2((pk', v'), r')$ $(3) v = v' + v'' \text{ and } v' \ge 0 \text{ and } v'' \ge 0,$ $(4) \text{ nf} = H_3(sk, \text{ index-of-coin-in-Merkle-tree})$

What is sent to miners

<u>step 4</u>: send (**coin'**, **nf**, transparent-TXO, proof π) to miners,

send (v', r') to owner of pk'

step 5: miners verify

- (i) proof π and transparent-TXO
- (ii) verify that **nf** is not in nullifier list (prevent double spending)
- if so, add **coin'** to Merkle tree, add **nf** to nullifier list, add transparent-TXO to UTXO set.

Summary

- Tx hides which coin was spent
 - ⇒ coin is never removed from Merkle tree, but cannot be double spent thanks to nullifer

note: prior to spending **coin**, only owner knows **nf**: $\mathbf{nf} = H_3(\mathbf{Sk}, \operatorname{index of coin}_{in Merkle tree})$

- Tx hides address of **coin'** owner
- Miners can verify Tx is valid, but learn nothing about Tx details.

A simple PCP-based SNARK

[Kilian'92, Micali'94]

A simple construction: PCP-based SNARK

<u>**The PCP theorem</u></u>: Let C(x,w) be a circuit where x \in \mathbb{F}_p^n. there is a proof system that for every x proves \exists w: C(x,w) = 0 as follows:</u>**

V always accepts valid proof. If no *w*, then V rejects with high prob.

size of proof is poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Making the proof non-interactive

The Fiat-Shamir heuristic:

public-coin interactive protocol ⇒ non-interactive protocol
 public coin: all verifier randomness is public (no secrets)

Making the proof non-interactive

<u>Fiat-Shamir heuristic</u>: $H: M \rightarrow R$ a cryptographic hash function

• idea: prover generates random bits on its own (!)

<u>Thm</u>: this is a secure SNARK assuming H is a random oracle

Are we done?

Simple transparent SNARK from the PCP theorem

- Use Fiat-Shamir heuristic to make non-interactive
- We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)

END OF LECTURE

Next lecture: How to build an efficient SNARK