
Proof Systems and SNARKs

CS251 Fall 2020
(cs251.stanford.edu)

Dan Boneh

Where we are in the course
• Basics: Consensus protocols and Bitcoin

• Composable decentralized applications (e.g., on Ethereum)

⇒ Decentralized Finance (DeFi)

⇒ Scaling the blockchain:
payment channels,
Rollup (Proof-based or Optimistic),
faster consensus

Last core topic: privacy -- private transactions on a public blockchain

Managing assets on a blockchain: key principles

• Universal verifiability of blockchain rules
⇒ all data written to the blockchain is public; everyone can verify
⇒ added benefit: interoperability between chains

• Assets are controlled by signature keys
⇒ assets cannot be transferred without a valid signature

(of course, users can choose to custody their keys)

Privacy?

Naïve reasoning:
universal verifiability ⇒ blockchain data is public

⇒ all transactions data is public
otherwise, how we can verify Tx?

not quite …

crypto magic ⇒ private Tx on a publicly verifiable blockchain

Public blockchain & universal verifiability

• Tx data: encrypted (or committed)

• Proof 𝝅: zero-knowledge proof that
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

public blockchain
current

state
encrypted

(or committed)

Tx 𝜋 new state

encrypted
(or committed)

(reveals nothing about Tx data)

(abstractly)

Public blockchain & universal verifiability

• Tx data: encrypted (or committed)

• Proof 𝝅: zero-knowledge proof that
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

public blockchain
current

state
encrypted

(or committed)

Tx 𝜋 new state

encrypted
(or committed)anyone can

verify 𝝅

(reveals nothing about Tx data)

(abstractly)

Zero Knowledge Proof Systems

(1) arithmetic circuits
• Fix a finite field 𝔽 = 0,… , 𝑝 − 1 for some prime p>2.

• Arithmetic circuit: 𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

• internal nodes are labeled +, −, or ×
• inputs are labeled 1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe

• |𝐶| = # multiplication gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)

Boolean circuits as arithmetic circuits
Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over 𝔽𝑝 :
• AND(𝑥, 𝑦) encoded as 𝑥 ⋅ 𝑦
• OR(𝑥, 𝑦) encoded as 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦
• NOT(𝑥) encoded as 1 − 𝑥

𝑥 𝑦 OR(𝑥, 𝑦)
0 0 0
0 1 1
1 0 1
1 1 1

𝑥1

𝑥2

𝑁𝑂𝑇

𝐴𝑁𝐷
𝑂𝑅

𝑥1

𝑥2

1 − 𝑥1

𝑥1 ⋅ 𝑥2

𝑦

𝑧
y + 𝑧 − 𝑧𝑦

Interesting arithmetic circuits

• Chash(h, m): outputs 0 if SHA256(m) = h , and ≠0 otherwise

Chash(h, m) = (h – SHA256(m)) , | Chash| ≈ 20K gates

• Csig((pk, m), σ): output 0 if σ is
a valid ECDSA signature of m under pk

(2) non-interactive proof systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽𝑝
public statement in 𝔽)* secret witness in 𝔽)+

Let 𝒙 ∈ 𝔽)* . Two standard goals for prover P:

(1) Soundness: convince Verifier that ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., ∃𝒘 such that [𝐻(𝒘) = 𝒙 and 0 < 𝒘 < 260])

(2) Knowledge: convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g., P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)

The trivial proof system

Why can’t prover simply send 𝒘 to verifier?
• Verifier checks if 𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:
(1) 𝒘 might be secret: prover cannot reveal 𝒘 to verifier

(2) 𝒘 might be long: we want a “short” proof

(3) computing 𝐶(𝒙,𝒘)may be hard: want to minimize Verifier’s work

Non-interactive Proof Systems (for NP)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) ⇾ 𝔽𝑝
public input in 𝔽)* secret witness in 𝔽)+

setup: S(𝐶) ⇾ public parameters (Sp, Sv)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙, 𝝅)
proof 𝜋

output accept or reject

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (Sp, Sv) for prover and verifier

• P(Sp, 𝒙,𝒘) ⇾ proof 𝜋

• V(Sv, 𝒙, 𝝅) ⇾ accept or reject

proof systems: properties (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete: ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept

Proof of knowledge: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

in some cases, soundness is sufficient: ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

Zero knowledge (optional): (𝒙, 𝜋) “reveals nothing” about 𝒘

(a) Proof/argument of knowledge

Goal: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

What does it mean to ”know” 𝒘 ??

informal def: P knows 𝒘, if 𝒘 can be “extracted” from P

P

(a) Proof/argument of knowledge
Formally: (S, P, V) is a proof of knowledge for a circuit 𝐶 if

for every adversary A = (A0, A1) such that

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝜋 ⇽ A1(Sp, 𝑥, st):

Pr[V(Sv, 𝑥, 𝜋) = accept] > 1/106 (non-negligible)

there is an efficient extractor E (that uses A1 as a black box) s.t.

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝑤 ⇽ E(Sp, 𝑥, st):

Pr[C(𝑥, 𝑤) = 0] > 1/106 (non-negligible)

If only for poly. time A ⇒ (S, P, V) is only an argument of knowledge.

(a) Proof/argument of knowledge
Formally: (S, P, V) is a proof of knowledge for a circuit 𝐶 if

for every adversary A = (A0, A1) such that

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝜋 ⇽ A1(Sp, 𝑥, st):

Pr[V(Sv, 𝑥, 𝜋) = accept] > 1/106 (non-negligible)

there is an efficient extractor E (that uses A1 as a black box) s.t.

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝑤 ⇽ E(Sp, 𝑥, st):

Pr[C(𝑥, 𝑤) = 0] > 1/106 (non-negligible)

If only for poly. time A ⇒ (S, P, V) is only an argument of knowledge.

Proof: secure against unbounded cheating provers

Argument: secure against polynomial-time cheating provers

(b) Zero knowledge
(S, P, V) is zero knowledge if proof π “reveals nothing” about 𝒘

Formally: (S, P, V) is zero knowledge for a circuit 𝐶
if there is an efficient simulator Sim,
such that for all 𝑥 ∈ 𝔽)* s.t. ∃𝑤: 𝐶 𝑥,𝑤 = 0 the distribution:

(Sp, Sv, 𝑥, 𝜋) where (Sp, Sv) ⇽ S(𝐶) , 𝜋 ⇽ P(𝑥, 𝒘)

is indistinguishable from the distribution:

(Sp, Sv, 𝑥, 𝜋) where (Sp, Sv, 𝜋) ⇽ Sim(𝑥)

key point: Sim(x) simulates proof 𝜋 without knowledge of 𝒘

(3) Succinct arguments: SNARKs

Succinct:

• Proof 𝜋 should be short [i.e., |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)]

• Verifying 𝜋 should be fast [i.e., time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)]

note: if SNARK is zero-knowledge, then called a zkSNARK

Goal: P wants to show that it knows 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

(3) Succinct arguments: SNARKs

Succinct:

• Proof 𝜋 should be short [i.e., |𝜋| = 𝑂(𝐥𝐨𝐠 𝑪 , 𝜆)]

• Verifying 𝜋 should be fast [i.e., time(V) = 𝑂(𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆)]

note: if SNARK is zero-knowledge, then called a zkSNARK

Goal: P wants to show that it knows 𝒘 s.t. 𝐶(𝒙,𝒘) = 1
verifier cannot read 𝐶 !! Instead,

V relies on setup(𝐶) to pre-process (summarize) 𝐶 in Sv

An example
Prover says: I know (𝑥1, … , 𝑥*) ∈ 𝑋 such that 𝐻(𝑥1, … , 𝑥𝑛) = 𝑦

Prover Verifier

statement: 𝑦
witness: 𝑥1, … , 𝑥!

statement: 𝑦

Proof 𝜋 accept or reject

SNARK: size(𝜋) and VerifyTime(𝜋) should be 𝑂(log 𝑛) !!

An example

Prover Verifier

statement: 𝑦
witness: 𝑥1, … , 𝑥!

statement: 𝑦

Proof 𝜋 accept or reject

How is this possible ???

SNARK: size(𝜋) and VerifyTime(𝜋) should be 𝑂(log 𝑛) !!

Types of pre-processing Setup

Recall setup for circuit 𝐶: S(𝐶) ⇾ public parameters (Sp, Sv)

Types of setup:

trusted setup per circuit: S(𝐶) uses data that must be kept secret

compromised trusted setup ⇒ can prove false statements

updatable universal trusted setup: (Sp, Sv) can be updated by anyone

transparent: S() does not use secret data (no trusted setup)

Significant progress in recent years

• Kilian’92, Micali’94: succinct transparent arguments from PCP
• impractical prover time

• GGPR’13, Groth’16, …: linear prover time, constant size proof (𝑂#(1))
• trusted setup per circuit (setup alg. uses secret randomness)

• compromised setup ⇒ proofs of false statements

• Sonic’19, Marlin’19, Plonk’19, … : universal trusted setup

• DARK’19, Halo’19, STARK, … : no trusted setup (transparent)

Types of SNARKs (partial list)

size of
|π|

size of
|Sp|

verifier
time

trusted
setup?

Groth’16 O(1) O(|𝐶|) O(1) yes/per circuit

PLONK/MARLIN O(1) O(|𝐶|) O(1) yes/updatable

Bulletproofs O(log|𝐶|) O(1) O(|𝐶|) no

STARK O(log|𝐶|) O(1) O(log|𝐶|) no

DARK O(log|𝐶|) O(1) O(log|𝐶|) no

⋮ ⋮ ⋮

A typical SNARK software system

DSL
program

Circom,
ZoKrates,

…

compiler

SNARK
friendly
format

R1CS,
AIR,

TurboPlonk

SNARK
backend

x, witness

Proof 𝜋

(Sp, Sv)setup

CPU heavy

verifier

accept/
reject

x

ZoKrates Example

def main(field x[2], private field w) -> (field):
h = sha256packed(w)
h[0] == x[0] // check top 128 bits
h[1] == x[1] // check bottom 128 bits
return 1

Goal: prove knowledge of a hash (SHA256) preimage of 𝑥 ∈ {0,1}256

• For a public x, prover knows 𝑤 ∈ 𝔽) such that SHA256(𝑤) = 𝑥

• 𝔽) is a 254-bit prime field
Compiled into an arithmetic

circuits (R1CS) over 𝔽)

zkSNARK applications

Blockchain Applications
Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes

A simple PCP-based SNARK
[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK
The PCP theorem: Let 𝐶(𝑥,𝑤) be a circuit where 𝑥 ∈ 𝔽)*.

there is a proof system that for every 𝑥 proves ∃𝑤: 𝐶 𝑥,𝑤 = 0
as follows:

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
read only 𝑂(𝜆) bits of 𝜋,
output accept or reject

proof 𝜋

size of proof is 𝑝𝑜𝑙𝑦(|𝐶|). (not succinct)

V always accepts valid proof. If no 𝑤, then V rejects with high prob.

Converting a PCP proof to a SNARK

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

Merkle
𝜋

ℎ

open 𝑂(𝜆) positions of 𝜋

𝑂(𝜆) opening and Merkle proofs
output accept or reject

Verifier sees 𝑂(𝜆 log |𝐶|) data ⇒ succinct proof.

Merkle root ℎ 1 hash

𝑂(𝜆 log |𝐶|) hashes

Problem: interactive

Making the proof non-interactive
The Fiat-Shamir heuristic:
• public-coin interactive protocol ⇒ non-interactive protocol

public coin: all verifier randomness is public (no secrets)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
msg1

r

msg2
accept or reject

choose random bits r

Making the proof non-interactive
Fiat-Shamir heuristic: 𝐻:𝑀 ⇾ 𝑅 a cryptographic hash function

• idea: prover generates random bits on its own (!)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

𝜋 = (msg1, msg2)
|π| = O(𝜆 log |𝐶|)

r ⇽ H(𝒙, msg1)

accept or reject

r ⇽ H(𝒙, msg1)
generate msg1

generate msg2

Thm: this is a secure SNARK assuming H is a random oracle

Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)

Next lecture: zkSNARK applications

END OF LECTURE

