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Where we are in the course
• Basics:   Consensus protocols   and   Bitcoin

• Composable decentralized applications (e.g., on Ethereum)

⇒ Decentralized Finance (DeFi)

⇒ Scaling the blockchain:   
payment channels, 
Rollup  (Proof-based  or  Optimistic),  
faster consensus

Last core topic:   privacy -- private transactions on a public blockchain



Managing assets on a blockchain: key principles

• Universal verifiability of blockchain rules
⇒ all data written to the blockchain is public;  everyone can verify
⇒ added benefit:  interoperability between chains

• Assets are controlled by signature keys
⇒ assets cannot be transferred without a valid signature

(of course, users can choose to custody their keys)



Privacy?

Naïve reasoning:  
universal verifiability    ⇒ blockchain data is public

⇒ all transactions data is public
otherwise, how we can verify Tx?

not quite …

crypto magic   ⇒ private Tx on a publicly verifiable blockchain



Public blockchain  &   universal verifiability

• Tx data:  encrypted (or committed)

• Proof 𝝅:     zero-knowledge proof  that
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct
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Zero Knowledge Proof Systems



(1)  arithmetic circuits
• Fix a finite field    𝔽 = 0,… , 𝑝 − 1 for some prime  p>2.

• Arithmetic circuit:     𝐶: 𝔽𝑛 ⇾ 𝔽
• directed acyclic graph (DAG) where

• internal nodes are labeled  +, −, or ×
• inputs are labeled   1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe 

• |𝐶| = # multiplication gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)



Boolean circuits as arithmetic circuits
Boolean circuits:   circuits with  AND, OR, NOT  gates

Encoding a boolean circuit as an arithmetic circuit over 𝔽𝑝 :
• AND(𝑥, 𝑦) encoded as 𝑥 ⋅ 𝑦
• OR(𝑥, 𝑦) encoded as 𝑥 + 𝑦 − 𝑥 ⋅ 𝑦
• NOT(𝑥) encoded as 1 − 𝑥

𝑥 𝑦 OR(𝑥, 𝑦)
0 0 0
0 1 1
1 0 1
1 1 1

𝑥1

𝑥2

𝑁𝑂𝑇

𝐴𝑁𝐷
𝑂𝑅

𝑥1

𝑥2

1 − 𝑥1

𝑥1 ⋅ 𝑥2

𝑦

𝑧
y + 𝑧 − 𝑧𝑦



Interesting arithmetic circuits

• Chash(h, m):   outputs 0 if   SHA256(m) = h ,   and ≠0 otherwise

Chash(h, m) = (h – SHA256(m))  , | Chash| ≈ 20K gates

• Csig((pk, m), σ):   output  0  if σ is 
a valid ECDSA signature of m under pk



(2)  non-interactive proof systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽𝑝
public statement in 𝔽)* secret witness in 𝔽)+

Let  𝒙 ∈ 𝔽)* .      Two standard goals for prover P:

(1) Soundness:  convince Verifier that  ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,  ∃𝒘 such that  [ 𝐻(𝒘) = 𝒙 and  0 < 𝒘 < 260 ]   )

(2) Knowledge:   convince Verifier that P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0
(e.g.,   P knows a 𝒘 such that 𝐻(𝒘) = 𝒙)



The trivial proof system

Why can’t prover simply send  𝒘 to verifier?   
• Verifier checks if   𝐶(𝒙,𝒘) = 0 and accepts if so.

Problems with this:
(1) 𝒘 might be secret:   prover cannot reveal  𝒘 to verifier

(2)   𝒘 might be long:   we want a “short” proof

(3)   computing 𝐶(𝒙,𝒘)may be hard:  want to minimize Verifier’s work



Non-interactive Proof Systems    (for NP)

Public arithmetic circuit:     𝐶( 𝒙, 𝒘 ) ⇾ 𝔽𝑝
public input in 𝔽)* secret witness in 𝔽)+

setup:   S(𝐶)  ⇾ public parameters  (Sp, Sv)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙, 𝝅)
proof 𝜋

output accept or reject



Non-interactive Proof Systems    (for NP)

A non-interactive proof system is a triple  (S,  P,  V):

• S(𝐶)  ⇾ public parameters  (Sp, Sv)    for prover and verifier

• P(Sp, 𝒙,𝒘)  ⇾ proof  𝜋

• V(Sv, 𝒙, 𝝅)  ⇾ accept or reject



proof systems: properties   (informal)
Prover P(pp, 𝒙,𝒘) Verifier V (pp, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete:  ∀𝑥,𝑤: 𝐶(𝒙,𝒘) = 0 ⇒ V(Sv, 𝑥, P(Sp, 𝒙, 𝒘)) = accept

Proof of knowledge: V accepts  ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0

in some cases, soundness is sufficient: ∃𝒘 s.t. 𝐶(𝒙,𝒘) = 0

Zero knowledge (optional):   (𝒙, 𝜋)  “reveals nothing” about 𝒘



(a) Proof/argument of knowledge

Goal:   V accepts  ⇒ P “knows” 𝒘 s.t. 𝐶(𝒙,𝒘) = 0

What does it mean to ”know”  𝒘 ??

informal def:   P knows 𝒘,  if 𝒘 can be “extracted” from P

P



(a) Proof/argument of knowledge
Formally:   (S, P, V) is a proof of knowledge for a circuit 𝐶 if

for every adversary  A = (A0, A1)  such that

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝜋 ⇽ A1(Sp, 𝑥, st):   

Pr[V(Sv, 𝑥, 𝜋) = accept] > 1/106 (non-negligible)

there is an efficient extractor  E  (that uses A1 as a black box)  s.t.

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝑤 ⇽ E(Sp, 𝑥, st):   

Pr[C(𝑥, 𝑤) = 0] > 1/106 (non-negligible)

If only for poly. time A   ⇒ (S, P, V) is only an argument of knowledge.
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Formally:   (S, P, V) is a proof of knowledge for a circuit 𝐶 if

for every adversary  A = (A0, A1)  such that

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝜋 ⇽ A1(Sp, 𝑥, st):   

Pr[V(Sv, 𝑥, 𝜋) = accept] > 1/106 (non-negligible)

there is an efficient extractor  E  (that uses A1 as a black box)  s.t.

S(𝐶) ⇾ (Sp, Sv), (𝑥, st) ⇽ A0(Sp), 𝑤 ⇽ E(Sp, 𝑥, st):   

Pr[C(𝑥, 𝑤) = 0] > 1/106 (non-negligible)

If only for poly. time A   ⇒ (S, P, V) is only an argument of knowledge.

Proof:  secure against unbounded cheating provers

Argument:  secure against polynomial-time cheating provers



(b) Zero knowledge
(S, P, V) is zero knowledge if proof π “reveals nothing” about 𝒘

Formally:   (S, P, V) is zero knowledge for a circuit 𝐶
if there is an efficient simulator Sim,   
such that for all 𝑥 ∈ 𝔽)* s.t. ∃𝑤: 𝐶 𝑥,𝑤 = 0 the distribution:

(Sp, Sv, 𝑥, 𝜋) where   (Sp, Sv) ⇽ S(𝐶) ,  𝜋 ⇽ P(𝑥, 𝒘)

is indistinguishable from the distribution:

(Sp, Sv, 𝑥, 𝜋) where   (Sp, Sv, 𝜋) ⇽ Sim(𝑥)

key point:  Sim(x) simulates proof 𝜋 without knowledge of 𝒘



(3)  Succinct arguments:  SNARKs

Succinct:

• Proof  𝜋 should be short [ i.e.,  |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆) ]

• Verifying  𝜋 should be fast [ i.e.,  time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆) ]

note:   if SNARK is zero-knowledge, then called a zkSNARK

Goal:  P wants to show that it knows  𝒘 s.t. 𝐶(𝒙,𝒘) = 0



(3)  Succinct arguments:  SNARKs

Succinct:

• Proof  𝜋 should be short [ i.e.,  |𝜋| = 𝑂( 𝐥𝐨𝐠 𝑪 , 𝜆) ]

• Verifying  𝜋 should be fast [ i.e.,  time(V) = 𝑂( 𝑥 , 𝐥𝐨𝐠 𝑪 , 𝜆) ]

note:   if SNARK is zero-knowledge, then called a zkSNARK

Goal:  P wants to show that it knows  𝒘 s.t. 𝐶(𝒙,𝒘) = 1
verifier cannot read 𝐶 !! Instead, 

V relies on setup(𝐶) to pre-process (summarize) 𝐶 in Sv



An example
Prover says:   I know   (𝑥1, … , 𝑥*) ∈ 𝑋 such that   𝐻(𝑥1, … , 𝑥𝑛) = 𝑦

Prover Verifier

statement:  𝑦
witness:   𝑥1, … , 𝑥!

statement:  𝑦

Proof  𝜋 accept or reject

SNARK:   size(𝜋) and  VerifyTime(𝜋) should be  𝑂(log 𝑛) !!



An example

Prover Verifier

statement:  𝑦
witness:   𝑥1, … , 𝑥!

statement:  𝑦

Proof  𝜋 accept or reject

How is this possible ???

SNARK:   size(𝜋) and  VerifyTime(𝜋) should be  𝑂(log 𝑛) !!



Types of pre-processing Setup

Recall setup for circuit 𝐶:    S(𝐶)  ⇾ public parameters  (Sp, Sv)

Types of setup:

trusted setup per circuit:    S(𝐶) uses data that must be kept secret

compromised trusted setup  ⇒ can prove false statements

updatable universal trusted setup:  (Sp, Sv) can be updated by anyone

transparent:   S() does not use secret data (no trusted setup)



Significant progress in recent years

• Kilian’92, Micali’94:   succinct transparent arguments from PCP
• impractical prover time

• GGPR’13, Groth’16, …:  linear prover time, constant size proof  (𝑂#(1))
• trusted setup per circuit   (setup alg. uses secret randomness)

• compromised setup  ⇒ proofs of false statements

• Sonic’19,  Marlin’19,  Plonk’19, … :   universal trusted setup

• DARK’19,  Halo’19,  STARK, …  :  no trusted setup (transparent)



Types of SNARKs   (partial list)

size of
|π|

size of
|Sp|

verifier
time

trusted
setup?

Groth’16 O(1) O(|𝐶|) O(1) yes/per circuit

PLONK/MARLIN O(1) O(|𝐶|) O(1) yes/updatable

Bulletproofs O(log|𝐶|) O(1) O(|𝐶|) no

STARK O(log|𝐶|) O(1) O(log|𝐶|) no

DARK O(log|𝐶|) O(1) O(log|𝐶|) no

⋮ ⋮ ⋮



A typical SNARK software system

DSL
program

Circom,
ZoKrates,

…

compiler

SNARK
friendly
format

R1CS,
AIR,

TurboPlonk

SNARK
backend

x, witness

Proof   𝜋

(Sp, Sv)setup

CPU heavy

verifier

accept/
reject

x



ZoKrates Example

def main(field x[2],   private field w) -> (field):
h = sha256packed( w )
h[0] == x[0]       //  check top 128 bits
h[1] == x[1]       //  check bottom 128 bits
return 1

Goal: prove knowledge of a hash (SHA256) preimage of  𝑥 ∈ {0,1}256

• For a public x,  prover knows  𝑤 ∈ 𝔽) such that  SHA256(𝑤) = 𝑥

• 𝔽) is a  254-bit prime field
Compiled into an arithmetic 

circuits (R1CS) over 𝔽)



zkSNARK applications



Blockchain Applications
Scalability:   

• SNARK Rollup    (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain
• Confidential transactions
• Zcash

Compliance:
• Proving solvency in zero-knowledge
• Zero-knowledge taxes



A simple PCP-based SNARK
[Kilian’92, Micali’94]



A simple construction: PCP-based SNARK
The PCP theorem:    Let   𝐶(𝑥,𝑤) be a circuit where  𝑥 ∈ 𝔽)*.  

there is a proof system that for every 𝑥 proves  ∃𝑤: 𝐶 𝑥,𝑤 = 0
as follows:

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
read only 𝑂(𝜆) bits of 𝜋,
output accept or reject

proof  𝜋

size of proof is   𝑝𝑜𝑙𝑦(|𝐶|).           (not succinct)

V always accepts valid proof.     If no 𝑤, then V rejects with high prob.



Converting a PCP proof to a SNARK

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

Merkle
𝜋

ℎ

open 𝑂(𝜆) positions of 𝜋

𝑂(𝜆) opening and Merkle proofs
output accept or reject

Verifier sees 𝑂(𝜆 log |𝐶|) data  ⇒ succinct proof.                                      

Merkle root  ℎ 1 hash

𝑂(𝜆 log |𝐶|) hashes

Problem: interactive



Making the proof non-interactive
The Fiat-Shamir heuristic:
• public-coin interactive protocol  ⇒ non-interactive protocol

public coin:  all verifier randomness is public (no secrets)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)
msg1

r

msg2
accept or reject

choose random bits r



Making the proof non-interactive
Fiat-Shamir heuristic:   𝐻:𝑀 ⇾ 𝑅 a cryptographic hash function

• idea:  prover generates random bits on its own (!)

Prover P(Sp, 𝒙,𝒘) Verifier V(Sv, 𝒙)

𝜋 = (msg1, msg2)
|π| = O(𝜆 log |𝐶|)

r ⇽ H(𝒙, msg1)

accept or reject

r ⇽ H(𝒙, msg1)
generate msg1

generate msg2

Thm: this is a secure SNARK assuming H is a random oracle



Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news:   an impractical SNARK --- Prover time too high

Better SNARKs:   next lecture!         Goal:  Time(Prover) = O(|C|)



Next lecture:   zkSNARK applications

END  OF  LECTURE


