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Where we are in the course

* Basics: Consensus protocols and Bitcoin
« Composable decentralized applications (e.g., on Ethereum)
= Decentralized Finance (DeFi)

= Scaling the blockchain:
payment channels,
Rollup (Proof-based or Optimistic),
faster consensus

Last core topic: privacy -- private transactions on a public blockchain




Managing assets on a blockchain: key principles

* Universal verifiability of blockchain rules
= all data written to the blockchain is public; everyone can verify
= added benefit: interoperability between chains

* Assets are controlled by signature keys
= assets cannot be transferred without a valid signature
(of course, users can choose to custody their keys)



Naive reasoning:

universal verifiability = blockchain data is public

= all transactions data is public
otherwise, how we can verify Tx?

not quite ...

crypto magic = private Tx on a publicly verifiable blockchain



Public blockchain & universal verifiability
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 Proof m: zero-knowledge proof that (reveals nothing about Tx data)
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(2) plaintext new state is correct
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Zero Knowledge Proof Systems




(1) arithmetic circuits

* Fixafinite field F ={0,..,p—1} forsome prime p>2.

* Arithmeticcircuit: C: F* = [F
* directed acyclic graph (DAG) where x1(x1 + 22+ 1(xz — 1)

* internal nodes are labeled +, —, or X
* inputs are labeled 1, x4, ..., x,

* defines an n-variate polynomial /G{
with an evaluation recipe B&

 |C| = # multiplication gatesin C




Boolean circuits as arithmetic circuits

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over IF,, :
* AND(x,y) encodedas x:-y
* OR(x,y) encodedas x+y—x-y &

* NOT(x) encodedas 1-—x )
X _y | OR(x,y)
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Interesting arithmetic circuits

* Cian(h, m): outputs Oif SHA256(m)=h, and #0 otherwise

Chash(hr m) = (h — SHAZSG(m)) ’ | Chashl = 20K gates

* Cgllpk, m), 0): output 0 ifois
a valid ECDSA signature of m under pk



(2) non-interactive proof systems (o)

Public arithmetic circuit:  C(x, w) — [,
public statement in IFg —J L— secret withess in IFg‘

Let x € IFg . Two standard goals for prover P:

(1) Soundness: convince Verifier that dw s.t. C(x,w) =0
(e.g., 3w suchthat [H(w) =x and 0 <w < 200 ] )

(2) Knowledge: convince Verifier that P “knows” w s.t. C(x,w) =0

(e.g., P knows aw such that H(w) = x)




The trivial proof system

Why can’t prover simply send w to verifier?
* Verifier checks if C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover cannot reveal w to verifier
(2) w might be long: we want a “short” proof

(3) computing C(x, w) may be hard: want to minimize Verifier’s work



Non-interactive Proof Systems (corne)

Public arithmetic circuit:  C(x, w) — [,

public input in [ —J L— secret witness in [F}!

setup: S(C) — public parameters (S, S,)

Prover P(S,, X,W) Verifier V(S,, X, TT)
proof TT

output accept or reject




Non-interactive Proof Systems (corne)

A non-interactive proof system is a triple (S, P, V):
* S(C) — public parameters (S,,S,) for prover and verifier
* P(S,, x,w) — proof 7

* V(S, x, ) — accept or reject



proof systems: properties (informal)

Prover P(pp, X, W) Verifier V (pp, X, TT)
proof TT

accept or reject

Complete: vx,w: C(x,w) =0 = V(S, x, P(s,, x, w)) = accept

Proof of knowledge: V accepts = P “knows” ws.t. C(x,w) =0

in some cases, soundness is sufficient: Iw s.t. C(x,w) =0

Zero knowledge (optional): (x, ) “reveals nothing” about w




(a) Proof/argument of knowledge

Goal: V accepts = P “knows” ws.t. C(x,w) =0
What does it mean to "know” w ??

informal def: P knows w, if w can be “extracted” from P




(a) Proof/argument of knowledge

Formally: (S, P, V) is a proof of knowledge for a circuit C if
for every adversary A =(A,, A;) such that

S(C) — (S, S,), (x, st) & Ay(S,), T+ Ay(S,, x, st):
Pr[V(S, x, ) = accept] > 1/10® (non-negligible)

there is an efficient extractor E (that uses A; as a black box) s.t.

S(C) = (S, S,), (x, st) & Ay(S,), w  E(S,, x, st):
Pr[C(x, w) =0] >1/10° (non-negligible)

If only for poly. time A = (S, P, V) is only an argument of knowledge.



(a) Proof/argument of knowledge
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Proof: secure against unbounded cheating provers

1.
Argument: secure against polynomial-time cheating provers

If only for poly. time A = (S, P, V) is only an argument of knowledge.



(b) Zero knowledge

(S, P, V) is zero knowledge if proof m “reveals nothing” about w

Formally: (S, P, V) is zero knowledge for a circuit C
if there is an efficient simulator Sim,
such that for all x € F; s.t. 3w:C(x,w) = 0 the distribution:

(Sp, Sv x, ™)  where (S,,S,) « S(C), m+ P(x, w)
is indistinguishable from the distribution:

(Sp, Sv x, ™)  where (S, S,, ) < Sim(x)

key point: Sim(x) simulates proof m without knowledge of w



(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) =0

Succinct:

« Proof m should beshort [i.e., || = 0(log(|C]), 1) ]

-

e Verifying m should be fast [i.e., time(V)=0(|x|, log(|C])|, 2) ]

note: if SNARK is zero-knowledge, then called a zkSNARK



(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) = 1

verifier cannotread C !! Instead,
Succinct: |V relies on setup(C) to pre-process (summarize) C'in S,

* Proof m should beshort [i.e., || = 0( ‘ 2 ]

« Verifying m should be fast [i.e., time(V) = 0(|x|, log(|C|)

Ml

-

note: if SNARK is zero-knowledge, then called a zkSNARK



An example

Prover says: lknow (xq,..,x,) € X suchthat H(xy ..,x,) =y

SNARK: size(rr) and VerifyTime(rr) should be O(logn) !

statement: y statement: y ]

witness: Xy, ..., X,

@ Proof ) Q accept or reject
(LTI TTTTTTTT]

Prover Verifier




An example

How is this possible ?7??

SNARK: size(r) and VerifyTime(rr) should be O(logn) !

statement: y statement: y ]

witness: Xy, ..., Xn

@ Proof 7T ) Q accept or reject
[TTTTTTTTTITT]

Prover Verifier




Types of pre-processing Setup

Recall setup for circuit C:  S(C) — public parameters (S, S,)

Types of setup:
trusted setup per circuit: S(C) uses data that must be kept secret

compromised trusted setup = can prove false statements
updatable universal trusted setup: (S, S,) can be updated by anyone

transparent: S() does not use secret data (no trusted setup)




Significant progress in recent years

Kilian’92, Micali’94: succinct transparent arguments from PCP

* impractical prover time

GGPR’13, Groth’16, ...: linear prover time, constant size proof o,
* trusted setup per circuit (setup alg. uses secret randomness)
« compromised setup = proofs of false statements

Sonic’19, Marlin’19, Plonk’19, ... : universal trusted setup

DARK’19, Halo’19, STARLK, ... : no trusted setup (transparent)



Types of SNARKS (partial list)

verifier trusted
time setup?

Groth’16
PLONK/MARLIN
Bulletproofs
STARK

DARK

0(1)
0(1)
O(log|C])
O(log|C])

O(log|C])

o(|CY)

o(|CY)
0(1)
0(1)

0(1)

0(1)
0(1)
o(|Cl)
O(log|C])

O(log|C])

yes/per circuit
yes/updatable
no
no

nNo



A typical SNARK software system

SNARK }hea"y }

backend
DSL SNARK > Proof =«
, friendly
program compller> format T
. | oA at .
Circom, X, witness
/oKrates, R':ICRS’
TurboPionk X > acc.ept/
1 verifier reject
| D (S, S,)




ZoKrates Example

Goal: prove knowledge of a hash (SHA256) preimage of x € {0,1}2°°

 For a public x, prover knows w € F - : :
P P Compiled into an arithmetic

* [F, isa 254-bit prime field circuits (R1CS) over FF,

def main(field x[2], private field w) -> (field):
h = sha256packed( w )

h[0] ==x[0] // check top 128 bits
h[1] ==x[1] // check bottom 128 bits
return 1




zkSNARK applications



Blockchain Applications

Scalability:
 SNARK Rollup (zkSNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
e Confidential transactions
e Zcash

Compliance:
* Proving solvency in zero-knowledge

» Zero-knowledge taxes



A simple PCP-based SNARK

[Kilian’92, Micali’94]



A simple construction: PCP-based SNARK

The PCP theorem: Let C(x,w) be acircuit where x € IFy,.

there is a proof system that for every x proves Iw:C(x,w) =0
as follows:

Prover P(S,, X, w) Verifier V(S,. x)

proof read only 0() bits of T,
— ||||| = output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

size of proofis poly(|C|). (not succinct)




Converting a PCP proof to a SNARK

Prover P(S,, xX,W) Verifier V(S,. X)
A&
ML LTI TTTTT] Merkle root b 1.t

open 0(A) positions of 1T

» 0O(Alog|C|) hashes

0(A) opening and Merkle proofs
output accept or reject

Verifier sees 0(1log|C|) data = succinct proof. | Problem: interactive




Making the proof non-interactive

The Fiat-Shamir heuristic:
* public-coin interactive protocol = non-interactive protocol
public coin: all verifier randomness is public (no secrets)

Prover P(S,, X, w) Verifier V(S,. X)
msgl
r choose random bits r
msg2
accept or reject




Making the proof non-interactive

Fiat-Shamir heuristic: H: M — R a cryptographic hash function

* idea: prover generates random bits on its own (!)

Prover P(S,, X, w) Verifier V(S,. X)

generate msgl

r «— H(x, msgl) 1 = (msgl, msg2) |re H(x, msgl)

generate msg2 In| =0(xlog |C])

accept or reject

Thm: this is a secure SNARK assuming H is a random oracle



Are we done?

Simple transparent SNARK from the PCP theorem
e Use Fiat-Shamir heuristic to make non-interactive

* We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)




END OF LECTURE

Next lecture: zkSNARK applications



