CS251 Fall 2020
(cs251.stanford.edu)

Proof Systems and SNARKSs

Dan Boneh

Where we are in the course

* Basics: Consensus protocols and Bitcoin
« Composable decentralized applications (e.g., on Ethereum)
= Decentralized Finance (DeFi)

= Scaling the blockchain:
payment channels,
Rollup (Proof-based or Optimistic),
faster consensus

Last core topic: privacy -- private transactions on a public blockchain

Managing assets on a blockchain: key principles

* Universal verifiability of blockchain rules
= all data written to the blockchain is public; everyone can verify
= added benefit: interoperability between chains

* Assets are controlled by signature keys
= assets cannot be transferred without a valid signature
(of course, users can choose to custody their keys)

Naive reasoning:

universal verifiability = blockchain data is public

= all transactions data is public
otherwise, how we can verify Tx?

not quite ...

crypto magic = private Tx on a publicly verifiable blockchain

Public blockchain & universal verifiability

abstractl
public blockchain (y)

current
state

new state

encrypted encrypted
(or committed) (or committed)

 Tx data: encrypted (or committed)

 Proof m: zero-knowledge proof that (reveals nothing about Tx data)
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

Public blockchain & universal verifiability

abstractl
public blockchain (y)

current
state

encrypted

anyone ca

new state

encrypted
itted , (or committed)
(or committed) verify o a

 Tx data: encrypted (or committed)

 Proof m: zero-knowledge proof that (reveals nothing about Tx data)
(1) plaintext Tx data is consistent with plaintext current state
(2) plaintext new state is correct

Zero Knowledge Proof Systems

(1) arithmetic circuits

* Fixafinite field F ={0,..,p—1} forsome prime p>2.

* Arithmeticcircuit: C: F* = [F
* directed acyclic graph (DAG) where x1(x1 + 22+ 1(xz — 1)

* internal nodes are labeled +, —, or X
* inputs are labeled 1, x4, ..., x,

* defines an n-variate polynomial /G{
with an evaluation recipe B&

 |C| = # multiplication gatesin C

Boolean circuits as arithmetic circuits

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over IF,, :
* AND(x,y) encodedas x:-y
* OR(x,y) encodedas x+y—x-y &

* NOT(x) encodedas 1-—x)
X _y | OR(x,y)
0 O 0
(1)—(von) 1o
1-x y 1 0 1
N L) ON - Prvsen
) (or) > W—p o P S 11| 1

Interesting arithmetic circuits

* Cian(h, m): outputs Oif SHA256(m)=h, and #0 otherwise

Chash(hr m) = (h — SHAZSG(m)) ’ | Chashl = 20K gates

* Cgllpk, m), 0): output 0 ifois
a valid ECDSA signature of m under pk

(2) non-interactive proof systems (o)

Public arithmetic circuit: C(x, w) — [,
public statement in IFg —J L— secret withess in IFg‘

Let x € IFg . Two standard goals for prover P:

(1) Soundness: convince Verifier that dw s.t. C(x,w) =0
(e.g., 3w suchthat [H(w) =x and 0 <w < 200])

(2) Knowledge: convince Verifier that P “knows” w s.t. C(x,w) =0

(e.g., P knows aw such that H(w) = x)

The trivial proof system

Why can’t prover simply send w to verifier?
* Verifier checks if C(x,w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover cannot reveal w to verifier
(2) w might be long: we want a “short” proof

(3) computing C(x, w) may be hard: want to minimize Verifier’s work

Non-interactive Proof Systems (corne)

Public arithmetic circuit: C(x, w) — [,

public input in [—J L— secret witness in [F}!

setup: S(C) — public parameters (S, S,)

Prover P(S,, X,W) Verifier V(S,, X, TT)
proof TT

output accept or reject

Non-interactive Proof Systems (corne)

A non-interactive proof system is a triple (S, P, V):
* S(C) — public parameters (S,,S,) for prover and verifier
* P(S,, x,w) — proof 7

* V(S, x,) — accept or reject

proof systems: properties (informal)

Prover P(pp, X, W) Verifier V (pp, X, TT)
proof TT

accept or reject

Complete: vx,w: C(x,w) =0 = V(S, x, P(s,, x, w)) = accept

Proof of knowledge: V accepts = P “knows” ws.t. C(x,w) =0

in some cases, soundness is sufficient: Iw s.t. C(x,w) =0

Zero knowledge (optional): (x,) “reveals nothing” about w

(a) Proof/argument of knowledge

Goal: V accepts = P “knows” ws.t. C(x,w) =0
What does it mean to "know” w ??

informal def: P knows w, if w can be “extracted” from P

(a) Proof/argument of knowledge

Formally: (S, P, V) is a proof of knowledge for a circuit C if
for every adversary A =(A,, A;) such that

S(C) — (S, S,), (x, st) & Ay(S,), T+ Ay(S,, x, st):
Pr[V(S, x,) = accept] > 1/10® (non-negligible)

there is an efficient extractor E (that uses A; as a black box) s.t.

S(C) = (S, S,), (x, st) & Ay(S,), w E(S,, x, st):
Pr[C(x, w) =0] >1/10° (non-negligible)

If only for poly. time A = (S, P, V) is only an argument of knowledge.

(a) Proof/argument of knowledge

Fr\lﬁMf\II\ 10 IC n \I\ :l‘ -~ IAI‘AA‘ A‘ III‘AIIIIAAHA -Fr\v- -~ f\:lﬁﬁl l:'l' f‘ :-F

Proof: secure against unbounded cheating provers

1.
Argument: secure against polynomial-time cheating provers

If only for poly. time A = (S, P, V) is only an argument of knowledge.

(b) Zero knowledge

(S, P, V) is zero knowledge if proof m “reveals nothing” about w

Formally: (S, P, V) is zero knowledge for a circuit C
if there is an efficient simulator Sim,
such that for all x € F; s.t. 3w:C(x,w) = 0 the distribution:

(Sp, Sv x, ™) where (S,,S,) « S(C), m+ P(x, w)
is indistinguishable from the distribution:

(Sp, Sv x, ™) where (S, S,,) < Sim(x)

key point: Sim(x) simulates proof m without knowledge of w

(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) =0

Succinct:

« Proof m should beshort [i.e., || = 0(log(|C]), 1)]

-

e Verifying m should be fast [i.e., time(V)=0(|x|, log(|C])|, 2)]

note: if SNARK is zero-knowledge, then called a zkSNARK

(3) Succinct arguments: SNARKSs

Goal: P wants to show that it knows w s.t. C(x,w) = 1

verifier cannotread C !! Instead,
Succinct: |V relies on setup(C) to pre-process (summarize) C'in S,

* Proof m should beshort [i.e., || = 0(‘ 2]

« Verifying m should be fast [i.e., time(V) = 0(|x|, log(|C|)

Ml

-

note: if SNARK is zero-knowledge, then called a zkSNARK

An example

Prover says: lknow (xq,..,x,) € X suchthat H(xy ..,x,) =y

SNARK: size(rr) and VerifyTime(rr) should be O(logn) !

statement: y statement: y]

witness: Xy, ..., X,

@ Proof) Q accept or reject
(LTI TTTTTTTT]

Prover Verifier

An example

How is this possible ?7??

SNARK: size(r) and VerifyTime(rr) should be O(logn) !

statement: y statement: y]

witness: Xy, ..., Xn

@ Proof 7T) Q accept or reject
[TTTTTTTTTITT]

Prover Verifier

Types of pre-processing Setup

Recall setup for circuit C: S(C) — public parameters (S, S,)

Types of setup:
trusted setup per circuit: S(C) uses data that must be kept secret

compromised trusted setup = can prove false statements
updatable universal trusted setup: (S, S,) can be updated by anyone

transparent: S() does not use secret data (no trusted setup)

Significant progress in recent years

Kilian’92, Micali’94: succinct transparent arguments from PCP

* impractical prover time

GGPR’13, Groth’16, ...: linear prover time, constant size proof o,
* trusted setup per circuit (setup alg. uses secret randomness)
« compromised setup = proofs of false statements

Sonic’19, Marlin’19, Plonk’19, ... : universal trusted setup

DARK’19, Halo’19, STARLK, ... : no trusted setup (transparent)

Types of SNARKS (partial list)

verifier trusted
time setup?

Groth’16
PLONK/MARLIN
Bulletproofs
STARK

DARK

0(1)
0(1)
O(log|C])
O(log|C])

O(log|C])

o(|CY)

o(|CY)
0(1)
0(1)

0(1)

0(1)
0(1)
o(|Cl)
O(log|C])

O(log|C])

yes/per circuit
yes/updatable
no
no

nNo

A typical SNARK software system

SNARK }hea"y }

backend
DSL SNARK > Proof =«
, friendly
program compller> format T
. | oA at .
Circom, X, witness
/oKrates, R':ICRS’
TurboPionk X > acc.ept/
1 verifier reject
| D (S, S,)

ZoKrates Example

Goal: prove knowledge of a hash (SHA256) preimage of x € {0,1}2°°

 For a public x, prover knows w € F - : :
P P Compiled into an arithmetic

* [F, isa 254-bit prime field circuits (R1CS) over FF,

def main(field x[2], private field w) -> (field):
h = sha256packed(w)

h[0] ==x[0] // check top 128 bits
h[1] ==x[1] // check bottom 128 bits
return 1

zkSNARK applications

Blockchain Applications

Scalability:
 SNARK Rollup (zkSNARK for privacy from pubilic)

Privacy: Private Tx on a public blockchain
e Confidential transactions
e Zcash

Compliance:
* Proving solvency in zero-knowledge

» Zero-knowledge taxes

A simple PCP-based SNARK

[Kilian’92, Micali’94]

A simple construction: PCP-based SNARK

The PCP theorem: Let C(x,w) be acircuit where x € IFy,.

there is a proof system that for every x proves Iw:C(x,w) =0
as follows:

Prover P(S,, X, w) Verifier V(S,. x)

proof read only 0() bits of T,
— ||||| = output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

size of proofis poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Prover P(S,, xX,W) Verifier V(S,. X)
A&
ML LTI TTTTT] Merkle root b 1.t

open 0(A) positions of 1T

» 0O(Alog|C|) hashes

0(A) opening and Merkle proofs
output accept or reject

Verifier sees 0(1log|C|) data = succinct proof. | Problem: interactive

Making the proof non-interactive

The Fiat-Shamir heuristic:
* public-coin interactive protocol = non-interactive protocol
public coin: all verifier randomness is public (no secrets)

Prover P(S,, X, w) Verifier V(S,. X)
msgl
r choose random bits r
msg2
accept or reject

Making the proof non-interactive

Fiat-Shamir heuristic: H: M — R a cryptographic hash function

* idea: prover generates random bits on its own (!)

Prover P(S,, X, w) Verifier V(S,. X)

generate msgl

r «— H(x, msgl) 1 = (msgl, msg2) |re H(x, msgl)

generate msg2 In| =0(xlog |C])

accept or reject

Thm: this is a secure SNARK assuming H is a random oracle

Are we done?

Simple transparent SNARK from the PCP theorem
e Use Fiat-Shamir heuristic to make non-interactive

* We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)

END OF LECTURE

Next lecture: zkSNARK applications

