CS251 Fall 2020

(cs251.stanford.edu)

Proof Systems and SNARKs

Dan Boneh

Where we are in the course

- Basics: Consensus protocols and Bitcoin
- Composable decentralized applications (e.g., on Ethereum)
 - \Rightarrow Decentralized Finance (DeFi)
 - ⇒ Scaling the blockchain:
 payment channels,
 Rollup (Proof-based or Optimistic),
 faster consensus

Last core topic: privacy -- private transactions on a public blockchain

Managing assets on a blockchain: key principles

- Universal verifiability of blockchain rules
 - \Rightarrow all data written to the blockchain is public; everyone can verify
 - \Rightarrow added benefit: interoperability between chains

- Assets are **controlled by signature keys**
 - ⇒ assets <u>cannot</u> be transferred without a valid signature (of course, users can choose to custody their keys)

Naïve reasoning:

universal verifiability \Rightarrow blockchain data is public

 \Rightarrow all transactions data is public

otherwise, how we can verify Tx?

not quite ...

crypto magic \Rightarrow private Tx on a publicly verifiable blockchain

Public blockchain & universal verifiability

(abstractly)

public blockchain

- **Tx data**: encrypted (or committed)
- **Proof** π : *zero-knowledge proof* that (reveals nothing about Tx data)
 - (1) plaintext Tx data is consistent with plaintext current state
 - (2) plaintext new state is correct

Public blockchain & universal verifiability

(abstractly)

public blockchain

- **Proof** π : *zero-knowledge proof* that (reveals nothing about Tx data)
 - (1) plaintext Tx data is consistent with plaintext current state
 - (2) plaintext new state is correct

Zero Knowledge Proof Systems

(1) arithmetic circuits

- Fix a finite field $\mathbb{F} = \{0, \dots, p-1\}$ for some prime p>2.
- Arithmetic circuit: $C: \mathbb{F}^n \rightarrow \mathbb{F}$
 - directed acyclic graph (DAG) where
 - internal nodes are labeled +, -, or ×
 - inputs are labeled 1, x_1, \ldots, x_n
 - defines an n-variate polynomial with an evaluation recipe
- |C| = # multiplication gates in C

Boolean circuits as arithmetic circuits

OR(x, y)

 $\frac{x}{0}$

0

1

1

0

1

0

1

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over \mathbb{F}_p :

- AND(x, y) encoded as $x \cdot y$
- OR(x, y) encoded as $x + y x \cdot y$
- NOT(x) encoded as 1 x

Interesting arithmetic circuits

• $C_{hash}(h, m)$: outputs 0 if SHA256(m) = h, and \neq 0 otherwise

$$C_{hash}(h, m) = (h - SHA256(m))$$
, $|C_{hash}| \approx 20K$ gates

 C_{sig}((pk, m), σ): output 0 if σ is a valid ECDSA signature of m under pk

(2) non-interactive proof systems (for NP)

Public arithmetic circuit: $C(x, w) \rightarrow \mathbb{F}_p$ public statement in $\mathbb{F}_p^n \longrightarrow \operatorname{secret} witness$ in \mathbb{F}_p^m

- Let $x \in \mathbb{F}_p^n$. Two standard goals for prover P:
- (1) <u>Soundness</u>: convince Verifier that $\exists w$ s.t. C(x, w) = 0(e.g., $\exists w$ such that $[H(w) = x \text{ and } 0 < w < 2^{60}]$)
- (2) <u>Knowledge</u>: convince Verifier that P "knows" w s.t. C(x, w) = 0(e.g., P knows a w such that H(w) = x)

The trivial proof system

Why can't prover simply send w to verifier?

• Verifier checks if C(x, w) = 0 and accepts if so.

Problems with this:

(1) w might be secret: prover cannot reveal w to verifier

(2) w might be long: we want a "short" proof

(3) computing $C(\mathbf{x}, \mathbf{w})$ may be hard: want to minimize Verifier's work

Non-interactive Proof Systems (for NP)

setup: $S(C) \rightarrow$ public parameters (S_p, S_v)

Non-interactive Proof Systems (for NP)

A non-interactive proof system is a triple (S, P, V):

- $S(C) \rightarrow$ public parameters (S_p, S_v) for prover and verifier
- $P(S_p, x, w) \rightarrow \text{proof } \pi$
- $V(S_{v}, x, \pi) \rightarrow \text{accept or reject}$

proof systems: properties (informal)

Complete: $\forall x, w: C(x, w) = 0 \Rightarrow V(S_v, x, P(S_p, x, w)) = accept$

Proof of knowledge: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0

in some cases, **soundness** is sufficient: $\exists w$ s.t. C(x, w) = 0

Zero knowledge (optional): (x, π) "reveals nothing" about w

(a) Proof/argument of knowledge

Goal: V accepts \Rightarrow P "knows" w s.t. C(x, w) = 0

What does it mean to "know" w??

informal def: P knows w, if w can be "extracted" from P

(a) Proof/argument of knowledge

Formally: (S, P, V) is a **proof of knowledge** for a circuit C if for every adversary $A = (A_0, A_1)$ such that

$$S(C) \rightarrow (S_p, S_v), \quad (x, st) \leftarrow A_0(S_p), \quad \pi \leftarrow A_1(S_p, x, st):$$

 $Pr[V(S_v, x, \pi) = accept] > 1/10^6 \quad (non-negligible)$

there is an efficient extractor E (that uses A_1 as a black box) s.t.

$$S(C) \rightarrow (S_p, S_v), \quad (x, st) \leftarrow A_0(S_p), \quad w \leftarrow E(S_p, x, st):$$

 $Pr[C(x, w) = 0] > 1/10^6$ (non-negligible)

If only for poly. time A \Rightarrow (S, P, V) is only an **argument of knowledge**.

(a) Proof/argument of knowledge

Formally, (S. D.)/) is a proof of knowledge for a singuit (if

<u>Proof</u>: secure against unbounded cheating provers

<u>Argument</u>: secure against polynomial-time cheating provers

.t.

If only for poly. time A \Rightarrow (S, P, V) is only an **argument of knowledge**.

(b) Zero knowledge

(S, P, V) is **zero knowledge** if proof π "reveals nothing" about w

Formally: (S, P, V) is **zero knowledge** for a circuit *C* if there is an efficient simulator **Sim**, such that for all $x \in \mathbb{F}_p^n$ s.t. $\exists w: C(x, w) = 0$ the distribution:

$$(S_p, S_v, x, \pi)$$
 where $(S_p, S_v) \leftarrow S(C)$, $\pi \leftarrow P(x, w)$

is indistinguishable from the distribution:

$$(S_p, S_v, x, \pi)$$
 where $(S_p, S_v, \pi) \leftarrow Sim(x)$

key point: **Sim**(x) simulates proof π without knowledge of w

(3) Succinct arguments: SNARKs

Goal: P wants to show that it knows w s.t. C(x, w) = 0

note: if SNARK is zero-knowledge, then called a **zkSNARK**

(3) Succinct arguments: SNARKs

Goal: P wants to show that it knows w s.t. C(x, w) = 1verifier cannot read *C* !! Instead, V relies on setup(C) to pre-process (summarize) C in S_v Succinct: • Proof π should be **short** [i.e., $|\pi| = O(\log n)$ Verifying π should be **fast** [i.e., time(V) = $O(|x|, |\log(|C|), \lambda)$]

note: if SNARK is zero-knowledge, then called a **zkSNARK**

An example

Prover says: I know $(x_1, ..., x_n) \in X$ such that $H(x_1, ..., x_n) = y$

SNARK: size(π) and VerifyTime(π) should be $O(\log n)$!!

An example

Types of pre-processing Setup

Recall setup for circuit C: $S(C) \rightarrow \text{public parameters } (S_p, S_v)$

Types of setup:

trusted setup per circuit: S(C) uses data that must be kept secret compromised trusted setup \Rightarrow can prove false statements

updatable universal trusted setup: (S_p, S_v) can be updated by anyone

<u>transparent</u>: **S**() does not use secret data (no trusted setup)

Significant progress in recent years

- Kilian'92, Micali'94: succinct transparent arguments from PCP
 - impractical prover time
- GGPR'13, Groth'16, ...: linear prover time, constant size proof (O_λ(1))
 - trusted setup per circuit (setup alg. uses secret randomness)
 - compromised setup \Rightarrow proofs of false statements
- Sonic'19, Marlin'19, Plonk'19, ...: universal trusted setup
- **DARK'19, Halo'19, STARK**, ... : no trusted setup (transparent)

Types of SNARKs (partial list)

	size of π	size of S _p	verifier time	trusted setup?
Groth'16	O(1)	O(<i>C</i>)	O(1)	yes/per circuit
PLONK/MARLIN	O(1)	O(<i>C</i>)	O(1)	yes/updatable
Bulletproofs	O(log C)	O(1)	O(<i>C</i>)	no
STARK	O(log C)	O(1)	$O(\log C)$	no
DARK	O(log C)	O(1)	O(log <i>C</i>)	no
•	•			•

•

.

A typical SNARK software system

ZoKrates Example

<u>Goal</u>: prove knowledge of a hash (SHA256) preimage of $x \in \{0,1\}^{256}$

- For a public x, prover knows $w \in \mathbb{F}_{n}$
- \mathbb{F}_p is a 254-bit prime field

Compiled into an arithmetic circuits (R1CS) over \mathbb{F}_p

def main(field x[2], private field w) -> (field):

h = sha256packed(w)

- h[0] == x[0] // check top 128 bits
- h[1] == x[1] // check bottom 128 bits

return 1

zkSNARK applications

Blockchain Applications

Scalability:

• SNARK Rollup (zkSNARK for privacy from public)

Privacy: Private Tx on a public blockchain

- Confidential transactions
- Zcash

Compliance:

- Proving solvency in zero-knowledge
- Zero-knowledge taxes

A simple PCP-based SNARK

[Kilian'92, Micali'94]

A simple construction: PCP-based SNARK

<u>**The PCP theorem</u></u>: Let C(x,w) be a circuit where x \in \mathbb{F}_p^n. there is a proof system that for every x proves \exists w: C(x,w) = 0 as follows:</u>**

V always accepts valid proof. If no *w*, then V rejects with high prob.

size of proof is poly(|C|). (not succinct)

Converting a PCP proof to a SNARK

Making the proof non-interactive

The Fiat-Shamir heuristic:

public-coin interactive protocol ⇒ non-interactive protocol
 public coin: all verifier randomness is public (no secrets)

Making the proof non-interactive

<u>Fiat-Shamir heuristic</u>: $H: M \rightarrow R$ a cryptographic hash function

• idea: prover generates random bits on its own (!)

<u>Thm</u>: this is a secure SNARK assuming H is a random oracle

Are we done?

Simple transparent SNARK from the PCP theorem

- Use Fiat-Shamir heuristic to make non-interactive
- We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)

END OF LECTURE

Next lecture: zkSNARK applications