
Scaling II: Rollup

CS251 Fall 2020
(cs251.stanford.edu)

Benedikt Bünz

Lightning network

Many extensions possible:
Multi currency hubs
Credit hubs

Watchtowers

Lightning requires
nodes to be
periodically online to
check for claim TX

Watchtowers
outsource this task

User gives latest
state to watchtower.

Trusted for availability
not custodian of funds
Risk of bribing

Downsides of Payment/State Channels

• Everyone needs to be online
• Mitigated by watchtowers
• Hubs need to be online

• Capital is locked up
• Funds in one channel can’t be used in different channel
• If network is separated transactions are not possible

• Only Peer to Peer payments
• No multi party contracts channels

• TX to fund/close

Blockchain Layers

consensus layerLayer 1:

compute layer (blockchain computer)Layer 1.5:

applications (DAPPs, smart contracts)Layer 2:

user facing tools (cloud servers)Layer 3:

Bitcoin/Ethereum combine ordering (layer 1) and verification (1.5)
What if we can outsource verification? Makes consensus cheaper

Idea: Aggregate Transactions

• Payment channels move more transactions offchain
• Idea: Combine Transaction, Coordinator verifies

TX Agg:
TX1,TX2,TX3

TX1:
A->B 5ETH

TX2:
C->D 2ETH

TX3:
D->B 1ETH

Coordinator (untrusted)

Smaller than
sum of TX

Blockchain

Recap: The Ethereum blockchain

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Recap: Merkle tree (Merkle 1989)

𝑚1 𝑚! 𝑚" 𝑚# 𝑚$ 𝑚%𝑚& 𝑚'

list of values S

ℎ

H H H H

H H

H

Goal:
• commit to list S
• Later prove 𝑆[𝑖] = 𝑚𝑖

To prove 𝑆 4 = 𝑚# ,

proof π = 𝑚", 𝑦(, 𝑦&

𝑦1 𝑦! 𝑦" 𝑦#

𝑦$ 𝑦&

length of 𝜋: log2 |𝑆|

commitment

Recap State Commitment
Every contract has an associated storage array S[]:

S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]
• Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d

root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:

≤ 2×|S|

|S| = # non-zero cells

Merke (Patricia) Tree Proofs

• Logarithmic in tree height
• Given proof for i -> Possible to update S[i] and

recompute root
• Given proof for i, proof for j and update of S[j] it’s

possible to update proof for S[i]
• Exclusion proofs possible in Patricia Trees

Rollup

Rollup Smart ContractCoordinatorUsers

root
10, d

0

1

0, a0

1
⊥, b

⊥, c

0

1

S[A’s PK] = {3 ETH, nonce}
S[B’s PK] = {2 ETH, nonce}
S[C’s PK] = {10 ETH, nonce}
S[D’s PK] = {1 ETH, nonce}

Rollup State S Stores S

Rollup Deposit

Rollup Smart ContractUsers
TX Deposit

root

Proof that A’s PK ∉ S given
3 ETH transfer

TX Deposit:
root 1. Checks Proof

2. Updates root such that
S[A’s PK]={3 ETH, 0}

Rollup Withdraw

Rollup Smart ContractUsers
TX Withdraw

root

Proof that S[A’s PK]={3 ETH, nonce}
given
Destination Address NewA
Signature by A

TX Withdraw:

root

1. Checks Proof
2. Checks Signature
3. Sends 3 ETH to NewA

Rollup Transfer

Rollup Smart ContractUsers
TX Transfer

root

Proof that given
S[A’s PK]={3 ETH, 0}
S[B’s PK]={2 ETH, 0}
Transfer amount 2 ETH
Signature by A

TX Transfer:
1. Checks Proofs
2. Checks Signature
3. Set

1. S[A’s PK]={1 ETH, 1}
2. S[B’s PK]={4 ETH, -}

root

Space saved but
no computation

Verifiable Computation

Provides Proof/SNARK that given given
public inputs (rootHash, key, value) it knows
private inputs (path) such that function
outputs true

SNARK is short/easy to check

Verifiable Computation

Prover Verifier

F(x,w)-> o
Public

Private

Prove(x,o,w)→ 𝜋 (SNARK) Verify(x,o,𝜋)→ 𝐴𝑐𝑐𝑒𝑝𝑡/𝑅𝑒𝑗𝑒𝑐𝑡

Verifiable Computation

Prover Verifier

F(x,w)-> o
Public

Private

Prove(x,o,w)→ 𝜋 (SNARK) Verify(x,o,𝜋)→ 𝐴𝑐𝑐𝑒𝑝𝑡/𝑅𝑒𝑗𝑒𝑐𝑡

Completeness:
Honest Prover convinces honest Veifier

Verifiable Computation

Prover Verifier

F(x,w)-> o
Public

Private

Prove(x,o,w)→ 𝜋 (SNARK) Verify(x,o,𝜋)→ 𝐴𝑐𝑐𝑒𝑝𝑡/𝑅𝑒𝑗𝑒𝑐𝑡

Knowledge Soundness:
If Verifier accepts then Prover knows w
such that F(x,w)= o

Verifiable Computation

Prover Verifier

F(x,w)-> o
Public

Private

Prove(x,o,w)→ 𝜋 (SNARK) Verify(x,o,𝜋)→ 𝐴𝑐𝑐𝑒𝑝𝑡/𝑅𝑒𝑗𝑒𝑐𝑡

Succinctness:
𝜋 ≪ 𝑤 Time(Verify) ≪ Time(F)

Practice: 𝜋 < 100 𝑏𝑖𝑡𝑠 and
Time(Verify)=10ms
~500k Gas

SNARKRollup

• Merkelize Transactions (omit)
• SNARK proves that given transactions I know

signatures such that state transition S -> S’ valid
• No Data availability problem

SNARKRollup (ZKRollup)

Rollup Smart Contract
CoordinatorUsers

Commitment to S
root

Transactions

1. Applies TXs to S resulting in S’
2. Produces root’= Commit(S’)
3. Produces SNARK 𝜋 that ∃txs such that root’ is

correct update to state S commited in root

root’ 𝜋
Coordinator does:

Stores S

SNARKRollup (ZKRollup)

Rollup Smart Contract
CoordinatorUsers

Commitment to S
root’

Transactions

1. Verify 𝜋 given root and root’
2. If accept then set root <- root’

root’ 𝜋
Smart Contract does:

Smart contract still allows “manual” withdrawals

Stores S’

Data Availability Problem

root’ ⁇𝜋

Update must be valid!
What if Coordinator does not
reveal data? Can’t update Merkle proofs

Publish diff on chain

Rollup Smart Contract
CoordinatorUsers

root’

Transactions
with signatures

root’ 𝜋

Txlist= [{A-> B 3}, {C-> D 2}, {D-> B 1}]
No signatures, Sender, Receiver, Amount only in Calldata (not stored)
<100bytes per tx ~400 gas/tx, SNARK verification ~1500 gas/tx (if full)
In practice: 3600 rollup tx vs 570 normal tx per block

Stores S’
txlist

Cool things to do with Rollup

• SNARKRollup is cheaper than onchain tx
• Can scale to max ~300tx now, 1000tx soon
• Cost dominated by SNARK verification
• Finality ~ Blockchain finality (no instant transfer)
• Only simple transfers of value

Insurance of Rollup -> Instant Finality

• Rollup is not instant
• But if coordinator is trusted then giving them

transaction -> finality
• Idea: Use insurance to achieve finality
• Coordinator signs insurance
• If transaction not included in next (few) blocks

insurance can be used to get insurance premium

Multiple Assets

Txlist= [{A-> B 3 ETH}, {C-> D 2 DAI}, {D-> B 1 BAT}]

1 byte à 256 assets
2 bytesà 65k assets

Very easy to support many assets
Simply add asset field to TX
Hardly increases SNARK complexity

Transaction List/Atomic Swaps

Txlist= [{A-> B 3 ETH and B-> A 2 DAI}, {D-> B 1 BAT}]

Support transaction list that are executed together
Transactions need to be signed by all senders
Can’t execute part of transaction only all together!

Enables atomic swaps: Alice swaps with Bob 3 ETH for 2 DAI

Exchanges
Buy 3 ETH for 5 DAI

Sell 3
ETH for 5 DAI

Alice 3 ETH 5 DAI
Bob 5 DAI 3 ETH
Carol 4 BAT 10 DAI

give get

Order book

Exchanges match
orders
Classical exchanges
also store funds

Rolled up Exchange

Submit orders
Has orderbook
Matches orders
Rolls up
transactions as
atomic swaps

Txs Root, 𝜋 Verifies 𝜋

Exchange trusted for
honest matching

Root of balance tree

Rolled up Exchange

Submit orders
Updates orderbook tree
on chain and proves
correct matching

Txs Root, 𝜋 Verifies 𝜋
Root of balance tree
Root of orderbook tree

Benefit: No trust
Downside: Every order creates rollup TX, No instant matching

SNARKRollup Problems

• Creating SNARKs is very expensive
• Only simple TX possible
• No arbitrary SMART Contracts
• SNARKs are improving all the time (hot research area)

• SNARK verification is expensive on chain
• 500k gas -> 1.5k gas/tx
• Likely to get better soon

Optimistic Rollup

Rollup Smart Contract
CoordinatorUsers

root’

Transactions
with signatures

root’ 𝜋
Stores S’

txlist

What if we remove the SNARK?

Idea: Instead of proving correctness, prove fraud!
New Role: Validator checks correctness, provides fraud proofs

Optimistic Rollup

• Coordinator updates transaction root
• Coordinator adds high bond
• If transaction update is invalid users/validators

provide fraud proof
• Successful fraud proof means bond gets slashed
• Part to validator providing proof part gets burned

• Unsuccessful fraud proof costs validator money
• How to prove fraud?

Fraud Proofs

root’

root

txlist
Commits to state S

1. Stores S agrees on root
2. Applies txlist to S to compute S’
3. Computes root’’ from S’
4. If root’≠root’’ call “Fraud”

Problem: Validator doesn’t know what’s in root’

Coordinator

Validator

Referee Delegation
Idea: Coordinator and Validator find first point of disagreement

Break down computation of S’ into small steps, e.g. cycles on a VM
Validator does the same
Let Si be Coordinators intermediate states and S’i the validator’s

root
txlist Computation

root’
S1 S2 Sn-1

Referee Delegation
Coordinator and Validator run interactive binary search

root
txlist Computation

root’
S1 S2 Sn-1 Sn

Sn/2
Checks whether
Sn/2=S’n/2
If yes disagreement in fist half
Otherwise in second

Referee Delegation

root
txlist S1 S2 Sn/2-1 Sn/2

Repeat protocol for log2(n) steps
End with agreement on Si and
disagreement on Si+1 and S’i+1

Smart Contract checks transition between Si
and Si+1 and declares winner

Problem: Checks take a long time

• log2(n) messages (1 hash per message)
• 1 Verification step on smart contract
• If either party timeouts declares winner
• Looser gets slashed, Winner rewarded
• Problem: log2(n)*timeout
• No incentive to cheat
• But: Long wait till finalization!

Pipelined Assertions

Bond i
Bond
i+1

Rollup state i Rollup state i+1

Bond
i+2

Rollup state i+2

Coordinators can build on
states before timeouts

If prior state invalid, all
subsequent bonds are slashed

Pipelined Assertions

Bond i
Bond
i+1

Rollup state i Rollup state i+1

Bond
i+2

Rollup state i+2
Coordinators can claim prior state
not valid and continue given this.Bond

i+1
Rollup state i+1’

State i valid

State i not valid

If no successful fraud proof then
reward gets slashed

Multiple Rollup Coordinators

• Rollup coordinator (in either scheme) is not trusted
for security

• It can reasonably be a single coordinator
• But it is trusted for liveness
• Censorship resistance
• Progress of rollup state

• Multiple Coordinators?

Multiple Rollup Coordinators

• Rotating coordinators
• Random coordinator (using Beacon)
• Race to submit new rollup state (usually same party

wins)
• One solution is using classical consensus between

fixed set of coordinators
• At least 2/3rd of coordinators sign roll up
• If trusted instant finality

Multi Coordinator Insurance

• Get insurance signature from 2/3rd of coordinators
• If next block does not include transaction post

signature
• Slash reward from intersection of insurer and rollup

block signers
• At least 1/3rd of the coordinators

Next lecture:
Privacy 1: Tracing transactions and Mixers

END OF LECTURE

