Decentralized
Exchange & Lending

Ali Yahya & Eddy Lazzarin

al6z.

The views expressed here are those of the individual AH Capital Management, L.L.C. (*a16z”) personnel quoted and are not the views of
al6z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from portfolio companies
of funds managed by al6z. While taken from sources believed to be reliable, a16z has not independently verified such information and
makes no representations about the enduring accuracy of the information or its appropriateness for a given situation.

This content is provided for informational purposes only, and should not be relied upon as legal, business, investment, or tax advice. You
should consult your own advisers as to those matters. References to any securities, digital assets, tokens, and/or cryptocurrencies are for
illustrative purposes only and do not constitute a recommendation to invest in any such instrument nor do such references constitute an
offer to provide investment advisory services. Furthermore, this content is not directed at nor intended for use by any investors or
prospective investors, and may not under any circumstances be relied upon when making a decision to invest in any fund managed by
al16z. (An offering to invest in an al16z fund will be made only by the private placement memorandum, subscription agreement, and other
relevant documentation of any such fund and should be read in their entirety.) Any investments or portfolio companies mentioned, referred
to, or described are not representative of all investments in vehicles managed by a16z, and there can be no assurance that the investments
will be profitable or that other investments made in the future will have similar characteristics or results. A list of investments made by
funds managed by Andreessen Horowitz (excluding investments for which the issuer has not provided permission for a16z to disclose
publicly as well as unannounced investments in publicly traded digital assets) is available at

Charts and graphs provided within are for informational purposes solely and should not be relied upon when making any investment
decision. Past performance is not indicative of future results. The content speaks only as of the date indicated. Any projections, estimates,
forecasts, targets, prospects, and/or opinions expressed in these materials are subject to change without notice and may differ or be
contrary to opinions expressed by others. Please see for additional important information.

https://a16z.com/investments/
https://a16z.com/disclosures
https://a16z.com/investments/
https://a16z.com/disclosures

Decentralized
Exchanges (DEXs)

Ali Yahya

©2020 Andreessen Horowitz. All rights reserved worldwide.

DEXs: Why do they matter?

* Enable Protocol Composability

<rant>
</rant>

« Non-Custodial
- Have Global Reach

al6z

11,354.04 USD Lasttrade price

-0.33% 24h price

6,550 BTC 24hvolume

Order Book Price Charts Trade History
Market Size Price (USD) My Size 5m Candle Overlay 0: 11,360.65 H: 11,363.00 L: 11,353.28 C: 11,354.04 V: 14 | 2 Trade Size Price (USD) Time
0.61 11368.39 . 0.0012 11354.04 A 12:28:39
3.68 11367.07 - Al 0.0216 11354.04 2 12:28:39
0.3 11366.94 - i[] U' 0.0086 11354.03 N 12:28:37
e L : 0.0127 11354.08 A 12:28:36
;‘;:45 iizzi'gg i ll 0.095 11354.08 A 12:28:32
0.2500 11363.78 ' . 000tr e oan o
0.9613 11363.00 . | o o173 et 042 B
0.8696 11362.30 . - . 12:28:23
0.22 11362.29 - 0.082 11354.04 7 12:28:27
1.2241 11361.83 . ' ﬁ'ﬂl ™ $11,450 R A
3.5 11361.43 - Mo é‘i 6ﬁ$ N 0.019 11356.84 2 -hzoJJ
0.4565 11361.42 . l]i ” °?T '{-'? |. ; 0.0031 11357.15 A 12:28:19
0.8693 11360.75 - ”Iill 4+ N I " u-l 0 " “[].g_,m- 0.0021 11357.15 A 12:28:19
11.9372 11360.70 - I ”'[5 : luh_n I l]“ 0 .,_9 Tl i l ﬁT l[:]l” 0.0451 11356.70 N 12:28:18
0.3422 11360.39 . I - o ﬂ ! j.or ?l “ | [J - U ' [:] l ‘[{]I $11,400 0.0259 11357.39 A 12:28:16
0.2805 11360.38 : hf? qu : ¥ ” lD 0' [j l lﬂ 0.0718 11357.22 2 12:28:16
0.2641 11359.53 . ’ [Il] i TU' 0.0042 11355.06 A 12:28:14
0.1 11359.21 : [] 0 0.0173 11354.57 A 12:28:13
8.8 ik - ! * E] 0"y *. n 1511, 354. 04 0.0031 11354.57 A 12:28:13
0.8696 11359.06 - ‘h t TT+T| ﬂTlmT I I] 1 w R 0.001 11354.40 A 12:28:11
2‘3719 ﬁzzggi B y I 0.0168 11354.97 A 12:28:11
. . B
Yo i =
o o - $11,300 0.1401 11353.76 ™ ..2:28:;1‘;
3.54 11356.96 - - . 12:28:08
e SR | 22:00 2:00 4:00 6:00 8:00 10:00 12:00 01277 05N e
0.2642 11356.68 . 0.0984 11354.06 N 12:28:08
. 0.0063 11354.69 2 12:28:08
::2 iiizggg - E‘ 11,354.035 B 0.0021 11353.28 A 12:28:07
2. 11356.28 . Mid Market Price 0.0112 11353.28 A 12:28:06
. -300 300 - 0.0145 11353.28 A 12:28:06
: | - ,_.r"'_'___'—_ 0.0812 11353.60 12:28:05
0.174 11354.62 - 0.2201 11354.00 ™ 12:28:05
0.2 11354.38 - e L 0.0876 11354.72 N 12:28:05
1.32 11354.33 - 0.0015 11354.75 N 12:28:05
. L " 100 100- 0.0222 11357.92 2 12:28:04
SENRTE el 0.0863 11357.93 A 12:28:03
USD Spread 0.01 0.0084 11357.78 A 12:28:01
0.0014 11354.03 = $1114000 $11160.00 $11180.00 $11,200.00 $11,22000 $1124000 $11.26000 $11.280.00 $11.30000 $11.32000 $1134000 $1136000 $11.380.00 $1140000 $11.42000 $1144000 $1146000 $11.48000 $1150000 $1152000 $11,54000 $11,560.00 ’ :.;845 322;::: ‘f.ff.(_).fm
0.0984 11353.56 . : . 12:28:01
0.05 11353.55 - Open Orders Fills 0.05 11357.36 N ‘..f.'i%'c:)'iljl
0.2 11351.88 - 0.0166 11357.37 N 12:28:01
1.32 11350.10 . 0.0984 11357.80 N 12:28:01
0.0337 11350.06 - ‘ it Side Size (BTC) Price (USD) Fee (USD) Time 0.0114 11358.36 A 12:28:01
0.1748 11350.05 - No Tills to show 0.4773 11356.66 N 12:27:59
0.5 11349.88 - 0.0189 11356.85 N 12:27:59
0.1 11349.82 . _ 0.1 11357.03 N 12:27:59
0.02 11348.88 - 0.04 11358.02 N 12:27:59
0.4804 11348.87 - or 0.0984 11358.03 N 12:27:59
0.1997 11348.86 - 0.05 11358.28 12:27:59
0.4369 11348. 66 : Log.in 0.0185 11359.08 ™ 12:27:59
e e i 0.0786 11359.11 % 12:27:59
:':ig ii::g'z; i 0.0432 11359.12 A 12:27:56
1.4666 11347.97 - :'::‘:6 ii;g:;;: . j“;
- - | JF . JIL
Aggregation 0.01 0.0853 11359.32 A 12:27:52

Traditional Exchanges: Order Book Model

o

Order Book Based DEXs

Naive Approach:

* Implement an order book and matching engine
on-chain.

Mostly unworkable with today’s blockchains.

al6z

Order Book Based DEXs
Hybrid Approach — The Relayer Model

» Matching is done off-chain by a centralized “Relayer”

» The relayer crafts a transaction off-chain that
resembles an atomic-swap, then submits it to the

blockchain

« Trade settlement is done on-chain

Many examples of DEXs that initially worked this way:

» ox protocol

« EtherDelta
» Kyber

» Airswap

al6z

https://0x.org/
https://etherdelta.com/
https://www.kyberswap.com/limit_order/knc-weth
https://www.airswap.io/
https://0x.org/
https://etherdelta.com/
https://www.kyberswap.com/limit_order/knc-weth
https://www.airswap.io/

Order Book Based DEXs

Limitations of the Relayer Model

* Peer-to-peer —hard to bootstrap liquidity
+ Market making is expensive
* Depends on the presence of a centralized party

» Less programmable/composable

Great resource:
Front-Running, Griefing, and the Perils of Virtual Settlement,

by Will Warren

al6z

https://blog.0xproject.com/front-running-griefing-and-the-perils-of-virtual-settlement-part-1-8554ab283e97
https://blog.0xproject.com/front-running-griefing-and-the-perils-of-virtual-settlement-part-1-8554ab283e97

Is there a simpler way to build a DEX?

Two most important problems

» Complexity
» Bootstrapping liquidity

Desired Characteristics

» Simple — buildable as a smart contract

» Automated liquidity — no dependence on active
market-makers

» No single points of control — no dependence on
centralized parties

A Bit of History: Automated Market Makers (A MMs)

* Pricing shares in prediction markets —
Hanson’s Market Scoring Rules

» Also used to price online ads
* Idea first explored in crypto in 2016 by:

» Vitalik Buterin — reddit post

* Then generalized by Alan Lu and Martin Koppelman:

* Blogpost: Building a Decentralized Exchange in Ethereum

al6z

http://mason.gmu.edu/~rhanson/mktscore.pdf
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e
http://mason.gmu.edu/~rhanson/mktscore.pdf
https://www.reddit.com/r/ethereum/comments/55m04x/lets_run_onchain_decentralized_exchanges_the_way/
https://blog.gnosis.pm/building-a-decentralized-exchange-in-ethereum-eea4e7452d6e

High Level Aspiration

Two-Sided Marketplace

Liquidity
Providers

Bet
&

ped

ETH

ETH

ETH

ETH

=2

ETH

e

ETH: 10

=

Traders

al6z

34-

32-

30-

28-

26-

24

22-

20-

18-

16-

14-

12-

10-

4.0

AY

|
»4

6

8

10

12

14

16 18 20 22 24 26 28 30 32 34

ETH

Trader
Liquidity
Providers
4.0 ETH
Smart
Contract
OEIH * = 120

al6z

34

32-

30-

28-

26-

24-

22-

20-

18-

16-

14-

12-

10+

Invarignt= k

0

2

4

6

8

10 12 14 16 18 20 22 24 26 28 30 32 34

ETH

Simple Pricing Rule

(x—Ax)(y+ Ay) =k

al6z

34-

32-

30-

28-

26-

24-

22-

20-

18-

16-

14-

12-

10+

|
»

AY

0

2

4

6

8

10 12 14 16 18 20 22 24 26 28 30 32 34

ETH

Simple Pricing Rule

(x — Ax)(y + pAy) =k

where (1 — ¢) is the percentage fee
that is paid to liquidity providers,
and where Ax > 0 and Ay > 0.

al6z

34-

32-

30-

28-

26-

24-

22-

20-

18-

16-

14-

12-

10+

|
»

AY Simple Pricing Rule
(x — Ax)(y + pAy) = k
XY
Ay = —
PAYy A)
- xy — y(x — Ax)
B X — Ax
_ X~ yAx
x — Ax
| A
Ay =—. et
O x— Ax

o M & 0 ®

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

ETH al6z

34

32-

30-

28-

26-

24

22-

20-

18-

16-

14-

12-

10+

|
»

AY

0

2

4

6

8

10 12 14 16 18 20 22 24 26 28 30 32 34

ETH

Simple Pricing Rule
1 Ax

Ay — — y—
O x— Ax

This rule specifies the price of buying
Ax in terms of y.

A similar exercise (swapping xs and ys)
produces a rule that specifies the price

of selling Ax in terms of y:

Ay

YPAX

_x+qux

al6z

34

32-

30-

28-

26-

24-

22-

20-

18-

16-

14-

12-

10+

o M & 0 ®

|
N&

AY

8.0

4

6

8 10 12 14 16 18 20 22 24 26 28 30 32 34

ETH

Simple Pricing Rule

Example where the contract contains
4.0 ETH and and charges
a fee for liquidity providers of 30 bps.
A
Ay = YPAX
X+ PpAx
- 30%0.997* Ax
4+ 0.997 * Ax

Ay

Say a trader wants to se/ 8.0 ETH to

the contract. How much should
she get in return?
30*0.997 * 8
Ay = = 19.98
4 4+ 0.997 * 8

(The fee to liquidity providers is 0.02.)

al6z

In the Wild: Uniswap

Selling x for y

an input amount of an asset and pair reserves, returns the maximum output amount of the other asset

func (uint amountIn, uint reservelIn, uint reserveOut) internal p turns (uint amountOut) {
A equire(amountIn > @, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT');

:);qzs ;x: (reserveln > 0 reserveQut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');

Ay e uint amountInWithFee = amountIn.mul(997);
x _I_ ¢Ax uint numerator = amountInWithFee.mul(reserveOut);

uint denominator = reserveIn.mul(1000).add(amountInWithFee);

amountQOut numerator denominator;

Buying x for y

// given an output amount of an asset and pair reserves, returns a required input amount of the other asset

funct (uint amountOut, uint reserveIn, uint reserveQut) internal p turns (uint amountIn) {
1 ﬁx equire(amountOut > @, 'UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT');
;)/ (reserveln % reserveQut @, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY');

uint numerator = reserveIn.mul(amountOut).mul(1000);

— — [
¢ x _ Ax uint denominator = reserveQOut.sub(amountOut).mul(997);

amountIn (numerator denominator).add(1);

Ay

https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/libraries/UniswapV2Library.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/libraries/UniswapV2Library.sol

Q Swap Pool UNI Vote Charts” . 1.39 ETH [oxzagq__JEas .j @ eee

From Balance: 1.39092
0.0 mMax @ ETH v

v

G

Enter an amount

Quick Demo: https://app.uniswap.org/

https://app.uniswap.org/
https://app.uniswap.org/

How to Think about an AMM’s Price

Price is the ratio between assets (e.g.

) paid and assets (e.g. ETH) received.

It I pay for 4 ETH, then my price per ETH is 25 DAL

In our notation, this is given by Ay/Ax.

Selling x for y
A
Ay = yPAX
X+ QAx

Buying x for y

1 yAx
_¢ x— Ax

Ay

Divide both sides by Ax to get Ay/Ax.

Ay __
Ax x+ ¢pAx

Ay 1 y
Ax_¢ X — Ax

al6z

34

32-

30-

28-

26-

24-

22-

20-

18-

16-

14-

12-

10+

|
NA

AY

Marginal Price & Slippage
Selling x for y Buying x for y
Ay __y9 Ay _1 Y

Ax x+ ¢pAx AX_Cb x — Ax

Observation #1
Pricing depends on the size of the trade, Ax.

4

6

8

10 12 14 16 18 20 22 24 26 28 30 32 34

ETH

For example with 20.0 ETH * = 120,
Buying 10 ETH (i.e. Ax = 10) costs 6.02 DAT*

Or per ETH
Whereas buying 5 ETH costs 2.006 DAI

Or per ETH

al6z

34

32-

30-

28-

26-

24-

22-

20-

18-

16-

14-

12-

10-

°© N » O ®

|
»

AY

5.0

Marginal Price & Slippage
Selling x for y Buying x for y
Ay __ o ay_1
Ax x4+ pAx Ax ¢ x—Ax

6

8 10 12 14 16 18 20 22 24 26 28 30 32 34

ETH

In the limit, as Ax approaches O:

A Ay 1
lim — = 2 lim — = —2
Ax—0 Ax X Ax—0 Ax ¢ X

And, if we set the fee to zero (¢) = 1), then:

M = X where M, denotes

Py marginal price

M, is equal to the slope of the tangent line.

al6z

200
190
180
170

160
150-
140-
130+
120
110-
100
90-
80-
70-
60-
50-
40-
30-
20-
10-

\ 240

N

XY

24.0

|
»

- 120

- 7200

Marginal Price & Slippage
Selling x for y Buying x for y
Ay v Ay Ty
Ax x4+ pAx Ax ¢ x—Ax

Observation #2
Pricing depends on the size of x and y (i.e. k)

0

20

40

60

80

100
ETH

120

140

160

180

200

It’s straightforward to see that, as k
increases, the eftective price of the AMM is
less sensitive to Ax.

al6z

Incentives for
Liquidity Providers

Alice
Lizluidlity
Provider
10.0 ETH
10,0 ETH * = 120

Alice deposits 10 ETH and 12 DAI of liquidity;
which implies:

M,=12 where M, denotes marginal price

Alice waits for a month, during which traders
drive $700 worth of volume through the AMM.

At the end of the month, Alice withdraws her
ETH and DAI. By that time, the price of ETH

has gone up 4x. The marginal price is now:

M), =48

What 1s Alice’s return?

Assume: (1 — ¢) = 0.003

al6z

Alice First, what does Alice earn from liquidity

% provider fees?

Liquidity V(1 —¢) =700*0.003 = $2.1

Provider

5.0 ETH where V denotes trading volume

Second, how many ETH and DAI does Alice get
back?

x'=5ETH

X ETH * = 120

2 14 16 18 20 22 24 26 28 30 32 34 16
ETH d107Z

Alice

i

Liquidity
Provider
5.0 ETH

Impermanent Divergence Loss

X' ETH *

= 120

So, how did Alice do?

Measured in DAI, Alice now has:

4.8 ETH
R=5ETH* + 24 DAI + 2.1 DAI
DAI

R = 50.1 DAI

4.8 ETH
R, =12 ETH* + 10 DAI
DAI

R, = 67.6 DAI

This is called impermanent loss

divergence

Not bad, but how would she have done if she had
just held onto her 12 ETH and ?

al6z

Alice

i

Liquidity
Provider
5.0 ETH

Impermanent Divergence Loss

X ETH *

= 120

What if volume had been higher?
Say, volume had been $7,000 instead of $700:
V(1 — ¢) =7000 *0.003 = $21

Therefore,

4.8 ETH
R=5ETH* + 24 DAI + 21 DAI
DAI

This time, Alice’s returns are greater than her
baseline return Ry of 67.6 DAI. Her profit:

R
RB

al6z

Alice

i

Liquidity
Provider
x" ETH

Impermanent Divergence Loss

X ETH *

= 120

More generally

Alice’s return R is given by:

R=xM,+y +V(l - ¢)

Her baseline return Ry is given by:

Rp = xM, +y

Her profit, in percentage terms is given by:

PL:——lz

R
Ry

XM, +y' + V(1 = ¢) 1

xM, +y

Let’s ignore the volume term for now, and simplify:

Pr

xM,+y

xM, +y

— 1

assuming V = 0 for now

al6z

Recall
xy=k
Thus,
k
X =,]—
M,
Also,
, k
X = —
M,
Finally, let:
M1; — rMp

Pr

PL=

Py

Py

Impermanent Divergence Loss

xM,+y

xM, +y

[k
) rMp + /krMp

/ k /
ﬁpl’Mp + kMp

24/ r
r+ 1

2\/r

1

Step 2: Reintroduce the volume term:

Vl-¢)

r+ 1

C

Step 3: Plot this equation

Simplifying

— 1 =

1

2\/7»%

Step 1: let’s express everything in terms of M, and k.

1

al6z

Impermanent Divergence L.oss

P/L [%]

e $2MM trading vol
-3 = $5MM trading vol | -
- $8MM trading vol
_4 L 1 1 1 1 L 1 1 1
-50 40 -30 -20 -10 0 10 20 30 40 50

Price Change [%)]

Optimal P/L occurs when the final price is equal to that at liquidity provisioning

Image credit: https://www.tokendaily.co/blog/pnl-analysis-of-uniswap-market-making

2

b r
= +
L r+ 1

ge [%]

Price Chan

P/L percentage of liquidity provision on Uniswap for different scenarios of exchange trading volume and ETH

V(l-¢)

C

50

40

30

20

-
o

o

-
o

1

5 6
Trading Volume [$ Million]

price change

al6z

Quick Demo: https://zumzoom.github.io/analytics/uniswap/roi/
zoor [(D 1 D O D from [JuI13, 2020 | To [0t 13, 2020

1950 ETH 2%

1800 ETH e 1.6%
1650 ETH / 1.2%
1500 ETH // 0.8%
1350 ETH ﬁ_’/ I\/\ /\\ /—/ 0.4%

v TR %
NN S NI,

o I
e \WN\/ N A i N v

600 ETH -1.6%
450 ETH \ /\/
300 ETH v »

HHHHH

https://zumzoom.github.io/analytics/uniswap/roi/
https://zumzoom.github.io/analytics/uniswap/roi/

Uniswap’s Metrics 1o Date

ETH Price: $380.63 Transactions (24H): 161,342 Pairs: 14,974 Fees (24H): $612,220

Liquidity
$2.87b

Volume (24hr)
$204,073,480

Quick Demo: https://uniswap.info/

$1b

$800m

$600m

$400,000,000

- $197,595,812

https://uniswap.info/
https://uniswap.info/

Example: Uniswap

User Network of DeFi Protocols
Dec 1, 2019 - Mar 1, 2020 Alethio

® Users Shared by 2 Protocols

Moloch DAO

Uniswap

InstaDapp
Lendf.me

Maker SCD

Maker MCD

Compound v2

Optional: Generalizations of xy = k

» Curve: https://www.curve.f1/

» Balancer: https://balancer.finance/

al6z

https://www.curve.fi/
https://balancer.finance/
https://www.curve.fi/
https://balancer.finance/

DEXs: Concluding Thoughts

Desired Characteristics

» Simple — buildable as a smart contract

» Automated liquidity — no dependence on active
market-makers

» No single points of control

Decentralized
Lending

Eddy Lazzarin

©2020 Andreessen Horowitz. All rights reserved worldwide.

Overcollateralized
V'S
Undercollateralized

al6z

Centralized Lending

Example: Overcollateralized Margin Trading

- |rust the exchange not to get hacked, steal assets, or
incorrectly calculate palances

- Borrowed assets only exist on the exchange: they
can't be used on the blockchain (no protocol

composability)

- Interest payments go to the exchange

al6z

©2020 Andreessen Horowitz. All rights reserved worldwide.

Decentralized Lending
High Level Motivation

- Minimize trust required in the counter-party

- Borrowed assets can be used freely on the
blockchain (enable protocol composability)

- Interest payments go from asset borrowers to asset
suppliers, neither set being permissioned

al6z

Order Book

An Early Approach

Order Book Protocol

LENDERS

©2020 Andreessen Horowitz. All rights reserved worldwide.

Supply Assets
<

Receive Interest

Supply Assets .
R -V mrv—

Receijve Interest

ly Assets
2=

Receilve Interest

BORROWERS
Supply Collateral
PRICE Borrow Assets >
MATCH

Supply Collateral

PRICE Borrow Assets m
MATCH
Supply Collateral Q
—
PRICE Borrow Assets Y
MATCH %

al6z

Decentralized Lending
Order Book Defects

- Fractured liquidity
- More asset pairs thins the supply across those pairs
- Computationally expensive
- Matching many borrowers or many lenders requires many transactions per person

- Concentrated risk

- Lenders are exposed strictly to the risk that their matched counter-parties will default, increasing the variance of
iInterest returns

- Fixed rates only

- As the supply and demand to borrow a given asset changes, matched interest rates don't change, adding
complexity

- Difficult withdrawal

- A supplier must wait for their counter-parties to repay their debts (or force liquidation) to withdraw their share

©2020 Andreessen Horowitz. All rights reserved worldwide. 316Z

Case Study: Compound

Liquidity Pool Approach

LENDERS BORROWERS

“IIIIlllllllllllllllll.l..

s
0‘ .

50% Utilized 20% Utilized

70% Utilized 90% Ultilized

Receive Interest

SUEE|¥ Assets '

“IIIIIIIIIIIIIIIIIIIIIIII..
...IIIIIIIIIIIIIIIIIIIIII-“

2
L 4

4
*

..lIIIIIIIIIIIIIIIIIIIIII“

©2020 Andreessen Horowitz. All rights reserved worldwide. 2116Z

Decentralized Lending
Liquidity Pool Advantages

- Shared liquidity
- Adding another asset no longer fractures liquidity
- Computationally simpler

- Suppliers and borrowers can add or remove large volumes with single transactions, independent of the
distribution of counter-parties

- Distributed risk
- Risk is shared by the entire pool*
- Variable rate™

- An order book matches supply and demand implicitly as borrowers and lenders make adjustments; the shared
pool adjusts rates automatically based on existing supply and utilization

- Graceful withdrawal

- As long as extra assets remain in the pool, a supplier can withdraw their share

©2020 Andreessen Horowitz. All rights reserved worldwide. 316Z

Case Study: Compound

Interest Rate Curve for BAT
I Interest Rate Model I

e— Utilization Rate

Current Borrow Interest Rate

18.53%

/’/ Supply Interest Rate
- —

34%

Source: https://compound.finance/markets/BAT
©2020 Andreessen Horowitz. All rights reserved worldwide. 3,162

https://compound.finance/markets/BAT
https://compound.finance/markets/BAT

Case Study: Compound

Step-by-step Procedure for Borrowing

- Alice supplies 2 ETH to ETH pool

- Her total ETH-equivalent balance times the

collateralFactor represents
borrow: sumCollateral

- Alice requests to borrow 1 ETH

her total capacity to

worth of BAT

- Since this is less than her sumCollateral, the

borrow is valid

- Now, every block, Alice accum

Jlates interest on what

she's borrowed until it is repaic

Optional Image Credit Line: URL Goes Here

©2020 Andreessen Horowitz. All rights reserved worldwide.

Calculations

- supplied asset
2ETH

- collateralFactor
0.6
- sumCollateral
. 1.2
borrowCurrent
- 1.0

al6z

Case Study: Compound

Utilization Ratio

U, = Borrows,/ (Casha + Barmwsa)

Utilization Ratio

al6z

Case Study: Compound

Interest Rate Curve

Borrowing Interest Rate, = Base Rate + U, * Slope Multiplier

©2020 Andreessen Horow itz. All r ights reserved worldw ide. a16Z

O OO

function getUtilizationRate(uint cash, uint borrows) pure internal returns (IRError, Exp memory) {
1f (borrows == 0) {

return (IRError.NO_ERROR, Exp({mantissa: 0}));
)

(MathError err@, uint cashPlusBorrows) =faddUInt(cash, borrows);

if (err@ !'= MathError.NO_ERROR) {
return (IRError.FAILED_TO_ADD_CASH_PLUS_BORROWS, Exp({mantissa: 0}));

}

(MathError err1, Exp memory utilizationRate) =jgetExp(borrows, cashPlusBorrows);

if (err1 != MathError.NO_ERROR) {
return (IRError.FAILED_TO_GET_EXP, Exp({mantissa: 0}));

return (IRError.NO_ERROR, utilizationRate);

/%
* @dev Calculates the utilization and borrow rates for use by getBorrowRate function
x/
function getUtilizationAndAnnualBorrowRate(uint cash, uint borrows) view internal returns (IRError, Exp memory, Exp memory) {

(IRError err@, Exp memory utilizationRate) = getUtilizationRate(cash, borrows);
if (err@ !'= IRError.NO_ERROR) {
return (err@, Exp({mantissa: 0}), Exp({mantissa: 0}));

// Borrow Rate is 5% + UtilizationRate * 45% (baseRate + UtilizationRate * multiplier);
// 45% of utilizationRate, is ‘rate x 45 / 100°
(MathError err1, Exp memory utilizationRateMuled) = mulScalar(utilizationRate, multiplier);
// "mulScalar’ only overflows when the product is >= 27256.
// utilizationRate is a real number on the interval [0,1], which means that
// utilizationRate.mantissa is in the interval [0el18,1e18], which means that 45 times
// that is in the interval [0e18,45e18]. That interval has no intersection with 27256, and therefore
// this can never overflow for the standard rates.
if (err1l != MathError.NO_ERROR) {
return (IRError.FAILED_TO_MUL_UTILIZATION_RATE, Exp({mantissa: 0}), Exp({mantissa: 0}));

(MathError err2, Exp memory utilizationRateScaled) = divScalar(utilizationRateMuled, mantissaOne);
// 100 is a constant, and therefore cannot be zero, which is the only error case of divScalar.
assert(err2 == MathError.NO_ERROR);

// Add the 5% for (5% + 45% * Ua)
(MathError err3, Exp memory annualBorrowRate) = addExp(utilizationRateScaled, Exp({mantissa: baseRate}));
// “addExp’ only fails when the addition of mantissas overflow.
// As per above, utilizationRateMuled is capped at 45e18,
// and utilizationRateScaled is capped at 4.5e17. mantissaFivePercent = 0.5e17, and thus the addition
// is capped at 5el17, which is less than 27256. This only applies to the standard rates
if (err3 !'= MathError.NO_ERROR) {
return (IRError.FAILED_TO_ADD_BASE_RATE, Exp({mantissa: 03}), Exp({mantissa: 0}));

return (IRError.NO_ERROR, utilizationRate, annualBorrowRate);

O OO

function getUtilizationAndAnnualBorrowRate(uint cash, uint borrows) view internal returns (IRError, Exp memory, Exp memory) {

(IRError err@, Exp memory utilizationRate) = getUtilizationRate(cash, borrows);

(MathError errl1, Exp memory utilizationRateMuled) = mulScalar(utilizationRate, multiplier);

(MathError err2, Exp memory utilizationRateScaled) = divScalar(utilizationRateMuled, mantissaOne);

(MathError err3, Exp memory annualBorrowRate) = addExp(utilizationRateScaled, Exp({mantissa: baseRate}));

return (IRError.NO_ERROR, utilizationRate, annualBorrowRate);

O OO

function getUtilizationAndAnnualBorrowRate(uint cash, uint borrows) view internal returns (IRError, Exp memory, Exp memory) {
(IRError err@, Exp memory utilizationRate) =jgetUtilizationRate(cash, borrows);

(MathError err1, Exp memory utilizationRateMuled) =fmulScalar(utilizationRate, multiplier);

(MathError err2, Exp memory utilizationRateScaled) = divScalar(utilizationRateMuled, mantissaOne);

(MathError err3, Exp memory annualBorrowRate) =jaddExp(utilizationRateScaled, Exp({mantissa: baseRate}));

return (IRError.NO_ERROR, utilizationRate, annualBorrowRate);

O OO

function getBorrowRate(uint cash, uint borrows, uint _reserves) public view returns (uint, uint) {

_reserves,;

(IRError err@, Exp memory _utilizationRate, Exp memory annualBorrowRate) = getUtilizationAndAnnualBorrowRate(cash, borrows);
if (err® !'= IRError.NO_ERROR) {

return (uint(err@), 0);

(MathError errl1, Exp memory borrowRate)F divScalar(annualBorrowRate, blocksPerYear);

assert(err1l == MathError.NO_ERROR);

_utilizationRate;

return (uint(IRError.NO_ERROR), borrowRate.mantissa);

Case Study: Compound

Historical BAT Interest Rate

Compound Interest Rates (APY)

- - BAT Supply Rate
30% . . | - P UL BAT Borrow Rate
25%

: 55
20% : T

v : .

-~ " — .

© - . 5

M ISD/D : : : -

10% -
5% e et e p2*%qeavstaus . UL R

0%

Jul 2019 Oct 2019 Jan 2020 Apr 2020

Jul 2020 Oct 2020

Date

©2020 Andreessen Horowitz. All rights reserved worldwide.

al6z

Case Study: Compound

Historical DAI Interest Rate
Compound Interest Rates (APY)

- DAI Supply Rate
12% ! ~ ' - e DAI Borrow Rate

10%

8% . . *ent

Rate

6%

Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020

Date

©2020 Andreessen Horowitz. All rights reserved worldwide. 316Z

Case Study: Compound

Historical Borrow

30 THE BLOCK | Research Outstanding Debt
== Aave == Compound

$1,250,000,000

$1,000,000,000

$750,000,000
2
o

$500,000,000

$250,000,000

4———_—\
S0 E— -
Mar 2020 May 2020 Jul 2020 Sep 2020

al6z

©2020 Andreessen Horowitz. All rights reserved worldwide.

Case Study: Compound

Mechanisms Not Discussed

- clokens

- [he reserve

- (Governance

- Incentivized liquidity ("yield farming")

- Liguidation process

- Efforts to support undercollateralized lending

©2020 Andreessen Horow itz. All rights reserved worldw ide. 316Z

b

&
i
. !
t
M2
X

-(F‘

I ¥

"l

g

-

Appendix

e Uniswap Whitepaper

- https://hackmd.io/@HaydenAdams/HJ9OjLsfTz
 An Analysis of Uniswap Markets

- https://arxiv.org/pdf/1911.03380.pdf
» Understanding Uniswap Returns

- https://medium.com/@pintail/understanding-uniswap-returns-cc593t3499e

Appendix

 Compound Whitepaper

- https://compound.finance/documents/Compound.Whitepaper.pdf

 Compound Docs (can be used to lead you to Etherscan)

- https://compound.finance/docs

 Compound Protocol Github

- https://github.com/compound-finance/compound-protocol

 Compound Protocol Whitepaper Technicals

- https://github.com/compound-finance/compound-protocol/blob/master/docs/CompoundProtocol. pdf

https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/docs
https://github.com/compound-finance/compound-protocol
https://github.com/compound-finance/compound-protocol/blob/master/docs/CompoundProtocol.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/docs
https://github.com/compound-finance/compound-protocol
https://github.com/compound-finance/compound-protocol/blob/master/docs/CompoundProtocol.pdf

