
1

CS 251: Scaling II
Sharding & Load Balancing

Instructor: Ben Fisch

Recap: Blockchain scalability
• Two types of scaling problems

v Transaction throughput (txs/sec)
v Blockchain size (state storage required to validate txs)

• Last lecture:
v Off-chain transactions (“channels”)

• This lecture:
v Sharding (distributing the verification work)
v State commitments (load balancing storage)

2

Recap: Payment channels

• Bitcoin processes 3 txs / second. This would never be
able to replace Visa for payments!

• Off-chain transactions (via channels) could make this
a realistic possibility…

• In channels, transactions only hit the blockchain
twice:

- Once to open the channel and deposit collateral
- Once to close the channel and net settle

3

Lightning network

• Lightning is an overlay network of channels
• Payment from Alice to Bob can be routed over any

multi-hop path of channels with sufficient collateral

4

Alice

Bob5

5 4 3 5

5

2 3
4

4
5

Send 3 over red path
Send 2 over blue path

State channels

• Much simpler to build a payment channel with
stateful smart contract (e.g. in Ethereum)

• But stateful contracts require more blockchain
storage and more complex verification 5

Init Pending Closed
CLOSE

CLOSE*

+1 day
(A:5, B:5), 1

(A:3, B:8), 1

Pays 3 to A
and 8 to B

Channels lower user costs

• Micropayments (tx fees too high)
• High gas costs for Ethereum smart contracts

6

Today’s topic: load balancing

• Sharding (load balancing transaction verification)
• State-commitments and authenticated data-

structures (load balancing state storage)

7

Sharding Strawman #1
• Split blockchain into N independent blockchains, call

each a “blockchain shard”
- Shards have independent states (e.g. different types of

coins, independent smart contracts)
- Shards have different sets of validators
- Shards run consensus independently

• Problems:
- Dividing validator set isn’t great for consensus security
- Only handles state that can be truly partitioned 8

Sharding Strawman #2

• Attacker of Strawman #1 needs to compromise 1/N fewer
validators to cause forks on one of the blockchains

• Idea: keep a root blockchain with all consensus validators that
resolves forks, but doesn’t verify transaction validity

9

Root ledger

Txs contains “heads”
of the N shard chains

Sharding Strawman #2

• Problem: adversary compromises validators on one shard,
approves invalid transactions. Can we leverage root ledger to
resolve?

• Solution: state commitments and fraud proofs

10

Root ledger

Txs contains “heads”
of the N shard chains

State commitment
• Bitcoin state is the UTXO set (the set of currently

spendable coins) --- i.e. valid records of ownership
• Verifying a transaction consists of:

- Checking inputs are valid, i.e. in the current UTXO set
- Checking local information (running script on

transaction data), e.g. sum inputs > sum outputs

• Idea: Blockchain stores Merkle tree root of UTXO set
- Root commits to the state, updatable
- Validity of coin/txo proved with Merkle path 11

Plasma (simplified)
• Root blockchain logs state commitments for N shards, and

commitment to txs in each update
• Shard state commitment could be a UTXO set (Merkle tree),

or more complex (Sparse Merkle tree, Patricia tree)
• If shard x sends state update that included bogus tx, then

users may challenge the update:
- Whistleblower posts txid, claims fraud
- Validator(s) of shard x produce tx payload, validity proofs

(e.g. Merkle) for the tx and all its inputs
- Whistleblower may perhaps collect collateral reward 12

Plasma (simplified)

13

𝑈𝑇𝑋𝑂𝑆𝑒𝑡(𝑇𝑥𝑠(𝑇𝑥𝑠(+,

Shard x Shard x

State transition
Fraud (defensive)
proof gives Merkle
proofs to show
challenged 𝑡𝑥
∈ 𝑇𝑥𝑠(+, and all
inputs are in
𝑈𝑇𝑋𝑂𝑆𝑒𝑡(, all
outputs in
𝑈𝑇𝑋𝑂𝑆𝑒𝑡(+,

𝑈𝑇𝑋𝑂𝑆𝑒𝑡(+,

More complex
state transition
proofs possible!

Validators of shard x lose posted
collateral for failed fraud proof

Cross-shard transaction

• Can we pay from account on shard x to account on shard y?
• With state commitments, validators on shard y can verify

existence of transaction processed on shard x given validity
proofs

• Receipt tx:
- Tx1 removes z coins from account A on x, creates special

receipt output rct1
- Tx2 adds z coins to account B on y, pre-conditioned on

validity proof for rct1
14

Random committee shards

• Rather than fraud proofs, can we guarantee that
w.h.p. enough honest validators are in charge of each
shard?

• Recall beacons/VRF sortition: Elect random
committees of validators (e.g. from set of weighted
public-keys) to govern each shard

• Can re-elect committees periodically
- Requires reshuffling shard data storage

15

“Stateless” validator
• Validator only stores sequence of state commitments
• Attached to each tx are validity proofs (e.g., Merkle proofs) for

all inputs
• Validators update state commitments after each new block of

txs (how? Think how this could be done with Merkle trees…)
• With Merkle trees a bit impractical…attaching proofs to every

tx makes this large (would increase Bitcoin tx size from
250bytes to >1KB)

• Merkle tree replacements based on classic RSA accumulators
can batch/aggregate proofs (new result from last year!) 16

https://eprint.iacr.org/2018/1188.pdf

“Stateless” validator
“Stateless” validators enable:

- Validator separation from data/storage providers
(availability providers)

- Frequent random shuffling of validators among shards
without moving data

- In extreme case, users store their own UTXOs/account
data (nobody stores the whole blockchain)

17

Utreexo – by T. Dryja
Batching Techniques for Accumulators w/ Applications to Stateless Blockchains
by D. Boneh, B. Bünz, B. Fisch
https://ethresear.ch/t/the-stateless-client-concept/172 – V. Buterin

https://ethresear.ch/t/the-stateless-client-concept/172

Summary

• Payment/state channels drastically reduce txs that
need to hit the blockchain

• Sharding methods load balance both validation of
txs and state storage

• State commitments are a key sharding tool:
- Enable flexible roles (nodes contributing to data

availability, consensus, validation)
- Extreme case: data spread over users

18

