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CS 251: Scaling II 
Sharding & Load Balancing

Instructor: Ben Fisch 



Recap: Blockchain scalability
• Two types of scaling problems 

v Transaction throughput (txs/sec) 
v Blockchain size (state storage required to validate txs) 

• Last lecture: 
v Off-chain transactions (“channels”)

• This lecture:
v Sharding (distributing the verification work)
v State commitments (load balancing storage)
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Recap: Payment channels

• Bitcoin processes 3 txs / second. This would never be 
able to replace Visa for payments! 

• Off-chain transactions (via channels) could make this 
a realistic possibility… 

• In channels, transactions only hit the blockchain 
twice: 

- Once to open the channel and deposit collateral
- Once to close the channel and net settle
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Lightning network

• Lightning is an overlay network of channels
• Payment from Alice to Bob can be routed over any 

multi-hop path of channels with sufficient collateral
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State channels

• Much simpler to build a payment channel with 
stateful smart contract (e.g. in Ethereum) 

• But stateful contracts require more blockchain 
storage and more complex verification 5
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Channels lower user costs

• Micropayments (tx fees too high) 
• High gas costs for Ethereum smart contracts
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Today’s topic: load balancing

• Sharding (load balancing transaction verification)
• State-commitments and authenticated data-

structures (load balancing state storage) 
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Sharding Strawman #1
• Split blockchain into N independent blockchains, call 

each a “blockchain shard”
- Shards have independent states (e.g. different types of 

coins, independent smart contracts)
- Shards have different sets of validators 
- Shards run consensus independently

• Problems: 
- Dividing validator set isn’t great for consensus security
- Only handles state that can be truly partitioned 8



Sharding Strawman #2

• Attacker of Strawman #1 needs to compromise 1/N fewer 
validators to cause forks on one of the blockchains 

• Idea: keep a root blockchain with all consensus validators that 
resolves forks, but doesn’t verify transaction validity
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Sharding Strawman #2

• Problem: adversary compromises validators on one shard, 
approves invalid transactions. Can we leverage root ledger to 
resolve? 

• Solution: state commitments and fraud proofs

10

Root ledger

Txs contains “heads” 
of the N shard chains



State commitment
• Bitcoin state is the UTXO set (the set of currently 

spendable coins) --- i.e. valid records of ownership
• Verifying a transaction consists of: 

- Checking inputs are valid, i.e. in the current UTXO set
- Checking local information (running script on 

transaction data), e.g. sum inputs > sum outputs

• Idea: Blockchain stores Merkle tree root of UTXO set 
- Root commits to the state, updatable
- Validity of coin/txo proved with Merkle path 11



Plasma (simplified)
• Root blockchain logs state commitments for N shards, and 

commitment to txs in each update
• Shard state commitment could be a UTXO set (Merkle tree), 

or more complex (Sparse Merkle tree, Patricia tree)
• If shard x sends state update that included bogus tx, then 

users may challenge the update: 
- Whistleblower posts txid, claims fraud
- Validator(s) of shard x produce tx payload, validity proofs 

(e.g. Merkle) for the tx and all its inputs
- Whistleblower may perhaps collect collateral reward 12



Plasma (simplified)
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Cross-shard transaction

• Can we pay from account on shard x to account on shard y? 
• With state commitments, validators on shard y can verify 

existence of transaction processed on shard x given validity 
proofs

• Receipt tx:
- Tx1 removes z coins from account A on x, creates special 

receipt output rct1
- Tx2 adds z coins to account B on y, pre-conditioned on 

validity proof for rct1
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Random committee shards

• Rather than fraud proofs, can we guarantee that 
w.h.p. enough honest validators are in charge of each 
shard? 

• Recall beacons/VRF sortition: Elect random 
committees of validators (e.g. from set of weighted 
public-keys) to govern each shard 

• Can re-elect committees periodically
- Requires reshuffling shard data storage
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“Stateless” validator
• Validator only stores sequence of state commitments
• Attached to each tx are validity proofs (e.g., Merkle proofs) for 

all inputs
• Validators update state commitments after each new block of 

txs (how? Think how this could be done with Merkle trees…)
• With Merkle trees a bit impractical…attaching proofs to every 

tx makes this large (would increase Bitcoin tx size from 
250bytes to >1KB)

• Merkle tree replacements based on classic RSA accumulators 
can batch/aggregate proofs (new result from last year!) 16

https://eprint.iacr.org/2018/1188.pdf


“Stateless” validator
“Stateless” validators enable: 

- Validator separation from data/storage providers 
(availability providers)

- Frequent random shuffling of validators among shards 
without moving data 

- In extreme case, users store their own UTXOs/account 
data (nobody stores the whole blockchain)
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Utreexo – by T. Dryja
Batching Techniques for Accumulators w/ Applications to Stateless Blockchains
by D. Boneh, B. Bünz, B. Fisch
https://ethresear.ch/t/the-stateless-client-concept/172 – V. Buterin

https://ethresear.ch/t/the-stateless-client-concept/172


Summary 

• Payment/state channels drastically reduce txs that 
need to hit the blockchain 

• Sharding methods load balance both validation of 
txs and state storage

• State commitments are a key sharding tool: 
- Enable flexible roles (nodes contributing to data 

availability, consensus, validation) 
- Extreme case: data spread over users
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