CS 251: Scaling Il

Sharding & Load Balancing

Instructor: Ben Fisch

Recap: Blockchain scalability

* Two types of scaling problems
¢ Transaction throughput (txs/sec)

¢ Blockchain size (state storage required to validate txs)

e Last lecture:
s Off-chain transactions (“channels”)

* This lecture:
¢ Sharding (distributing the verification work)
¢ State commitments (load balancing storage)

Recap: Payment channels

 Bitcoin processes 3 txs / second. This would never be
able to replace Visa for payments!

e Off-chain transactions (via channels) could make this
a realistic possibility...

* In channels, transactions only hit the blockchain

twice:
- Once to open the channel and deposit collateral

- Once to close the channel and net settle

Lightning network

* Lightning is an overlay network of channels

* Payment from Alice to Bob can be routed over any
multi-hop path of channels with sufficient collateral

Send 3 over red path
Send 2 over blue path

State channels

* Much simpler to build a payment channel with
stateful smart contract (e.g. in Ethereum)

CLOSE +1 day
. . Pays 3to A
| Init — Pending | —— | Closed | .20% 24

@ CLOSE* (A:3, B:8), 1

e But stateful contracts require more blockchain
storage and more complex verification 5

Channels lower user costs

* Micropayments (tx fees too high)

* High gas costs for Ethereum smart contracts

Today’s topic: load balancing

e Sharding (load balancing transaction verification)

e State-commitments and authenticated data-
structures (load balancing state storage)

Sharding Strawman #1

* Split blockchain into N independent blockchains, call
each a “blockchain shard”

- Shards have independent states (e.g. different types of
coins, independent smart contracts)

- Shards have different sets of validators
- Shards run consensus independently

* Problems:
- Dividing validator set isn’t great for consensus security
- Only handles state that can be truly partitioned g

» Attacker of Strawman #1 needs to compromise 1/N fewer

Sharding Strawman #2

validators to cause forks on one of the blockchains

Root ledger

Idea: keep a root blockchain with all consensus validators that
resolves forks, but doesn’t verify transaction validity

L=]

"

Txs contains “heads”
of the N shard chains

U—]—
/j [

Sharding Strawman #2

* Problem: adversary compromises validators on one shard,
approves invalid transactions. Can we leverage root ledger to

resolve?
* Solution: state commitments and fraud proofs

Root ledger

L= 37D_E

Txs contains “heads”
of the N shard chains 10

State commitment

e Bitcoin state is the UTXO set (the set of currently
spendable coins) --- i.e. valid records of ownership

* Verifying a transaction consists of:

- Checking inputs are valid, i.e. in the current UTXO set

- Checking local information (running script on
transaction data), e.g. sum inputs > sum outputs

e |dea: Blockchain stores Merkle tree root of UTXO set
- Root commits to the state, updatable
- Validity of coin/txo proved with Merkle path

11

Plasma (simplified)

Root blockchain logs state commitments for N shards, and
commitment to txs in each update

Shard state commitment could be a UTXO set (Merkle tree),
or more complex (Sparse Merkle tree, Patricia tree)

If shard x sends state update that included bogus tx, then
users may challenge the update:
- Whistleblower posts txid, claims fraud

- Validator(s) of shard x produce tx payload, validity proofs
(e.g. Merkle) for the tx and all its inputs

- Whistleblower may perhaps collect collateral reward -

Plasma (simplified)

More complex
state transition
proofs possible!

-H3— - -

UTXOSet;

Shard x

v

o

Txs;

State transition

Shard x

Validators of shard x lose posted
collateral for failed fraud proof

TxSi1q

Fraud (defensive)
proof gives Merkle
proofs to show
challenged tx

€ Txs;;1 and all
inputs are in
UTXOSet;, all
outputs in

TXOSeti+1

UTXOSet; s

13

Cross-shard transaction

Can we pay from account on shard x to account on shard y?

With state commitments, validators on shard y can verify
existence of transaction processed on shard x given validity
proofs

Receipt tx:

- Tx1 removes z coins from account A on x, creates special
receipt output rctl

- Tx2 adds z coins to account B on vy, pre-conditioned on
validity proof for rct1

14

Random committee shards

e Rather than fraud proofs, can we guarantee that

w.h.p. enough honest validators are in charge of each
shard?

* Recall beacons/VRF sortition: Elect random
committees of validators (e.g. from set of weighted
public-keys) to govern each shard

* Can re-elect committees periodically

- Requires reshuffling shard data storage

15

“Stateless” validator

Validator only stores sequence of state commitments

Attached to each tx are validity proofs (e.g., Merkle proofs) for
all inputs

Validators update state commitments after each new block of
txs (how? Think how this could be done with Merkle trees...)

With Merkle trees a bit impractical...attaching proofs to every

tx makes this large (would increase Bitcoin tx size from
250bytes to >1KB)

Merkle tree replacements based on classic RSA accumulators
can batch/aggregate proofs (new result from last year!) 16

https://eprint.iacr.org/2018/1188.pdf

“Stateless” validator

“Stateless” validators enable:

- Validator separation from data/storage providers
(availability providers)

- Frequent random shuffling of validators among shards
without moving data

- In extreme case, users store their own UTXOs/account
data (nobody stores the whole blockchain)

Utreexo — by T. Dryja

Batching Techniques for Accumulators w/ Applications to Stateless Blockchains
by D. Boneh, B. Blnz, B. Fisch
https://ethresear.ch/t/the-stateless-client-concept/172 — V. Buterin =

https://ethresear.ch/t/the-stateless-client-concept/172

* Payment/state channels drastically reduce txs that
need to hit the blockchain

* Sharding methods load balance both validation of
txs and state storage

e State commitments are a key sharding tool:

- Enable flexible roles (nodes contributing to data
availability, consensus, validation)

- Extreme case: data spread over users

18

