Instructor: Ben Fisch

Recall: Consensus characteristics

Security properties: consistency & liveness

Network models
- synchronous, partially synchronous, asynchronous

Threshold corruption

- Less than 1/3 in partially synchronous, possible to
achieve higher in synchronous

* Permission models
- Fixed PKI, weighted PKI, dynamic PKI, proof-of-work

Recap: Nakamoto consensus

Follows the “race for leader slot” paradigm

Originally designed for PoW, later adapted to
weighted PKI (PoS) [PassShi’17]

Is “fully permissionless” in PoW setting:

- Don’t know exact # of nodes participating

- Nodes come and go, “late joining”
- No-authentication: anyone can join by solving PoW

Rafael Pass and Elaine Shi. The sleepy model of consensus. In Asiacrypt, 2017.

Nakamoto consensus

* State-machine transactions as blockchain

Y .. [

nonce « PuzzleSolve(D, [head_i, tx_block_i+1])

Nakamoto consensus

* Fork rule (fixed difficulty): extend longest chain

Question: what happens when puzzle difficulty
varies over time? = follow “heaviest” chain

Nakamoto consensus

Protocol:

Every consensus participant (aka miner) works (i.e.
solves PoW puzzle) to find a valid block head extending
heaviest valid chain in its local view. Broadcast
extension immediately upon discovery.

Heaviest by weight = sum of all PoW puzzles in
chain weighted by difficulty

Beautifully simple!

Nakamoto consensus

* When is transaction “confirmed”? Say after 6 blocks
deep... Tentative
(" \
Tx: Dan
Confirmed
Tx confirmation .
never truly final

Probabilistic reasoning that after sufficiently deep transaction will not be reversed, as long as majority of work
performed by honest miners

Nakamoto consensus

Consistency intuition: Suppose adversary has 49% power

* Adversary can fork chain by 1 block faster than honest miners
extend current chain w/ prob. close to %, or by 2 with prob. %

- No problem! If adversary broadcasts fork, everyone switches,
this is now the longest chain

* What if miner forks chain 6 blocks deep and doesn’t broadcast
until it has a longer chain than honest?

- Probability 1/64 it mines 6 blocks before honest mines 1

- Probability < 8 * 277 it mines 7 blocks before honest mines 2
- What is probability adversary ever catches up?

Probability of privately mining longest chain faster than honest portion of network degrades exponentially

Nakamoto consensus

Consistency intuition: (continued...)

Suppose adversary has p < 1/2 fraction of power. What is the
probability adversary catches up from 6 blocks behind?

* Simplified model: repeated rounds, in every round adversary catches
up by 1 block with probability p, and falls behind by 1 block with
probability 1 — p.

* Biased random walk on number line starting at 0, +1 with probability
p and -1 with probability 1 — p. Probability walk ever reaches 6?

* Probability P, that walk ever reaches +z is (lt;p)z (e.g. p=1/3, then
P <0.0062)

Probability of privately mining longest chain faster than honest portion of network degrades exponentially

Nakamoto consensus

What goes wrong if adversary has p > 1/2 power?

* Adversary’s private fork grows at faster rate than
honest chain

* For any k, adversary starts k blocks behind, will
eventually catch up to length of honest chain

10

Nakamoto consensus

—JrH .-

ol B B B

\
\
y\

Deep forks Shallow forks |
hard J

lleasy"

Nakamoto consensus

Network delay & work difficulty

* What happens if miners can solve puzzles faster than
they can propagate solutions through network?

* Adversary might receive the next valid block A steps
ahead of the other honest nodes (A = delay)

= Adversary starts working on next puzzle with a A time
head start over other honest nodes 0(A) “free” hash

trials

Say A is greater than the time it takes the adversary to solve puzzles. In worst case, honest nodes only start working
on next puzzle every A time steps, after they have heard a block from other honest nodes, whereas the adversary
hears blocks immediately, solves the next block in time less than A, and starts working on the next one, etc. This
adversary is now mining blocks at a faster rate than the honest nodes in the network.

12

Nakamoto consensus

Adjusting difficulty for A Formula from [PSS *16]

building on [GKL15, SZ15]

]' Honest mining rate \ ‘ Network delay ’

L " Adversary mining |
—a(1=20+Da)>p—_ rae

Assume small «a for formula to make sense

a = probability honest miners finds block in 1 timestep
B = probability adversary finds block in 1 timestep

A = max # of timesteps to deliver message in network
Note: expected honest block time = 1/a

Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous networks. In
Eurocrypt, 2017.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of variable
difficulty. Eurocrypt, 2015.

Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In Financial Cryptography
and Data Security, pages 507-527. Springer, 2015.

Nakamoto consensus

Adjusting difficulty for A Formula from [PSS "16]

building on [GKL15, SZ15]

\Honestminingrate ‘ ‘ Network delay ’

4 ™
Adversary mining

-/a(l - Z(A-I- 1)a) > ﬁ rate

Small

s L 22 fora = 0.02)
B~ 1-2a 049

IfA> i — 1, formula never true because 1 —2(A+ 1)a =0

If A= 0, basically says a > f (i.e.

E[honest block time])
2

(i.,e. when A >

14

Nakamoto consensus

Adjusting difficulty for A Formula from [PSS *16]

building on [GKL15, SZ15]

‘ Honest mining rate ‘
N* " Adversa ry)
a(l - Z(A + 1)“) > ,BJ mining rate ‘

Intuition:
If Ais larger than the blocktime (A > %), then the honest nodes in

the network only agree at a rate of one block per A, in which time

the adversary mining at a rate f < a might also extend its private
1

chain by one or more blocks, as long as A > 3

15

Nakamoto consensus

Adjusting difficulty for A Formula from [PSS *16]
building on [GKL15, SZ15]

\' Honest mining rate \
N Adversary ‘

a(l — Z(A + 1)“) > ﬂJ mining rate
Intuition:

If "block-time’ is cA = % (i.e. honest puzzle solved every cA steps)

Then on average, honest nodes waste A steps of work every cA
steps, while adversary never wastes work. So “effective” reduced

honest rate is « (ﬁ) = 1+“aA ~a (1 —%) = a(1 — al)

Every (c + 1)Delta steps, the honest parties only effectively work for ¢ Delta steps, and thus mine only \alpha c
\Delta blocks every (c + 1)Delta steps, for a total rate of \alpha c/(c+ 1)

p (Adversary fraction)

PSS Theorem Graph

. — . Red line = min p

,,‘ — value for which
L7 | attack from PSS
ck | 7 works

Wi
.
.
‘

10 e Ve N

Analytical bound

10

1 2 1 10 2 60 100

Nakamoto
magically
chose c = 60
(10 min
blocktime
assuming 10s
network delay)

¢ (blocktime in terms of network delay A)

Blue line = max value of p s.t. é = %and §< 1-2(04 Da

17

Nakamoto consensus

What about liveness?

* In analyzing consistency, we dismissed shallow forks
because the last 6 blocks are unconfirmed, and
honest nodes simply switch to the adversary’s longer
fork.

* But could the adversary persistently shallow fork the
chain, preventing txs from ever being confirmed?
This is a liveness issue.

18

Nakamoto properties

1. Consistency. Honest nodes agree on all but last k
blocks (except with prob. exp(-k))

2. Chain quality. Any consecutive k blocks contain
“sufficiently many” honest blocks (except with prob.
exp(-k)). Miners controlling p fraction of power
should roughly mine p fraction of blocks.

3. Chain growth. Chain grows at a steady rate.
g-chain growth: Growth by k blocks every k/g “rounds”

19

Nakamoto properties => SMR

* Consistency implies SMR consistency

* Chain growth + chain quality implies SMR liveness
- The chain grows by k blocks every k/g periods

- By chain quality, a high fraction of blocks are
contributed by honest miners, and therefore
include all transactions they heard so far

20

Nakamoto chain quality

* Say honest mining rate is @ and adversary mining rate is
B_ 1
B,letp « B+a</z
* |deally honest parties mine a 1 — p fraction

* Can prove they mine at least 1 — 1L =1 —g fraction

If § > a then adversary could mine every block in worst case
= chain quality is 0

21

Pass-Seeman-Shelat Theorem

* For every p < %, if mining difficulty is appropriately
set as function of network delay A then Nakamoto
consensus guarantees:

1. Consistency (for a, 8, A satisfying formula)

2. Chain quality: 1 — %fraction blocks honest

3. 0O(1/A)-Chain growth

22

Nakamoto incentive compatibility

* Participating in Nakamoto is expensive! Need to
solve PoW puzzles...

* In real world (especially permissionless setting)
important to consider participant incentives.

* Nakamoto’s genius block reward idea: reward
participants for becoming the leader by minting new
Bitcoins

 High variance rewards = mining pools

A small miner has low probability of successfully mining a block so there is extremely high variance on the reward,
even though the miner must continuously put in work..

Miners cooperate in pools to lower this variance. Different ways to distribute rewards among participants in the
pool anytime the pool mines a block.

23

Selfish mining attack

* Nakamoto no longer tolerates 49% corruption in a
rational world!

* Surprising attack, Eyal and Sirer 2013

* Block-withholding strategy: If you find a valid block, don’t
broadcast immediately, keep privately working to extend it,
causing others to waste effort. Only broadcast privately mined
blocks when the rest of the network finds a block.

* Say adversary w/ 30% power finds every third block, so gains
advantage every three blocks relative to effort. Other miners
incentivized to join the selfish-mining pool.

Selfish mining starts to become profitable around 22% control. Analysis via Markov chain models, Bai et. al. 2018.

Also analysis changes for risk-averse miners, which discounts expected reward by risk (seeks to lower variance as
well as reward). If a miner infrequently finds a block, selfishly holding onto it instead of immediately broadcasting
also increases the risk it will not be rewarded for the block.

Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, and Qingsheng Kong. A deep dive into blockchain
selfish mining. arXiv preprint arXiv:1811.08263, 2018.

I. Eyal and E. G. Sirer. “Majority is not enough: Bitcoin mining is vulnerable”. J. Comm. ACM, 2018. (Earlier edition in
Financial Cryptography, 2014).

24

Random Beacon

Ideal Random Beacon

At fixed time intervals, a magic random number
"appears in the sky”

25

Weighted PKI Committee Election

Ideal Random Beacon

At fixed time intervals, a magic random number
"appears in the sky”

Let W = }}; w; be the total sum of weight on PK;s

In epoch t the random number r; determines a random
“committee” of M public keys. Probability PK; included in
committee is w;/W

26

Weighted PKI Committee Election

Verifiable Random Function (VRF)

F(sk,x) - y € {0,1}?5¢ y is indistinguishable
Verify(PK, x,y) - 0/1 St e
SetD =W/M

In epoch t there is a “seed” x;

Each party with (PK;, sk;) computes y; ; « F(skj, x|[j) for
each j € [0,w;)

Eachy;; < 22.; gives PK; a committee "slot”. Broadcast.

If target number of committee slots is M, then want each y_i,j to succeed with probability M/W so that total
number of committee members is M is expectation. Soset1/D=M/ W, ...i.,.e M D = W/M

27

VRF Committee Election

* In each epoch t, participants evaluate VRF to see
how many committee slots they have.

* Participant i broadcasts each eligible y; ; to network,
anyone can verify eligibility using:
Verify(PK;, x¢||i, y; ;)

* Elected members run classical BA protocol to reach
agreement on TX block for epoch t, where PK; gets
one “vote” in the BA per slot

28

Random Beacon Techniques

Other techniques for constructing random beacons:

* Verifiable Delay Functions [BBBF’18]
* “Threshold Relay” (Dfinity project)
- Using deterministic threshold signatures

Dan Boneh, Joseph Bonneau, Benedikt Biinz, Ben Fisch. Verifiable Delay Functions. Crypto, 2018.

Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY Technology Overview Series Consensus System.
Arxiv, 2018.

Using Beacon for BA

“Byzantine Agreement, Made Trivial” —Micali, 2018

* Synchronous model, binary BA
* All players see fresh magic coin ¢ € {0,1} at start

Round 1: v, server i broadcasts signed vote (b;, g;)

Each server counts votes (including own vote):
+ Ifi sees = 2N/3 votes for b* then output b*
» Else, output ¢

Silvio Micali. Very Simple and Efficient Byzantine Agreement. ITCS 2017.

30

Using Beacon for BA

Round 1: V; server i broadcasts signed vote (b;, g;)

Each server counts votes (including own vote):
» If i sees 2 2N/3 votes for b* then output b*
» Else, output ¢

Analysis (consistency w. prob - for threshold corruption 1/3)

+ If honest servers all start with b™* all honest output b*

» All honest servers that see = 2N/3 votes output the same b*
» All servers who don’t see = 2N/3 votes output ¢

* ¢ = b* with probability 2

31

Using Beacon for BA

* The simple protocol we presented achieves
consistency with probability 7 (so?)

- This might seem trivial...all parties could flip a coin
and agree with probability 2, no? But this wouldn’t
satisfy the first condition: if all honest servers start
with same input then they all agree w. prob. 1.

* Micali shows how to amplify this probability by
adding more rounds of correlated executions.

32

Using Beacon for BA

In round r all players see fresh magic coin ¢, € {0,1}

Call = 2N/3 votes for some b a “quorum vote” for b
When server “HALTS” on output b, it sends the message (b, FINAL)

If server receives (b, FINAL) from ith server, it fixes this server’s
vote to the value b for all future rounds.

In round r:

All servers repeat for three sub-rounds t =0, 1, 2:

« Server i broadcasts signed vote (b;, g;)

« |If server sees a quorum vote b* then set b; < b*. If t = b*, HALT.

+ Else, if t # 2 the server sets b; « t

« Else, if t = 2, set b; « c¢,.. Non-halted servers advance rounds & repeat.

Claim 1: In any round, if no servers halt, they agree at the end of the round with probability %.

Proof: All servers enter t = 2. All servers that see a quorum for b* agree. All servers that don’t see any quorum agree with the others with
prob. %.

Claim 2: If agreement holds at any point (in terms of the current output values of halted servers, and the b_i values of non-halted, it
continues to hold.

Proof: All honest servers agree, thus there is a quorum vote for this value, thus they still agree at the end of the round.

Claim 3: If some server HALTs in some round, then all servers reach agreement at the end of that round.

Proof: The halted server saw a quorum, therefore no servers see a quorum on a different value at this same sub-round. If a server halted
during t =0, then all other servers set b_i to 0. If a server halted during t =1, then all other servers set b_i to 1.

Claim 4: If servers reach agreement in round r, then any non-halted servers will halt in round r+1.

Proof: Assume servers agree on b at beginning of round r. If b = 0, there will be an honest quorum vote for 0, and they halt in the first sub-
round where t = 0. They don’t halt in first sub-round if b = 1, but by by Claim 2 agreement on 1 continues to hold, and there is an honest
quorum vote for 1 in the second sub-round where t = 1, upon which all servers halt.

Finally, consider two cases. If the servers all agree at the start then the protocol terminates in 1 round and all servers output the same
value.

33

If the servers do not agree at the start, then by iterating Claim 1, the probability they don’t agree by end of round t is 2/{-
t}. By Claim 4, they halt in the next round after reaching agreement. In the case that they start with different inputs, the
expected number of rounds it takes to reach agreement is 2, and therefore the expected rounds to terminate is 3. Once all
servers terminate they know that they have reached agreement. (They know that all servers have halted because of the

FINAL messages sent by halted servers.

33

BA with Partial Synchrony

* Consider previous simple protocol with 1-round
voting and % probability of consistency: what could
go wrong in a partially synchronous model?

* Some honest servers may not hear all votes at same
time (long unpredictable network delay). But for
liveness need to keep the protocol moving, can’t wait
forever...

34

One-round voting insufficient

Suppose server A hears 2N/3 votes for b* and outputs
b*, but all other servers do not hear these votes. They
cannot wait forever, eventually enter a phase TiMeouT.

- Case 1: Timed-out servers do not change votes. Then
agreement is impossible starting from distinct inputs.

- Case 2: Timed-out servers can change votes. Then
might agree on different output than A.

35

Binary BA with Partial Synchrony

* More advanced protocols...
- Byzantine Paxos, PBFT, HotStuff, ... many others

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, Ittai Abraham. HotStuff: BFT Consensus with
Linearity and Responsiveness. PODC 2019.

36

Responsiveness

* In BA protocol above, servers can instantaneously
confirm transaction in good case that 2N/3
signatures are received in both rounds

* Consensus protocols that can return an answer
immediately under optimistic network conditions are
called responsive (don’t need to wait for time A)

* No responsive protocol exists tolerating more than
1/3 corruption (Pass-Shi-17)

Tight connection between protocols designed for partially synchronous network, which are unaware of Delta, and
those for synchronous. Intuitively, the synchronous protocols take advantage of Delta, and therefore wait for Delta
time steps, so not responsive.

Rafael Pass and Elaine Shi. Hybrid Consensus: Efficient Consensus in the Permissionless Model. DISC 2017.

37

Binary BA Reduction

Given: Binary BA tolerating 1/3 corruption of N servers

Round 1: Servers broadcast votes for their input txs

Round 2: Servers count # votes received identical to own. If 1/3
or more of votes are different broadcast “CONFUSED”

Round 3: If server i receives “CONFUSED” from N/3 servers set
b; « 0, otherwise set b; « 1.

Run BA: Run BA on inputs b; to agree on b.

If b=1, non-confused servers output original tx input, and

confused output the most popular tx from of non-confused
servers. Otherwise if b = 0, output “Fail”.

R. Turpin and B. Coan. Extending binary Byzantine agreement to multivalued Byzantine agreement. Inform. Process.
Lett., 18 (1984), pp. 73-76.

38

Binary BA Reduction

Analysis

If leader honest (all honest servers have same input), no honest
servers are confused. All output tx.

Consider two cases if leader dishonest.

Case 1: b = 0: Everyone outputs “Fail”

Case 2: b =1: Any 2N/3 servers contain majority of honest
servers. Non-confused servers inputs agree with majority (all
same). There are less than N/3 confused servers. The N/3 non-
confused honest votes dominate the malicious votes. So their
view of majority agrees with non-confused servers.

39

* Nakamoto consensus

- Synchronous model, Slow
- % corruption threshold
- Fully permissionless, also tolerates “sleepy” nodes
* Classical & proof-of-stake consensus (e.g. PBFT, BA*, HotStuff
combined w/ Beacons or VRFs)
- Partially synchronous model, Responsive (fast confirmation)
- 1/3 corruption threshold
- PKI or Weighted PKI

Give examples of modern protocols: PBFT, Algorand’s BA*, HotStuff designed for partially synchronous networks

References

* [PS’17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Asiacrypt, 2017.

* [PSS’'17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Eurocrypt, 2017.

* [GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable difficulty. Eurocrypt, 2015.

In Financial Cryptography and Data Security, pages 507-527. Springer, 2015.

* [EG14]I. Eyal and E. G. Sirer. “Majority is not enough: Bitcoin mining is vulnerable”. J. Comm.
ACM, 2018. (Earlier Financial Cryptography, ‘14).

* [BBBF18] D. Boneh, J. Bonneau, B. Biinz, B. Fisch. Verifiable Delay Functions. Crypto, 2018.

* [HMW18] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY Technology
Overview Series Consensus System. Arxiv, 2018.

* [M’18] Silvio Micali. Very Simple and Efficient Byzantine Agreement. ITCS 2017.

* [YMRGA’'19] M. Yin, D. Malkhi, M.K. Reiter, G. Golan-Gueta, |. Abraham. HotStuff: BFT
Consensus with Linearity and Responsiveness. PODC 2019.

* [SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.

41

42

