
CS251: Cryptocurrencies and Blockchain Technologies Fall 2019

Programming Project #3
Due: 11:59pm on Mon., Nov. 11, 2019
Submit via Gradescope (each answer on a separate page) code: MG7EP3

For this project, you will be working on a web client and a Solidity contract that will enable
two players to play a state channel battleship game. A player interacts with the Solidity contract
once at initialization time, to start the game, possibly once at the end of the game, and possibly
once if the other player cheats or disappears. Otherwise, the players exchange messages amongst
themselves, and do not interact with the contract. Specifically, if the players are honest, there are
only three transactions sent to the contract.

Throughout this project, you are expected to look out for possible ways a malicious user could
cheat this system and implement defenses against these attacks. We will guide you with questions
to think about some of the attacks that we came up with. Let’s get started!

1

1 Overview of the Battleship Game

If you have never played Battleship before, we suggest that you familiarize yourself with the setup of
the game first by reading up on it. Here is a quick summary. Battleship is a strategy type guessing
game for two players. Two players set up their boards by placing some number of battleships in a
grid. The board state is kept secret from the other player. Players alternate turns calling ”shots”
at the other player’s ships, by guessing some x and y coordinate. The objective of the game is to
destroy the opposing player’s fleet.

In the original game, the players need to place a certain number of ships of different sizes. Note
that for this project, you don’t have to worry about controlling the number of the lenghts of the
fleets. You can count ships as single cells in our game, and you only dictate that each player places
ships to occupy some set number of squares on the grid (the occupied squares don’t have to be
consecutive for example).

The players exchange moves using state channels amongst one another, off-chain, without call-
ing into the contract. The advantage of a state channel implementation such as this is that it
significantly saves gas costs to let the game only interact with the contract at the initialization
and the conclusion stages of the game. See the references listed at the bottom of this spec for a
refresher on state channels.

2 Getting Started

1. If you haven’t done so for the previous project, you’ll need to download and install Node.js
from https://nodejs.org/en/. Choose the LTS version (the one on the left).

2. If you haven’t done so for the previous project, run npm install -g ganache-cli to install
the Ganache CLI, which we will use to simulate a real Ethereum node on our local machines.
Then, run ganache-cli to run the node. You can stop the node at anytime with Ctrl-C.

3. Download the starter code from the class website and open it in your favorite IDE or text
editor (something like Sublime Text, Atom, or Visual Studio Code works nicely). Familiarize
yourself with the code base. For this project, you are expected to fill mycontract.sol and
BattleshipPlayer.js files. There are places marked with functions to modify - please do
not modify any of the other code. Feel free to add helper functions.

4. Open https://remix.ethereum.org in your web browser. In the ‘Run’ tab, set the envi-
ronment to ‘Web3 Provider’, click ‘Ok’ when prompted, and then set the ‘Web3 Provider
Endpoint’ to http://localhost:8545 - this should be the default. This is where you will
develop your smart contract (which you will write in Solidity).

5. Open index.html to access the client interface where you can test your game implementation.
On this page, you will see a list of addresses that you can choose from for each of the two
players, a text field where you need to specify how much each of the players are betting
(“ante”) to play this game, specified in ETH (note that the account balance for a particular
user must be larger than or equal to the bet they are making for it to be allowed to play the
game). There are two views of the game: the view on the left consists of the information that
Player 1 is given. Note that Player 1 doesn’t know the fleet placement of the second player,

2

https://nodejs.org/en/
https://remix.ethereum.org

and same for Player 2. For the purposes of this project, we allow you to view these boards
side by side so that you can test your implementation easier.

6. It’s very helpful to also open your browser’s JavaScript console, so that you can see error
messages (there’s a link on how to do this at the end of this document). If everything so far
is working, you should see no errors in the console (you will probably see a warning; this is
fine, see the the notes at the end for more details).

7. Implement code for the requirements outlined below. When you have your contract, deploy
it, and then update the contract hash and ABI in BattleshipPlayer.js. The ABI
can be copied to the clipboard from the ‘Compile’ tab, and the contract hash can be copied
from the ‘Deployed Contracts’ panel in the ‘Run’ tab. Note that the contract hash is not the
transaction hash of the transaction that created the contract.

3 Lifetime of Your State Channel Battleship Game

At the beginning of the game, both players should make calls to the contract from the client to ini-
tialize a game using the functions constructor and initialize board in BattleshipPlayer.js.
This communication should include the two players’ addresses and the ante (i.e. bid) amount that
they both agreed to. The players should send one another hiding commitments of their initial
board states. Since board states are kept secret in real life battleship, we ask that you implement
a commitment scheme to report the state of the board to the contract so that no other entity can
tell where your fleets are. Consider the following scheme:

3

Assume Player A is playing with an N x N board, with N2 cells in total, and placed some k
number of fleets on it. For each cell of the board, we create a leaf node ni for i ∈ [1, N2] using
n1 = H(s1||j1), where s1 is the state of the first cell, and j1 is a randomly chosen nonce. The state
of a cell is either a 1 (denoting presence of a ship) or 0 (denoting an empty cell). Based on these
leaf nodes, we construct a Merkle Tree. For example for N = 2 (4 cells on the board in total), a
leaf node would be: n1 = H(s1||j1), and a node at level 1 would be: n5 = H(n1||n2). The diagram
above shows what this Merkle tree would look like for this example.

Consider what happens if we omitted the nonce values from the hash calculations for the leaf
nodes. Given the Merkle root, it would be trivial to brute force the board state since there are only
N2 tiles (for some small value of N) and the tiles have binary states.

For our simplified battleship game project, you will be playing on a 6x6 board (N=6) and you are
required to place 10 battleships (k=10). Make sure that you enforce in the smart contract to place
10 secret battleships (as mentioned at the beginning, you don’t need to worry about controlling the
number of the lengths of the fleets. In this project, count ships as single cells on the gameboard).
Hint: Notice that at the beginning of the game the board states are kept secret. Only at the end
of the game do the players open their commitment to the initial board, which is when you can
enforce that each player placed k ships on its board. If not, the player forfeits the game.

Once the game initialization step is finished, the game starts! When Player A sends a move
(x, y) (intending to shoot at coordinates x, y) along with any other metadata necessary to Player
B, B verifies A’s information, opens the commitment for that cell, and sends a Merkle proof to
A indicating whether A has shot one of B’s battleships or not, along with any additional data
if needed. You should think thoroughly what information would be needed for Player A and B
to exchange in this communication between each move, with the goal to securely verify the move
and inform the result, as well as to prevent any malicious attacks outlined in the Implementation
Requirements section.

The game also has an additional punishment rule: if and when one player cheats or disappears,
any one of the two players can submit a transcript of the moves (along with some metadata of your
design) to the contract. The contract should enter a waiting stage. At this point, the opposing
player has a chance to return to the game, to submit their move. At the end of the waiting period,
the contract pays the total amount of bids to the winning player. Alternatively, if one of the players
wins the game, they can make a call to the contract to verify this victory and claim the reward. The
contract should incentivize an honest and correct conclusion to the game, which can be achieved
by returning a small amount of the original ante to the losing player at the end of the game. This
will incentivize the losing party to sign the final message conceding the game.

4 Implementation Requirements

Your submission should be able to interact with the Solidity contract to initialize a new game
amongst two players with a specific bid amount. The contract should withdraw this bid amount
from both players’ account balances before the game starts. Then, the two players should exchange
moves and some metadata about each of these moves. At the end of the game, the winner or the
loser should be able to interact with the Solidity contract to end the game. At the end of the game,
the Solidity contract should send the total sum of the bets to the winner. If at any point, one of
the players attempts to cheat or disappears, then the other person is declared the winner.

Throughout this project, you should think about how you are defending against malicious users.

4

Here are some cases to consider. Note that the list below is not a comprehensive list of issues that
your code will have to handle gracefully. For each of the attacks you are considering, we ask that
you discuss them in the design doc you are submitting. See the Submission section for more details.

4.1 Stage 1: Game Initialization

1. Consider what happens if Player A decides to start a game against Player B and makes a
call to the Solidity contract to pay the bid amount. What happens if Player B never makes
a symmetric call to the contract to pay her amount? How do you ensure that Player A gets
her money back? What should the contract do in this case?

2. What happens if Player A submits a game against Player B with a 10ETH bid, but player
B’s corresponding bid is only 1 ETH? You can set a game that takes the minimum of the two
bets from each person, and refund any differences back to the respective player. Thus in our
example above, the game will involve taking 1ETH stake from each person, and refunding
9ETH back to A at the start. You are free to specify any other scheme. Also be aware of no
negative amount of antes, as that would be stealing money from the pot!

3. How should the contract keep track of the ongoing games? For this project, you can assume
that each player will play only 1 game at a time, so you don’t have to handle multiple games
for a single player.

4. How can you prevent cheating in the set up stage? Consider the case that while setting up
the game, Player A places more than 10 battleships on his board. How can you prevent and
penalize this type of a behavior? Hint: think about what should happen at the end of the
game when A wins and declares this victory to the contract. What checks should the contract
have in place to make sure that the players didn’t cheat during the set up stage?

4.2 Stage 2: Exchanging Moves

1. Once players have initialized their boards at the beginning of the game, how can you keep
them accountable that they won’t modify the placements of their fleets during the game?
Consider the case where A places a correct number of fleets at the beginning of the game
but removes them later on. Hint: think about how the players should declare the state of
their boards to the other player and to make it impossible to change it later on. At the
same time, the board states should be kept secret unless the players have “opened” certain
squares by taking shots at those coordinates during their turn or until the very end of the
game. Think about how you might be able to leverage Merkle commitments and proofs for
this implementation.

2. How can you prevent a user from “forking”, i.e. claiming that they submitted a different
move in the past or insert past moves into the game history? I.e. how can you make sure that
the exchanged moves are ordered and the players cannot cheat? You might want to think
about what metadata the users should pass over along with their (x,y) coordinates, such as
creating “sequence number” (counter) for each move in turn.

3. What if the opponent is not making a move? Think about introducing a timeout feature.
For example, you can post to the blockchain if you believe that your opponent will time out.

5

You send the blockchain his most recent move and your most recent move. The contract
then enters a special state where it waits for the opponent to post their next move to the
blockchain before he is timed out. If the opponent is timed out, then the contract declares
you the winner and after receiving the relevant data from both parties, the contract should
send you the money. Else if the move is submitted in time, then the game continues back in
the state channel.

4. How can Player A verify that the other move indeed came from Player B? Similarly, at the
end of the game, how can the solidity contract verify that the series of moves submitted were
indeed created by Players A and B (i.e. Player A didn’t manufacture a fake game transcript)?
You might want to think about how to leverage signatures for this requirement. How can you
create signatures and verify them? Who should be doing these checks?

4.3 Stage 3: Game Conclusion

1. Once the game is over (either because a winner has been declared, or someone has timeout
or any other ways of cheating you can think of), the game is then ended and will be posted
back to the contract.

2. Design yourself what information is required at this stage for the contract to verify the result,
and make the eventual transfer. We have included a few helper functions that will aid you
in the process. Note the final state of the game needs to be verified, and the loser needs to
sign a resignation to declare losing. The players must be incentivized to conclude the game
correctly. How can you incentivize the losing party to sign the final message conceding the
game? As otherwise we will always need to go through a timeout process. Feel free to design
the final contract’s allocation of the ante.

5 Refresher on Crypto Primitives

5.1 Digital Signature Schemes

Digital signatures can help verify the identity of the sender of a message. Recall that a digital
signature scheme consists of three function: (G, S, V). G is the generator method that outputs a
public key and private key. S is the signing method that outputs a signature given a secret key and
message pair (valid message in message space M). V is the verification method that outputs true
or false given a public key, message and signature tuple.

G() −→ (Pk, Sk)

S(Sk,m ∈M) −→ σ

V (Pk,m ∈M,σ) −→ true/false

For this project, we provided you with signature methods that you can use in your client and
contract codes. You can find these methods in the utils.js file.

6 Practical Development & Debugging

• On your client code, you can use console.log("debugging info here") to debug your
implementation. The strings that you print using this command will appear on the console.

6

You can access by right clicking on your browser and choosing ”Inspect” > ”Console”.

• We will be posting an up-to-date listing of all clarifications and advice on Piazza. Please
follow that post to get the latest information as we work any issues with the assignment.

7 Submission

We will be using Gradescope for submission. Please submit a zipped version of your mycontract.sol
and BattleshipPlayer.js, along with your DESIGN DOC.txt.

Your design doc doesn’t need to be longer than 3 pages. This is a way for you to explain your
implementation to us to ensure you get the points you deserve. In your design doc, you should aim
to answer the following questions:

1. What scheme did you come up with for the communication between two players during the
game? What pieces of information do users send to one another and explain why each are
necessary to prevent malicious behaviors.

2. For each of the bullet points from Implementation Requirements section that you addressed
in your code, what was your strategy in preventing this problem?

3. Are there other defenses that you implemented in your code against malicious behaviors that
weren’t mentioned in the spec? Were there any attack scenarios that you couldn’t defend
against?

You are allowed to work with another project partner. Don’t forget to add your project partner
to your Gradescope submission. If you are using late days for this project, make sure that both
partners have enough late days remaining.

8 References

• Wikipedia page for the battleship game: https://en.wikipedia.org/wiki/Battleship (game)

• State Channels: https://arxiv.org/pdf/1702.05812.pdf

7

	Overview of the Battleship Game
	Getting Started
	Lifetime of Your State Channel Battleship Game
	Implementation Requirements
	Stage 1: Game Initialization
	Stage 2: Exchanging Moves
	Stage 3: Game Conclusion

	Refresher on Crypto Primitives
	Digital Signature Schemes

	Practical Development & Debugging
	Submission
	References

