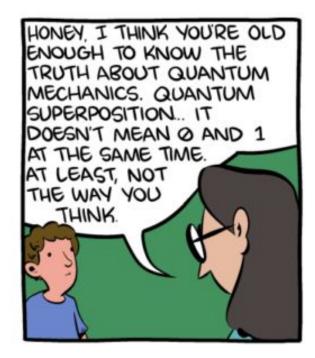
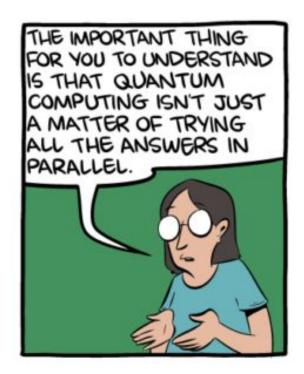
CS269: Quantum Computer Programming

Dan Boneh & Will Zeng + Guests

"THE TALK" BY SCOTT AARONSON & ZACH WEINERSMITH





IF YOU DON'T TALK TO YOUR KIDS ABOUT QUANTUM COMPUTING...

Quantum computing and quantum computing and

scottaaronson.com/blog

smbc-comics.com

This course is:

At the leading edge of a new technology, discipline, and industry

A programming-first approach

A great way to challenge yourself to think about computation in a totally new way

A way to learn "just enough" quantum physics

An experiment!

Course details

Online at: http://cs269q.stanford.edu

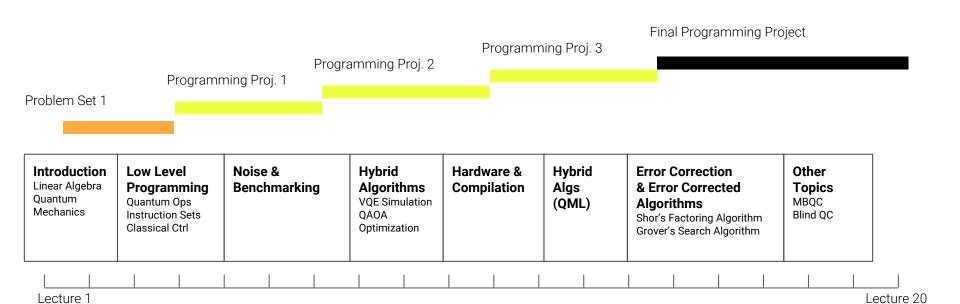
Two lectures per week. Tuesday, Thursday 10:30-11:50, McCullough 115

There will be **one** written problem sets, **three** programming projects, and **one** final programming project.

Textbook: Quantum Computation and Quantum Information: 10th Anniversary Edition by Michael A. Nielsen and Isaac L. Chuang

Readings: posted online with the syllabus for each lecture. These are critical.

Course Topics & Timeline



Quantum Computing isn't the answer to everything.

But it will almost certainly free us to **solve more problems.**

Today's lecture:

Q1. Why program a quantum computer?

Q2. How do I program a quantum computer?

Classical computers have fundamental limits

Transistor scaling

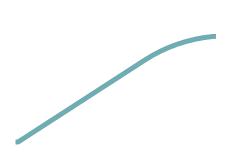
Economic limits with 10bn for next node fab

Ultimate single-atom limits

	Intel First Production
1999	180 nm
2001	130 nm
2003	90 nm
2005	65 nm
2007	45 nm
2009	32 nm
2011	22 nm
2014	14 nm
2016	10 nm
2017	10 nm
2018	10 nm?
2019	10 nm!

Source: https://www.anandtech.com/show/12693/intel-delays-mass-production-of-10-nm-cpus-to-2019

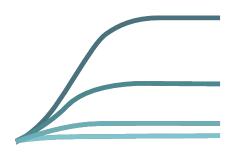
Classical computers have fundamental limits



Transistor scaling

Economic limits with 10bn for next node fab

Ultimate single-atom limits



Returns to parallelization

Amdahl's law

Exascale computing project has its own power plant

Power density can melt chips

But Requirements for Compute Continue to Grow

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute



Source: https://blog.openai.com/ai-and-compute/

And there's more we want to do

Simulation Driven
Drug Design

Organic Batteries & Solar Cells

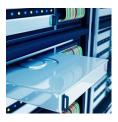
Artificial General Intelligence

New power | New opportunity | Fundamental curiosity

Quantum computing power* scales exponentially with qubits N bits can exactly simulate log N qubits

This compute unit....

Commodore 64



AWS M4 Instance

1 Million x Commodore 64

Entire Global Cloud

1 Billion x (1 Million x Commodore 64)

can exactly simulate:

10 Qubits

30 Qubits

60 Qubits

Size of today's systems.

Note these are imperfect qubits.

^{*} We will be more precise later in the lecture

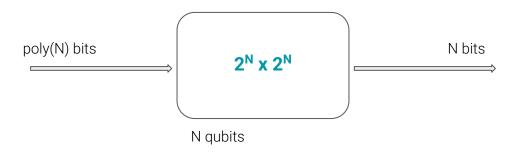
New power | New opportunity | Fundamental curiosity

For **N qubits** every time step (~100ns*) is an exponentially large **2**^N **x 2**^N complex **matrix multiplication**

Crucial details:

- limited number of multiplications (hundreds to thousands) due to noise
- not arbitrary matrices (need to be easily constructed on a QC)
- small I/O, N-bits in and N-bits out

The "big-memory small pipe" mental model for quantum computing



^{*} for superconducting qubit systems

New power | New opportunity | Fundamental curiosity

Machine Learning

- > Development of new training sets and algorithms
- > Classification and sampling of large data sets

Supply Chain Optimization

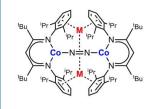
- > Forecast and optimize for future inventory demand
- > NP-hard scheduling and logistics map into quantum applications

Robotic Manufacturing

- > Reduce manufacturing time and cost
- > Maps to a Traveling Salesman Problem addressable by quantum constrained optimization

Computational Materials Science

- > Design of better catalysts for batteries
- > Quantum algorithms for calculating electronic structure

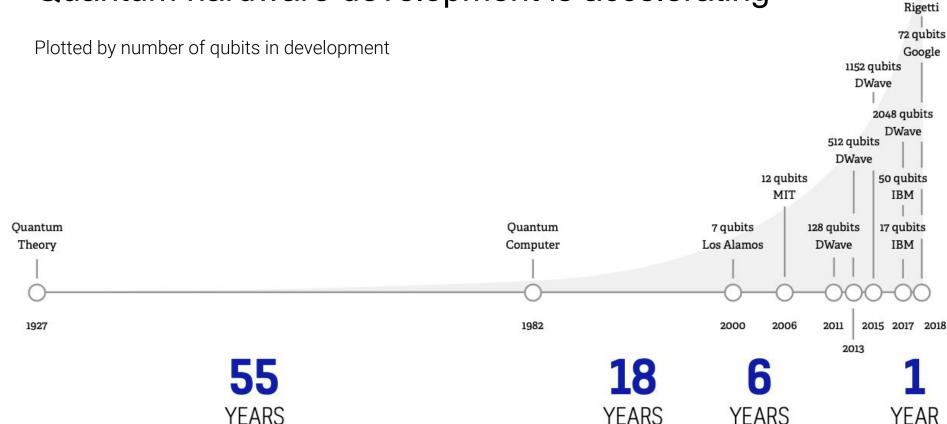


Alternative Energy Research

- > Efficiently convert atmospheric CO₂ to methanol
- > Powered by existing hybrid quantum-classical algorithms + machine learning

What isn't on here: breaking RSA with Shor's algorithm

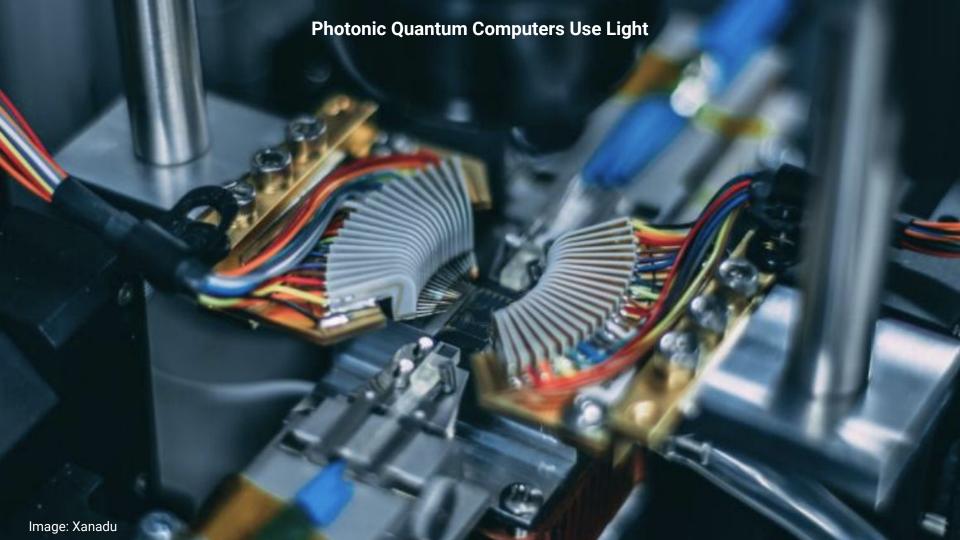
Quantum hardware development is accelerating



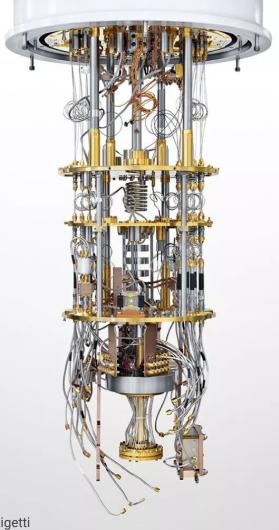
128 qubits

Image: Strangeworks

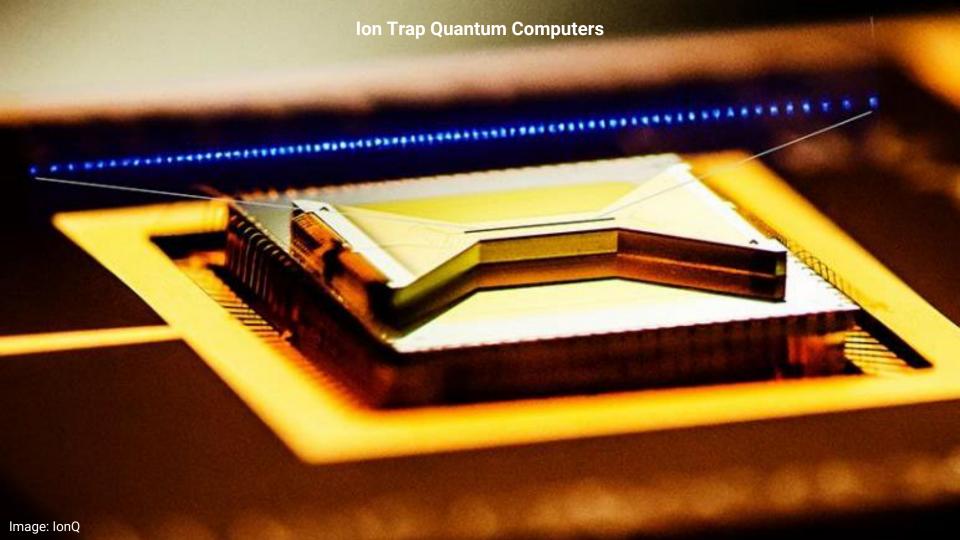
Quantum Hardware comes in many forms



Superconducting Qubits are Supercooled RF Circuits

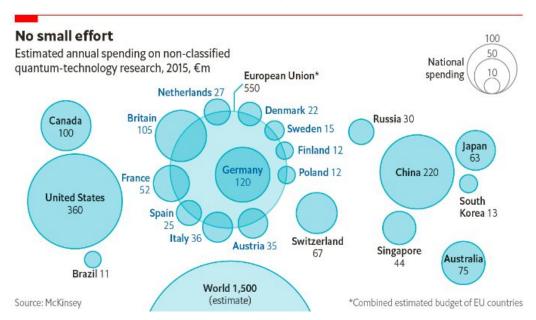


Images: Rigetti



New power | New opportunity | Fundamental curiosity

Investments across academia, government, and industry are global and growing



Plus approximately \$400M in global VC investment

Large Companies are involved

intel Raytheon **BARCLAYS** Google NEC Ford SONY JPMORGAN CHASE & CO. **LOCKHEED MARTIN** HUAWEI aws **Microsoft AIRBUS** TOYOTA C-JNOKIA DAIMLER Alibaba Cloud SAMSUNG HONDA

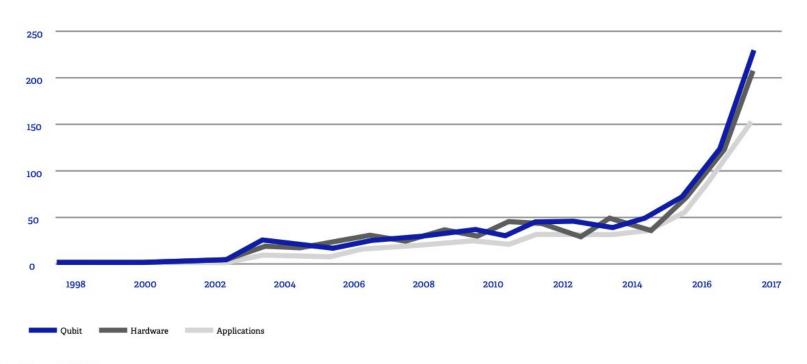
In a growing ecosystem of startups and incumbents

Quantum Computers

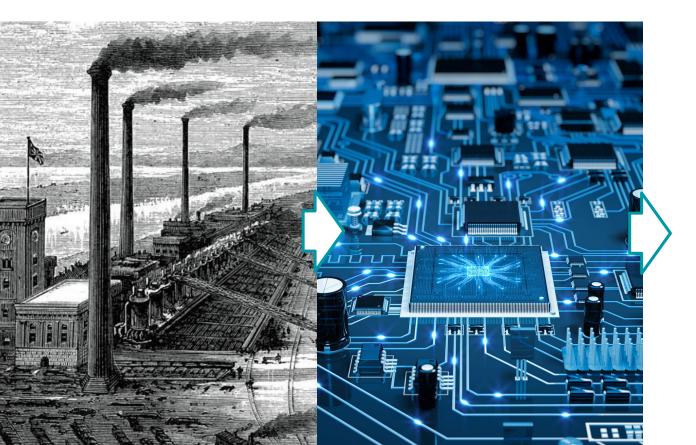
Enabling Technologies

New Funding Strategies

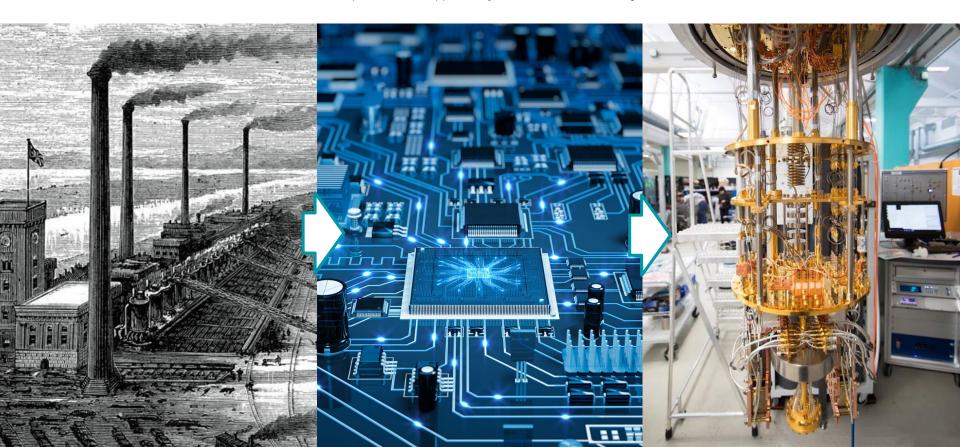
QUANTUM COMPUTING PATENT FAMILIES BY CATEGORY AND PUBLICATION YEAR



New power | New opportunity | Fundamental curiosity



New power | New opportunity | Fundamental curiosity



New power | New opportunity | Fundamental curiosity

Quantum computing reorients the relationship between physics and computer science.

Every "function which would **naturally** be regarded as computable" can be computed by the universal Turing machine. - Turing

"... **nature** isn't classical, dammit..." - Feynman

New power | New opportunity | Fundamental curiosity

Quantum computing reorients the relationship between physics and computer science.

Every "function which would **naturally** be regarded as computable" can be computed by the universal Turing machine. - Turing

"... **nature** isn't classical, dammit..." - Feynman

Physical phenomenon apply to information and computation as well.

> Superposition

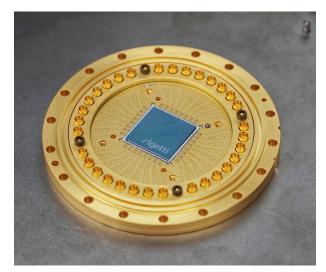
> No-cloning

> Teleportation

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Quantum computers have quantum processor(s) and classical processors



Quantum processor

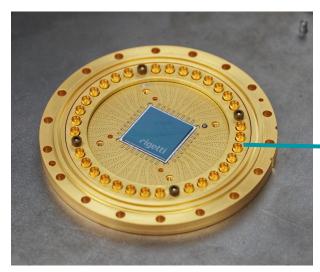


Full quantum computing system

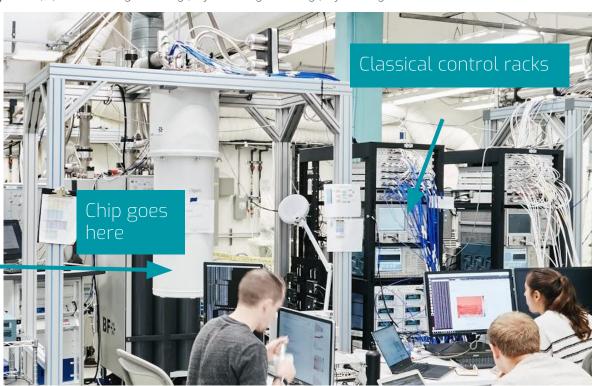
Otterbach et al. arXiv:1712.05771

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Quantum computers have quantum processor(s) and classical processors



Quantum processor

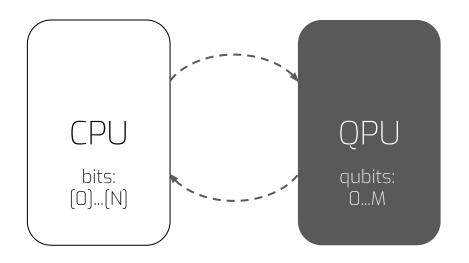


Full quantum computing system

Otterbach et al. arXiv:1712.05771

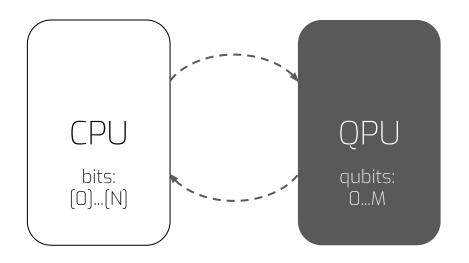
Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Practical, valuable quantum computing is **Hybrid** Quantum/Classical Computing



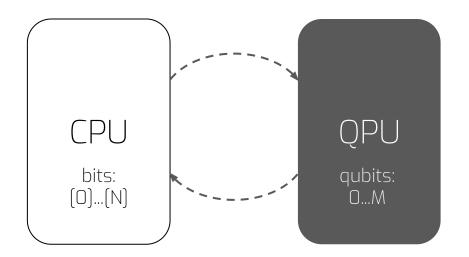
Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Practical, valuable quantum computing is **Hybrid** Quantum/Classical Computing



Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

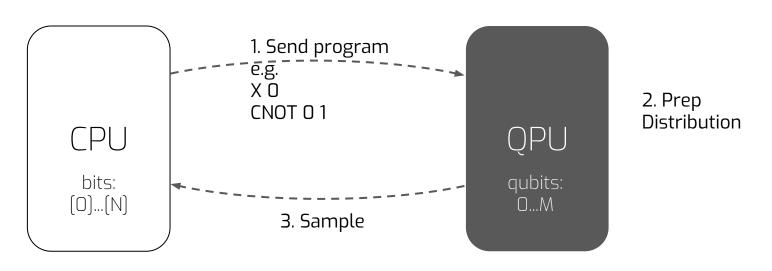
Practical, valuable quantum computing is **Hybrid** Quantum/Classical Computing



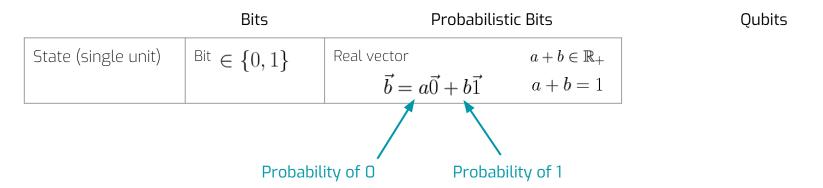
The Quil [01) instruction set is optimized for this.

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Quantum programming is preparing and sampling from complicated distributions



	Bits	Probabilist	Qubits	
State (single unit)	$\mathrm{Bit} \in \{0,1\}$	Real vector $ec{b}=aec{0}+bec{1}$	$a+b \in \mathbb{R}_+$ $a+b=1$	

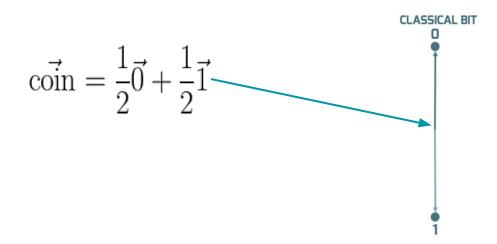


	Bits	Probabilist	Qubits	
State (single unit)	$\mathrm{Bit} \in \{0,1\}$	Real vector $ec{b}=aec{0}+bec{1}$	$a+b \in \mathbb{R}_+$ $a+b=1$	

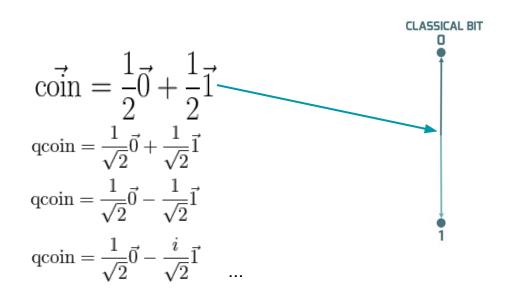
	Bits	Probabilistic Bits		Qubits	
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$

	Bits	Probabilistic	Bits	Qubits	5
State (single unit)	$Bit \in \{0,1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$
		Real vector $ec{b}=aec{0}+bec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\alpha, \beta \in \mathbb{C}$ $ \alpha ^2 + \beta ^2 = 1$
		CLASSICAL BIT		obability of O $oldsymbol{ }eta$	² = Probability of 1

	Bits	Probabilistic Bits		Qubits		
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$	
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$	



	Bits	Probabilist	tic Bits	Qubits	
State (single unit)	$\text{Bit} \in \{0,1\}$	Real vector $ec{b}=aec{0}+bec{1}$	$a+b \in \mathbb{R}_+$ $a+b=1$	Complex vector $\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\alpha, \beta \in \mathbb{C}$ $ \alpha ^2 + \beta ^2 = 1$



	Bits	Probabilistic Bits		Qubits		
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$	
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$	

$$\vec{\text{coin}} = \frac{1}{2} \vec{0} + \frac{1}{2} \vec{1}$$

$$\vec{\text{qcoin}}(\theta) = \frac{1}{\sqrt{2}} \vec{0} + \frac{e^{i\theta}}{\sqrt{2}} \vec{1}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Data la a la 111 a 41 a 1014 a

O. .l-!+-

	Bits	Probabilist	IC BITS	Qubits	
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha, \beta \in \mathbb{C}$
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$

D:+-

$$\vec{\operatorname{coin}} = \frac{1}{2} \vec{0} + \frac{1}{2} \vec{1}$$

$$\vec{\operatorname{qcoin}}(\theta) = \frac{1}{\sqrt{2}} \vec{0} + \frac{e^{i\theta}}{\sqrt{2}} \vec{1}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Probabilistic Bits

Oubits

	Bits	1100000113113	. Dito	Qubits		
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha, \beta \in \mathbb{C}$	
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$	
State (multi-unit)	Bitstring	Prob. Distribution (stochastic vector)				
	$x \in \{0, 1\}^n$	$\vec{s} = \{p_x\}_{x \in \{0,1\}^r}$	1			

 $\vec{s} = \bigotimes_i b_i$

Probability of bitstring x

Bits

	Bits	Probabilistic Bits		Qubits	
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$
State (multi-unit)	Bitstring	Prob. Distribution (stochastic vector)		Wavefunction (complex ve	ector)
	$x \in \{0,1\}^n$	$\vec{s} = \{p_x\}_{x \in \{0,1\}^n}$		$\vec{\psi} = \{\alpha_x\}_{x \in \{}$	$\{0,1\}^n$

$$ec{s} = igotimes_i^n b_i$$

$$\vec{\psi} = \bigotimes_{i}^{n} \psi_{i}$$

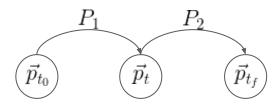
Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

	Bits	Probabilist	ic Bits	Qubits	
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$
State (multi-unit)	Bitstring	Prob. Distribution (stochastic vector)		Wavefunction (complex v	ector)
	$x \in \{0,1\}^n$	$\vec{s} = \{p_x\}_{x \in \{0,1\}^n}$		$\vec{\psi} = \{\alpha_x\}_{x \in \mathcal{X}}$	$\{0,1\}^n$
		n		n	

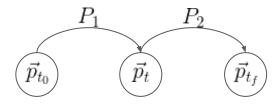
$$\vec{\psi} = \bigotimes_{i}^{n} b_{i}$$

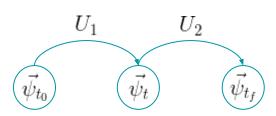
 $|\alpha_x|^2$ = Probability of bitstring x

	Bits	Probabilisti	c Bits	Qubits	
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$
State (multi-unit)	Bitstring	Prob. Distribution (stochastic vector)		Wavefunction (complex vector)	
	$x \in \{0, 1\}^n$	$\vec{s} = \{p_x\}_{x \in \{0,1\}}$	n	$\vec{\psi} = \{\alpha_x\}_{x \in \{$	$[0,1]^n$
Operations	Boolean Logic	Stochastic Matrices			
		$\sum_{j=1}^S P_{i,j} = 1.$			



	Bits	Probabilistic	Bits	Qubits	
State (single unit)	Bit $\in \{0, 1\}$	Real vector	$a+b \in \mathbb{R}_+$	Complex vector	$\alpha,\beta\in\mathbb{C}$
		$\vec{b} = a\vec{0} + b\vec{1}$	a+b=1	$\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\left \alpha\right ^2 + \left \beta\right ^2 = 1$
State (multi-unit)	Bitstring	Prob. Distribution (stochastic vector) Wa		Wavefunction (complex vector)	
	$x \in \{0, 1\}^n$	$\vec{s} = \{p_x\}_{x \in \{0,1\}^n}$		$\vec{\psi} = \{\alpha_x\}_{x \in \{}$	$[0,1]^n$
Operations	Boolean Logic	Stochastic Matrices		Unitary Matrices	
		$\sum_{j=1}^S P_{i,j} = 1.$		$U^{\dagger}U=$	1





	Bits	Probabilistic Bits	Qubits	
State (single unit)	$\mathrm{Bit} \in \{0,1\}$	Real vector $a+b\in\mathbb{R}_+$ $ec{b}=aec{0}+bec{1}$ $a+b=1$	Complex vector $lpha, eta \in \mathbb{C}$ $ec{\psi} = lpha ec{0} + eta ec{1}$ $ lpha ^2 + eta ^2 = 1$	
State (multi-unit)	Bitstring $x \in \{0,1\}^n$	Prob. Distribution (stochastic vector) $\vec{s} = \{p_x\}_{x \in \{0,1\}^n}$	Wavefunction (complex vector) $ec{\psi} = \{ lpha_x \}_{x \in \{0,1\}^n}$	
Operations	Boolean Logic	Stochastic Matrices $\sum_{j=1}^S P_{i,j} = 1.$	Unitary Matrices $U^\dagger U=1$	
Component Ops	Boolean Gates	Tensor products of matrices	Tensor products of matrices	

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

	Bits	Probabilistic Bits	Qubits	
State (single unit)	$\mathrm{Bit} \in \{0,1\}$	Real vector $a+b\in\mathbb{R}_+$ $ec{b}=aec{0}+bec{1}$ $a+b=1$	Complex vector $lpha,eta\in\mathbb{C}$ $ec{\psi}=lphaec{0}+etaec{1}$ $ lpha ^2+ eta ^2=1$	
State (multi-unit)	Bitstring $x \in \{0,1\}^n$	Prob. Distribution (stochastic vector) $\vec{s} = \{p_x\}_{x \in \{0,1\}^n}$	Wavefunction (complex vector) $ec{\psi} = \{lpha_x\}_{x \in \{0,1\}^n}$	
Operations	Boolean Logic	Stochastic Matrices Unitary Matrices $\sum_{j=1}^S P_{i,j} = 1.$ $U^\dagger U = 1$		
Component Ops	Boolean Gates	Tensor products of matrices	Tensor products of matrices	

Sampling

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

	Bits	Probabilistic Bits	Qubits	
State (single unit)	$\mathrm{Bit} \in \{0,1\}$	Real vector $a+b\in\mathbb{R}$ $ec{b}=aec{0}+bec{1}$ $a+b=$		
State (multi-unit)	Bitstring $x \in \{0,1\}^n$	Prob. Distribution (stochastic vector) $ec{s} = \{p_x\}_{x \in \{0,1\}^n}$	Wavefunction (complex vector) $ec{\psi} = \{lpha_x\}_{x \in \{0,1\}^n}$	
Operations	Boolean Logic	Stochastic Matrices $\sum_{j=1}^S P_{i,j} = 1.$	Unitary Matrices $U^\dagger U=1$	
Component Ops	Boolean Gates	Tensor products of matrices	Tensor products of matrices	

Sampling

Born rule $|\alpha_x|^2$ = Probability of bitstring x

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

	Bits	Probabilistic Bits	Qubits	
State (single unit)	$\mathrm{Bit} \in \{0,1\}$	Real vector $a+b\in$ $\vec{b}=a\vec{0}+b\vec{1}$ $a+b\in$	Complex vector $\vec{\psi} = \alpha \vec{0} + \beta \vec{1}$	$\alpha, \beta \in \mathbb{C}$ $ \alpha ^2 + \beta ^2 = 1$
State (multi-unit)	Bitstring $x \in \{0,1\}^n$	Prob. Distribution (stochastic vector) $ec{s} = \{p_x\}_{x \in \{0,1\}^n}$	Wavefunction (complex vector) $ec{\psi} = \{lpha_x\}_{x \in \{0,1\}^n}$	
Operations	Boolean Logic	Stochastic Matrices $\sum_{j=1}^S P_{i,j} = 1.$	Unitary Matrices $U^\dagger U=1$	
Component Ops	Boolean Gates	Tensor products of matrices	Tensor products of matrices	

Born rule Measurement

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

$$\xrightarrow{\text{Start in 0}} \Psi = \begin{bmatrix} 1, & \emptyset, & \emptyset, & \emptyset \end{bmatrix}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Quil (Quantum Instruction Language) gives each quantum operation an instruction <instruction> <qubit targets>

$$\Psi$$
 = $\begin{bmatrix} 1, & \emptyset, & \emptyset, & \emptyset \\ 00, & 01, & 10, & 11 \end{bmatrix}$ $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

X 0 # "quantum NOT"

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Quil (Quantum Instruction Language) gives each quantum operation an instruction <instruction> <qubit targets>

X 0 # "quantum NOT"

$$\Psi = \begin{bmatrix} 1, 0, 0, 0, 0 \end{bmatrix}$$

$$\Psi = \begin{bmatrix} \emptyset, & 1, & \emptyset, & \emptyset \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Quil (Quantum Instruction Language) gives each quantum operation an instruction <instruction> <qubit targets>

X 0 # "quantum NOT"

$$\Psi = \begin{bmatrix} 1, 0, 0, 0, 0 \end{bmatrix}$$

$$X = \left[egin{matrix} 0 & 1 \ 1 & 0 \end{matrix}
ight]$$

$$\Psi = \begin{bmatrix} \emptyset, & 1, & \emptyset, & \emptyset \end{bmatrix}$$

H 0 # Hadamard gate

Apply H instr to 0th qubit
$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 1/\sqrt{2}, & 0 \\ 01 & 10 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Quil (Quantum Instruction Language) gives each quantum operation an instruction <instruction> <qubit targets>

X 0 # "quantum NOT"

X 0

H 0 # Hadamard gate

CNOT 0 1

$$\Psi = \begin{bmatrix} 1, 0, 0, 0 \\ 00 & 01 & 10 \end{bmatrix}$$

$$\Psi = \begin{bmatrix} \emptyset, & 1, & \emptyset, & \emptyset \end{bmatrix}$$

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 1/\sqrt{2}, & 0, & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$H = rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$$

$$ext{CNOT} = cX = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Quil (Quantum Instruction Language) gives each quantum operation an instruction <instruction> <qubit targets>

X 0 # "quantum NOT"

$$\Psi = \begin{bmatrix} 1, 0, 0, 0, 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

A O II qualicum Noi

$$\Psi = \begin{bmatrix} \emptyset, & 1, & \emptyset, & \emptyset \end{bmatrix}$$

X 0

H 0 # Hadamard gate

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 1/\sqrt{2}, & 0, & 0 \end{bmatrix}$$

CNOT 0 1

Apply CNOT instr to 0 and 1 qubits
$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 0, & 0, & 1/\sqrt{2} \end{bmatrix}$$

$$ext{CNOT} = cX = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Quil (Quantum Instruction Language) gives each quantum operation an instruction

<instruction> <qubit targets>

ii o ii iiaaaiiai a gacc

$$\Psi = \begin{bmatrix} 1, & 0, & 0, & 0 \end{bmatrix}$$

$$\Psi = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 1/\sqrt{2}, & 0, & 0 \end{bmatrix}$$

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, 0, 0, 1/\sqrt{2} \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$H=rac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$

$$ext{CNOT} = cX = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

Qubits 0 and 1 are ENTANGLED

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

```
X 0 # "quantum NOT"
X 0
H 0 # Hadamard gate
CNOT 0 1
```

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, 0, 0, 1/\sqrt{2} \end{bmatrix}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

```
X 0 # "quantum NOT" X 0 H 0 # Hadamard gate CNOT 0 1  \Psi = \begin{bmatrix} 1/\sqrt{2}, \ 0, \ 0, \ 1/\sqrt{2} \end{bmatrix}  # Move quantum data to classical data # MEASURE <qubit register> [<bit register>] MEASURE 0 [2]
```

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

```
X 0 # "quantum NOT"
     X 0
     H 0 # Hadamard gate
     CNOT 0 1
                                                  \Psi = \begin{bmatrix} 1/\sqrt{2}, 0, 0, 1/\sqrt{2} \end{bmatrix}
     # Move quantum data to classical data
     # MEASURE <qubit register> [<bit register>]-
                                                                      50-50 branch
     MEASURE 0 [2]
                     [1, 0, 0, 0, 0]
                                                                  \Psi = [0, 0, 0, 1]
Classical Bit
                 0
                                                                     0
 Register
                                                                                     [3]
                 [0]
                                [3]
```

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Some more examples of MEASUREMENT

Quantum Memory

Classical Memory

$$\Psi = \begin{bmatrix} 1/2, 0, 0, 0, \sqrt{3/4} \end{bmatrix} = 5\%$$

MEASURE 1[3]

75%

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Some more examples of MEASUREMENT

$$\Psi = \begin{bmatrix} 1/2, 0, 0, 0, 10 \end{bmatrix}$$

$$\Psi = \begin{bmatrix} 1/2, 0, 0, 0, 10 \end{bmatrix}$$

$$W = \begin{bmatrix} 1/2, 0, 0, 0, 10 \end{bmatrix}$$

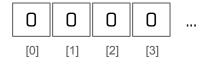
$$W = \begin{bmatrix} 1/2, 0, 0, 0, 10 \end{bmatrix}$$

$$W = \begin{bmatrix} 1/2, 0, 0, 0, 0, 10 \end{bmatrix}$$

Quantum Memory

$$\Psi = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$$

Classical Memory



Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Some more examples of MEASUREMENT Quantum Memory Classical Memory $\Psi = \begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 11 \end{bmatrix}$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Some more examples of MEASUREMENT Quantum Memory Classical Memory $\Psi = \begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 00 & 0 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 & 0 \\ 00 & 0 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 & 0 \\ 00 & 0 & 1 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 & 0 \\ 00 & 0 & 1 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 \\ 00 & 0 & 1 \end{bmatrix}$

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

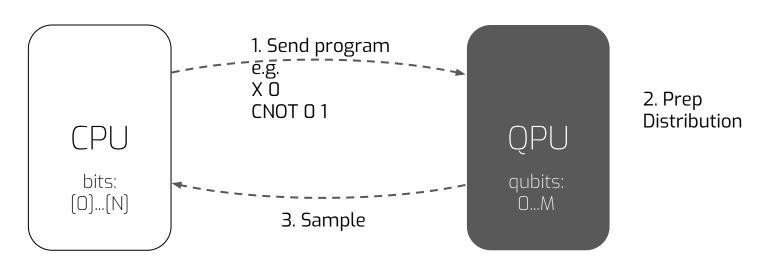
Some more examples of MEASUREMENT Quantum Memory Classical Memory $\Psi = \begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 1/2 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$ $\Psi = \begin{bmatrix} 0 & 0 & 0 \\ 00 & 01 & 10 \end{bmatrix}$

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 1/\sqrt{2}, & 0 \\ 01 & 01 & 11 \end{bmatrix} \xrightarrow{\text{100}\%} \text{ MEASURE 1 [3]}$$

$$\Psi = \begin{bmatrix} 1/\sqrt{2}, & 1/\sqrt{2}, & 0 \\ 01 & 01 & 11 \end{bmatrix} \xrightarrow{[0]} \begin{bmatrix} 0 & 0 & 0 \\ 01 & 11 & [2] & [3] \end{bmatrix}$$

Hybrid Quantum Computers | **Quantum Programming** | Hybrid Programming | Hybrid Algorithms

Quantum programming is preparing and sampling from complicated distributions



The Quil Programming Model

Targets a **Quantum Abstract Machine (QAM)** with a syntax for representing state transitions

```
\Psi: Quantum state (qubits) \rightarrow quantum instructions
```

C: Classical state (bits) → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

```
# Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
```

•

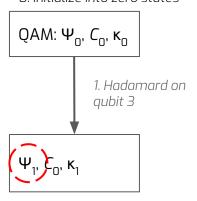
.

The Quil Programming Model

Targets a **Quantum Abstract Machine (QAM)** with a syntax for representing state transitions

- Ψ : Quantum state (qubits) \rightarrow quantum instructions
- C: Classical state (bits) → classical and measurement instructions
- **κ**: Execution state (program)→ control instructions (e.g., jumps)

O. Initialize into zero states



```
# Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
```

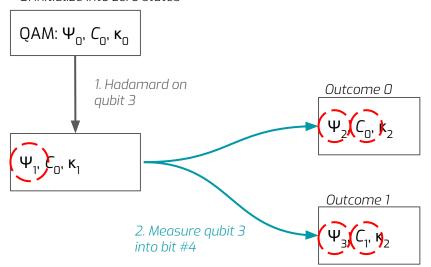
- •
- .

The Quil Programming Model

Targets a **Quantum Abstract Machine (QAM)** with a syntax for representing state transitions

- Ψ : Quantum state (qubits) \rightarrow quantum instructions
- C: Classical state (bits) → classical and measurement instructions
- **κ**: Execution state (program)→ control instructions (e.g., jumps)

O. Initialize into zero states



```
# Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
```

- •
- •

The Quil Programming Model

Targets a **Quantum Abstract Machine (QAM)** with a syntax for representing state transitions

Ψ: Quantum state (qubits) → quantum instructions # Quil Example C: Classical state (bits) → classical and measurement instructions H 3 **κ**: Execution state (program)→ control instructions (e.g., jumps) _MEASURE _3_ [4]_ JUMP-WHEN @END [5] O. Initialize into zero states QAM: Ψ_{n} , C_{n} , κ_{n} 1. Hadamard on 3. Jump to end of program Outcome 0 qubit 3 if bit #5 is TRUE $\Psi_2, C_0(\kappa_3)$ Outcome 1 2. Measure qubit 3 into bit #4

Quantum Computing Programming Languages

Pennylane QUANTUM WORLD XACC ASSOCIATION **Quantum Universal** Languages CirqProjectQ ProjectQ IBM Rigetti **DWave** Microsoft* Qilimanjaro* Xanadu Google Ouantum Full-stack libraries Forest Development **QISKit** Cira Kit Strawberry **QSage OpenFermion QISKit Ouantum algorithms** Grove Fields ToO -Cirq Aqua Q# **QISKit** Quantum circuits Qibo qbsolv Cirq pyquil Terra Open Other Quantum Machine Instruction Assembly language **QMASM** Quil Blackbird **QASM** Languages Quantum device Hardware

© Alba Cervera-Lierta for the QWA (2018)

^{*} Hardware under development. Quantum programs are run on their own simulators.

[&]quot;Quantum Language" is refered with no distinction both as a quantum equivalence of a programming language and as a library to write quantum programs supported by some well-known classical programming language.

Quantum Computing Programming Languages Main tools in this course. All OSS Pennylane Apache v2 QUANTUM WORLD XACC ASSOCIATION **Quantum Universal** Languages CirqProjectQ ProjectQ IBM Rigetti **DWave** Microsoft* Qilimanjaro* Xanadu Google Ouantum Full-stack libraries Forest Development **QISKit** Cira Kit Strawberry **QSage OpenFermion QISKit Quantum algorithms** Grove **Fields** ToO Aqua -Cirq Q# **QISKit** Quantum circuits **absolv** Cirq Qibo pyquil Terra Open Other Quantum Machine Instruction Assembly language Quil **QMASM** Blackbird **QASM** Languages Quantum device

Hardware

© Alba Cervera-Lierta for the QWA (2018)

^{*} Hardware under development. Quantum programs are run on their own simulators.

[&]quot;Quantum Language" is refered with no distinction both as a quantum equivalence of a programming language and as a library to write quantum programs supported by some well-known classical programming language.

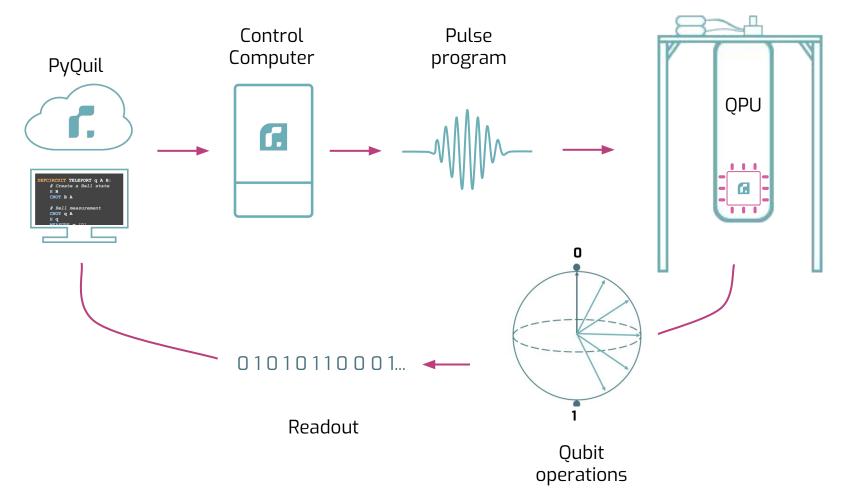
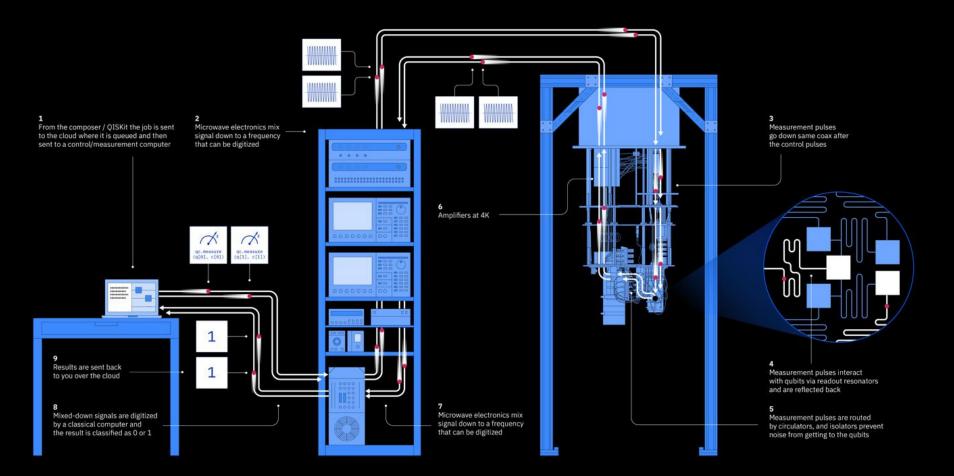


Image: Rigetti



How do I program a quantum computer?

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

We need hybrid programming because of errors

Chance of hardware error in a classical computer:

0.000,000,000,000,000,000,000,1 %

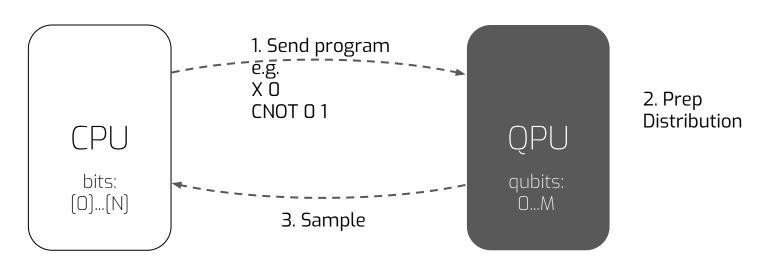
Chance of hardware error in a quantum computer:

0.1%

How do I program a quantum computer?

Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

Quantum programming is preparing and sampling from complicated distributions



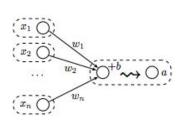
How do I program a quantum computer?

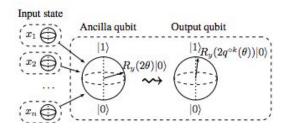
Hybrid Quantum Computers | Quantum Programming | Hybrid Programming | Hybrid Algorithms

By parameterizing quantum programs we can train them to be robust to noise

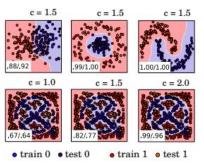
Quantum Machine Learning

> Quantum neuron: an elementary building block for machine learning on quantum computers. (Cao et al. 2017)

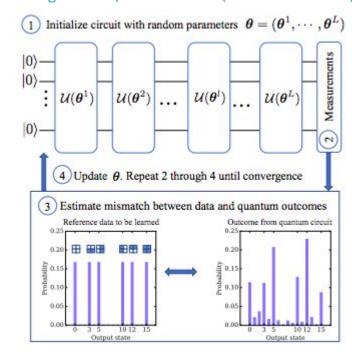




- > Quantum circuit learning. (Mitarai et al. 2018)
- > Quantum machine learning in feature Hilbert spaces. (Schuld and Killoran 2018)



A generative modeling approach for benchmarking and training shallow quantum circuits. (Benedetti et al. 2018)



The Variational Quantum Eigensolver

Used for the electronic structure problem in quantum chemistry

1. MOLECULAR DESCRIPTION

e.g. Electronic Structure Hamiltonian

$$H = \sum_{i,j< i}^{N_n} \frac{Z_i Z_j}{|R_i - R_j|} + \sum_{i=1}^{N_e} \frac{-\nabla_{r_i}^2}{2} - \sum_{ij}^{N_n, N_e} \frac{Z_i}{|R_i - r_j|} + \sum_{i,j< i}^{N_e} \frac{1}{|r_i - r_j|}.$$

2. MAP TO QUBIT REPRESENTATION

e.g. Bravyi-Kitaev or Jordan-Wigner Transform e.g. DI-HYDROGEN

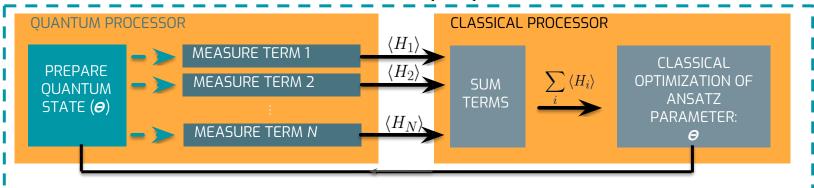
$$\begin{split} H &= f_0 \mathbb{1} + f_1 Z_0 + f_2 Z_1 + f_3 Z_2 + f_1 Z_0 Z_1 \\ &+ f_4 Z_0 Z_2 + f_5 Z_1 Z_3 + f_6 \mathbf{X_0} Z_1 \mathbf{X_2} + f_6 \mathbf{Y_0} Z_1 \mathbf{Y_2} \\ &+ f_7 Z_0 Z_1 Z_2 + f_4 Z_0 Z_2 Z_3 + f_3 Z_1 Z_2 Z_3 \\ &+ f_6 \mathbf{X_0} Z_1 \mathbf{X_2} Z_3 + f_6 \mathbf{Y_0} Z_1 \mathbf{Y_2} Z_3 + f_7 Z_0 Z_1 Z_2 Z_3 \end{split}$$

3. PARAMETERIZED ANSATZ

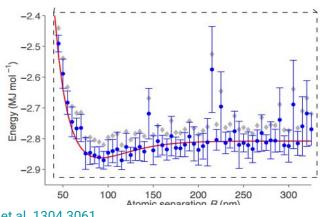
e.g. Unitary Coupled Cluster Variational Adiabatic Ansatz

$$\frac{\langle \varphi(\vec{\theta}) | H | \varphi(\vec{\theta}) \rangle}{\langle \varphi(\vec{\theta}) | \varphi(\vec{\theta}) \rangle} \ge E_0$$

4. RUN Q.V.E. QUANTUM-CLASSICAL HYBRID ALGORITHM



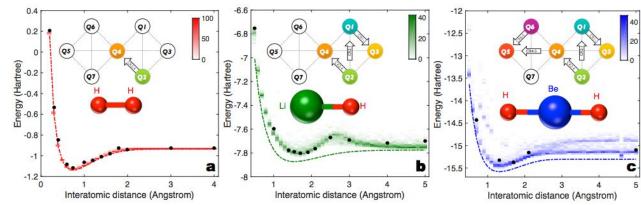
VQE Simulations on Quantum Hardware





Peruzzo et al. 1304.3061

Kandala et al. 1704.05018



Quantum Approximate Optimization Algorithm

(QAOA) Hybrid algorithm used for constraint satisfaction problems

Given binary constraints:

$$z \in \{0,1\}^n$$

$$C_a(z) = \begin{cases} 1 & \text{if } z \text{ satisfies the constraint } a \\ 0 & \text{if } z \text{ does not .} \end{cases}$$

MAXIMIZE

$$C(z) = \sum_{a=1}^m C_a(z)$$

<u>Traveling Salesperson</u> <u>Salesperson</u>

Scheduling

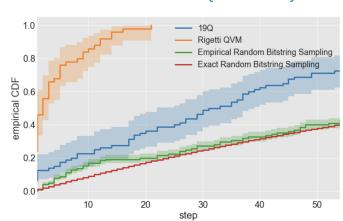
Hadfield et al. 2017 (1709.03489)

K-means clustering

Otterbach et al. 2017 (1712.05771)

Boltzmann Machine Training

Verdon et al. 2017 (1712.05304)



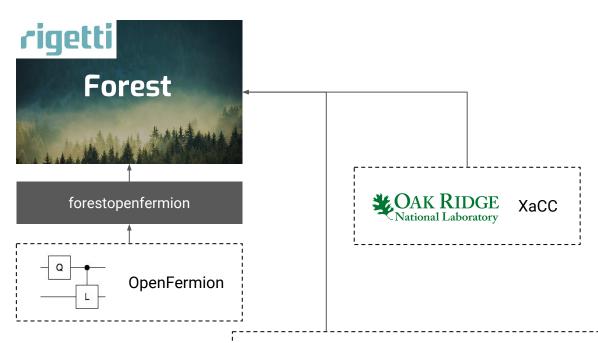
QAOA in Forest

In 19 lines of code

```
from pyquil import Program
from pyquil.api import WavefunctionSimulator
from pyquil.gates import H
from pyquil.paulis import sZ, sX, sI, exponentiate_commuting_pauli_sum
graph = [(0, 1), (1, 2), (2, 3), (3, 0)]
nodes = range(4)
init state prog = sum([H(i) for i in nodes], Program())
h cost = -0.5 * sum(sI(nodes[\theta]) - sZ(i) * sZ(j) for i, j in graph)
h driver = -1. * sum(sX(i) for i in nodes)
def qaoa ansatz(betas, gammas):
   return sum([exponentiate commuting pauli sum(h cost)(g) + \
      exponentiate commuting pauli sum(h driver)(b) \
              for g, b in zip(gammas, betas)], Program())
def qaoa cost(params):
   half = int(len(params)/2)
   betas, gammas = params[:half], params[half:]
    program = init state prog + qaoa ansatz(betas, gammas)
   return WavefunctionSimulator().expectation(prep prog=program, pauli terms=h cost)
minimize(gaoa cost, x0=[0., 0.5, 0.75, 1.], method='Nelder-Mead', options={'disp': True})
```

Open areas in quantum programming

- > Debuggers
- > Optimizing compilers
- > Application specific packages
- > Adoption and implementations



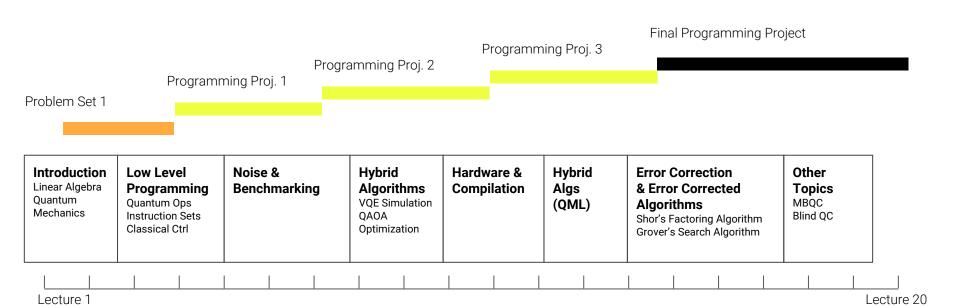
Q1. Why program a quantum computer?

New power | New opportunity | Fundamental curiosity

Q2. How do I program a quantum computer?

Hybrid quantum programming (usually) in Python!

Course Topics & Timeline



Actions for between now and the next lecture:

- 1. Read the syllabus.
- 2. Read Mike & Ike Chapters 1 & 2. Especially review Sections 2.2, 2.3 & 2.6.
- 3. Review Linear Algebra. You will need:

Vectors and linear maps

Bases and linear independence

Pauli Matrices Inner Products

Eigenvalues & Eigenvectors

Adjoints

Hermitian Operators

Unitary Matrices
Tensor Products

Matrix Francis

Matrix Exponentials

Traces

Commutators and Anti-commutators

4. Download and install pyQuil: https://pyquil.readthedocs.io