
CS269Q: Quantum Programming Spring 2019

Project #2
Due: 11:59pm on Wed., May 8 2019, by Gradescope

In this project you will implement quantum programs representing two different paradigms of
hybrid quantum/classical computation. In the first part you will implement a quantum error cor-
rection protocol, which will require you to understand classical control and feedback onto quantum
measurements. In the second part you will implement a version of the variational quantum eigen-
solver. This will give you an opportunity to learn about variational hybrid programming. In the
third part you will practice mapping a problem into a quantum form appropriate for variational
quantum solution.

Problem 1. Implementing and Simulating the Shor Code
There are two parts to this project. For the first part you will need to submit a Python file called
shorcode.py to the autograder. The functionality will be as described below. For more details
you are referred to the shorcode template.py template file that accompanies this assignment.

a. Write a function bit code(q) that, for an arbitrary qubit placeholder q, returns a pyQuil
program that creates and applies the 3-qubit bit-flip code to that qubit. You will need to
allocate additional qubits for redundancy and to do the parity measurements. You will then
need to encode your qubit into the logical qubit space, performing decoding measurements,
and apply the right correction. In this project you will not hardcode in qubit register indices.
Error correcting codes are useful when they can be used to transform any arbitrary program.
You may want to look into QubitPlaceholder objects in pyQuil for this. See the template file
for more details.

b. Write a function phase code(q) that does the same as part (a) but for the 3-bit phase flip
code.

c. Write a function shor(q) that does the same but for the full 9-qubit Shor code.

d. Write the functions phase flip channel and depolarizing channel that take a noise probability
as an argument and return the Kraus operators corresponding to those noise models.

e. Write a function called simulate that takes as argument a list of Kraus operators, a number
of trials, and one of your error correction code functions. The simulate function should then
return the probability that the code of choice preserves the correct logical state under the
given Kraus operators. Unlike in your last project (where we automatically applied Kraus
operators to many qubits and gates) we will treat noise differently in this projects simulation.
We will add noise to the Identity gate and specifically apply this noise in a particular place
in our circuit. See the accompanying template file for details.
New Hints:

Note that in this assignment you are not only encoding and decoding the qubits. You must
also apply the actual corrections based on the results of the parity measurements.

1



This means that your solution would be expected to apply correction gate operations condi-
tional on the classical memory that stores the output of your parity measurements.

In testing there is an input argument called noise. This argument is a Python function that
operates on the qubit registers in your code to apply gates for a noise model. A good way
to check to see if your bit flip code, for example, is working would be to input a function for
noise that returns X(q) where q is some qubit that you have used as part of your code. This
represents a single bit flip error happening on one of your qubits. Your code should correct
for this bit flip so that when all qubits are measured they always remain in the 0 state (which
is where they started). Likewise, if a single Z(q) error happens to your phase flip code then
you should be able to correct for it. Similarly, since your code only has distance 3 it can only
correct for one error. If you have two X errors on the bit flip code then you would expect to
get the wrong answer. What do you think you should get when you run the bit flip code and
two qubits have X errors?

Problem 2. Implementing a Small Variational Quantum Eigensolver
For this second part you will need to submit a Python file called vqe.py to the autograder. The
functionality will be as described below. For more details you are referred to the vqe template.py
template file that accompanies this assignment.

Write a function called solve vqe that takes as argument a representation of a matrix H as a
PauliSum object and returns the smallest eigenvalue of H by running VQE on an ansatz. You
can assume that the PauliSum is defined on at most 5 qubits. In this part of the project you can
try this in a simulated mode where you avoid sampling error and calculate the wavefunctions
automatically with the QVM. You may find WavefunctionSimulator and it’s expectation method
useful for this part. Note that you will likely need to experiment with different choices of ansatzes
and classical optimizers to be successful here.

New HINT:
Because the problem specifies that you’ll be looking at relatively small Hamiltonians of less than
5 qubits, we can first attempt a solution using a generic ansatz based on the hardware ansatz
from Kandala et al. 2017. Let the following define a single layer of our ansatz. Let N be the
number of qubits our ansatz is applied to. Apply RX(θi) followed by RZ(θi+1) to every qubit.
Then apply CNOT(q, q+ 1) for q in range(N -1). This applies CNOT gates to entangle all of our
qubits after doing some rotation that is parameterized by our ~θ.

We then concatenate these parameterized layers some number of times to produce an ansatz of
a given depth. More layers means more parameters to train while it also means more flexibility
for your ansatz and thus more likelihood of finding the correct answer. A diagram of this ansatz
structure is pictured below.

2



Problem 3. Mapping Traveling Salesman into Quantum Optimization

In the traveling salesman problem we are presented a graph of cities with weighted edges that
represent the distance between the cities. We are then asked to find the shortest path in the
graph that visits all the cities exactly once.

Let G be a graph of G cities. Let E(c1, c2) be an edge in the graph that is labeled by a real
number w1,2 representing the distance between cities c1, c2 ∈ G. A path is a sequence of cities
c0, ..., cn. The TSP cost is then given by the distance of this path. In order to solve this with
a variational quantum algorithm such as the quantum approximate optimization algorithm, we
will need to represent this problem in a form that we can program.

In this problem we will write down definitions a Hamiltonian whose ground state is a solution
to the Traveling Salesman Problem. This would be the first step in preparing to solve TSP on a
quantum computer using QAOA.

Let xα,j be a set of n2 binary variables where α denotes a city and j denotes a time step in some
path. Thus x2,0 = 1 means your path starts in city 2 in the zeroth time step. Likewise x4,n−1 = 1
means you end in city 4 on the last time step. There are n time steps as we will visit each city
exactly once. We form a bitstring that represents a path as follows

x0,0x1,0, ..., xn−1,0x0,1, ..., xn−1,n−1 (1)

Note that not all bitstrings are valid paths.

• 100010001 = (100)(010)(001) represents the path 0 −→ 1 −→ 2

• 111111111 is not a valid path

3



• 010001100 = (010)(001)(100) represents the path 1 −→ 2 −→ 0

We now need to write down the constraints as terms in a Hamiltonian.

a. Each city should only appear once in a given path. Write down a formula for a Hamiltonian
term that penalizes bitstrings that violate this condition.

b. Each timestep should only have one city in it. Write down a formula for a Hamiltonian term
that penalizes bitstrings that violate this condition.

c. As we go between timesteps, we should only go between cities where an edge exists. Write
down a formula for a Hamiltonian term that penalizes paths that violate this condition.

d. We want to find the shortest valid path that visits all cities exactly once. Write down a term
that penalizes long paths.

The sum of these terms then gives a Hamiltonian for TSP, i.e. its ground state is a solution to
the TSP problem.

Your grade:

The three problems are weighted as 64 pts, 21 pts, and 15 pts respectively. Your score for the
first two will come from the autograder while the third problem will be graded manually from your
written submission.

4


